Сравнительный анализ мер сходства, основанных на преобразовании скользящих аппроксимаций, в задачах классификации временных рядов

Алимова И.С 1 ., Соловьев В.Д. 1 , Батыршин И.З. 2

¹Казанский Федеральный Университет Казань, Россия

> ²Instituto Politecnico Nacional Mexico. Мексика

> > 1 декабря 2016

План

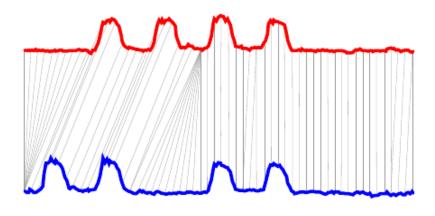
- Временной ряд
- Меры сходства
- Алгоритм классификации
- Набор данных
- Результаты

Временной ряд

- Упорядоченная последовательность данных, собранных в разные моменты времени
- Примеры:
 - показатели курсов валют, взятые за определенный период времени,
 - кардиограмма человека,
 - значения температуры воздуха окружающей среды в течении суток

Классификация временных рядов

- Цель: выявление структуры ряда и прогнозирование дальнейших значений
- Область применения:
 - экономика предсказание падения или роста цен акций компаний,
 - нефтедобыча выявление взаимодействия скважин для добычи нефти с целью определения возможного расположения новых добывающих и нагнетающих скважин,
 - робототехника моделирование траектории движения мобильных роботов в окружении людей


Меры сходства

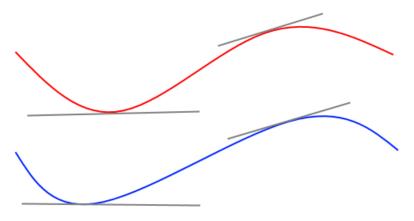
- Евклидово расстояние
- Алгоритм Динамической Трансформации (АДТ)
- Алгоритм преобразования скользящих аппроксимаций (САП трансформ)
- ► САП трансформ с динамической трансформацией локальных трендов (САП+ДТ)

Евклидово расстояние

Пусть
$$x=(x_1,x_2,\dots,x_m)$$
 и $y=(y_1,y_2,\dots,y_m)$ -временные ряды

$$d_{Eukl} = \sqrt{\sum_{i=0}^{m} |x_i - y_i|^2}$$

 Учитывает сдвиг временных рядов относительно друг друга по оси X


 $lackbox{f d}_{i,j} = |x_i - y_j|, i = 1, \ldots, m, j = 1, \ldots, m$ - матрица расстояний

- $d_{i,j} = |x_i y_j|, i = 1, \dots, m, j = 1, \dots, m$ матрица расстояний
- $ightharpoonup D_{i,j} = d_{i,j} + min(D_{i-1,j-1}, D_{i-1,j}, D_{i,j-1})$ матрица трансформаций

- ullet $d_{i,j} = |x_i y_j|, i = 1, \dots, m, j = 1, \dots, m$ матрица расстояний
- $D_{i,j} = d_{i,j} + min(D_{i-1,j-1}, D_{i-1,j}, D_{i,j-1})$ матрица трансформаций
- $\mathbf{w}_0 = D_{m,m}, \mathbf{w}_k = \min(D_{i-1,j-1}, D_{i-1,j}, D_{i,j-1}), k = 1, ..., m$ вектор трансформации W

- $lackbox{f d}_{i,j} = |x_i y_j|, i = 1, \ldots, m, j = 1, \ldots, m$ матрица расстояний
- $ightharpoonup D_{i,j} = d_{i,j} + min(D_{i-1,j-1}, D_{i-1,j}, D_{i,j-1})$ матрица трансформаций
- $\mathbf{w}_0 = D_{m,m}, w_k = \min(D_{i-1,j-1}, D_{i-1,j}, D_{i,j-1}), k = 1, ..., m$ вектор трансформации W

$$d_{ADT} = \frac{1}{m} \sum_{i=0}^{m} w_i$$

▶ Основана на касательных и углах наклона между ними

$$lacktriangledown a_i = rac{6\sum_{j=0}^{k-1}(2j-k+1)y_{i+j}}{hk(k^2-1)}$$
 - локальный тренд

$$ightharpoonup a_i = rac{6\sum_{j=0}^{k-1}(2j-k+1)y_{i+j}}{hk(k^2-1)}$$
 - локальный тренд

lacktriangledown $coss_k(X,Y)=rac{\sum_{i=1}^m a_{yi}a_{xi}}{\sqrt{\sum_{i=1}^m a_{yi}^2\sum_{j=1}^m a_{xj}^2}}$ - мера ассоциаций для локальных трендов

$$ightharpoonup a_i = rac{6\sum_{j=0}^{k-1}(2j-k+1)y_{i+j}}{hk(k^2-1)}$$
 - локальный тренд

lacktriangledown $coss_k(X,Y)=rac{\sum_{i=1}^m a_{yi}a_{xi}}{\sqrt{\sum_{i=1}^m a_{yi}^2\sum_{j=1}^m a_{xj}^2}}$ - мера ассоциаций для локальных трендов

$$d_{SAP} = \frac{1}{|K|} \sum_{k=1}^{m-1} coss_k(X, Y)$$

САП+ДТ

ullet $coss_{
ho,q}(a_{\scriptscriptstyle X},a_{\scriptscriptstyle Y})=rac{\sum_{i=1}^{m-max(
ho,q)+1}a_{yi+q}a_{xi+
ho}}{\sqrt{\sum_{i=1}^{m-q+1}a_{yi+q}\sum_{j=1}^{m-p+1}a_{xi+
ho}}}$ - матрица косинусов

САП+ДТ

- lacktriangledown $coss_{p,q}(a_{\scriptscriptstyle X},a_{\scriptscriptstyle Y})=rac{\sum_{i=1}^{m-max(p,q)+1}a_{yi+q}a_{xi+p}}{\sqrt{\sum_{i=1}^{m-q+1}a_{yi+q}\sum_{j=1}^{m-p+1}a_{xi+p}}}$ матрица косинусов
- $w_0 = coss_{mm}, w_k = w_{k-1} + min(coss_{i-1,j-1}, coss_{i-1,j}, coss_{i,j-1})$
 - вектор трансформации косинусов

САП+ДТ

- $extbf{ iny coss}_{p,q}(a_{\mathsf{X}},a_{\mathsf{y}}) = rac{\sum_{i=1}^{m-\max(p,q)+1} a_{yi+q} a_{xi+p}}{\sqrt{\sum_{i=1}^{m-q+1} a_{yi+q} \sum_{j=1}^{m-p+1} a_{xi+p}}}$ матрица косинусов
- $w_0 = coss_{mm}, w_k = w_{k-1} + min(coss_{i-1,j-1}, coss_{i-1,j}, coss_{i,j-1})$
 - вектор трансформации косинусов

$$d_{SAP+DT} = \frac{1}{m} \sum_{k=1}^{m} w_i$$

Выбор оптимального размера окна для меры САП+ДТ

- ▶ Входные данные: S обучающий набор данных
- ▶ Результат: bestk размер оптимального окна k

```
▶ S разбивается на S_{contr} и S_{train} k = 2 bestk = 2 maxAcc = 0 Для k <= 30: acc = классификация(S_{contr}, S_{train}) Ecли acc > maxAcc: maxAcc = acc bestk = k
```

Алгоритм классификации

- ▶ Входные данные: Т- тестовый набор временных рядов, S
 обучающий набор данных, М мера сходства
- ▶ Результат: k кол-во верно классифицированных рядов
- k = 0

Для каждого $t \in T$:

Находится $s \in S$ такой, что M(t,s) - минимальна Если номера классов s и t совпадают:

$$k = k + 1$$

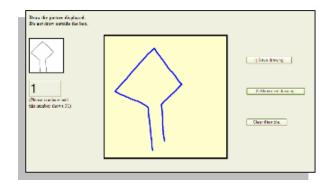
Качественный анализ классификации

Точность (Асс) классификации меры для набора данных:

$$Acc = \frac{k}{|T|}$$

k - количество верно классифицированных рядов, $|\mathsf{T}|$ - количество рядов в тестовом наборе данных

Набор данных


- ▶ Временные ряды из 43 наборов данных из коллекции UCR
- Каждый набор данных содержит обучающий и тестовый файлы
- В каждом из файлов записаны временные ряды с номером класса к которому они принадлежат

Набор временных рядов GUN POINT

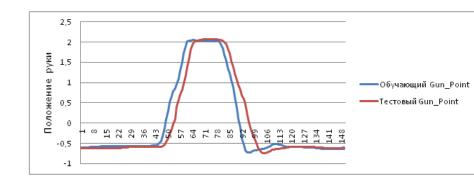
 Траектории движения центра ладони руки человека по оси X, когда он достает пистолет из кобуры на бедре, целится в мишень и кладет пистолет обратно

Набор временных рядов Symbols

 Координаты оси X рисунка символа

Оценка точности мер сходства

Мера	Точность
АДТ	0,91
Евклидово расстояние	0,9
САП+ДТ	0,88
САП	0,86


Таблица 1: Точность рассматриваемых мер по всем наборам коллекции, полученное макро усреднением.

Оценка точности мер сходства

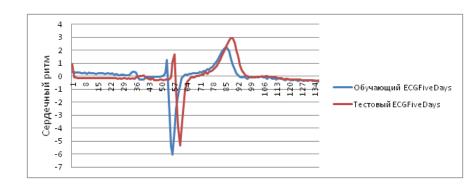

Набор данных	Евклидово	АДТ	САП	САП + ДТ
	расстояние			
50Words	0,8	0,71	0,65	0,67(+3%)
Car	0,8	0,73	0,65	0,67(+2%)
ECGFiveDays	0,81	0,77	0,68	0,97(+29%)
FaceFour	0,78	0,84	0,82	0,84(+2%)
FacesUCR	0,85	0,94	0,78	0,87(+9%)
Gun_Point	0,93	0,87	0,84	0,94(+10%)
MoteStrain	0,88	0,89	0,83	0,86(+3%)
SonyAIBORobotSurface	0,71	0,72	0,72	0,78(+6%)
SonyAIBORobotSurfaceII	0,87	0,85	0,85	0,88(+3%)
Symbols	0,9	0,95	0,88	0,94(+6%)
Trace	0,8	0,98	0,71	0,95(+24%)
TwoLeadECG	0,84	0,97	0,76	0,92(+16%)
$uWaveGestureLibrary_X$	0,79	0,72	0,66	0,71(+5%)
WordsSynonyms	0,72	0,68	0,59	0,63(+4%)

Таблица 2: Значения точности рассматриваемых мер для наборов данных для временных рядов из коллекции UCR.

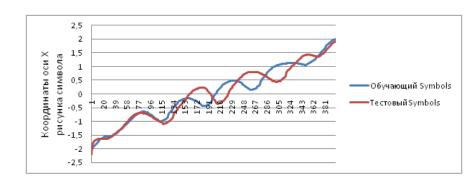

График временных рядов из набора данных GUN POINT

График временных рядов из набора данных ECGFiveDays

График временных рядов из набора данных Symbols

Статистическая оценка эффективности меры САП+ДТ

- Критерий Вилкоксона
- ► Гипотеза: мера САП+ДТ показывает более высокую точность, чем мера САП
- $ightharpoonup T_{exp}=35$, при $T_{krit}=43$, для p=0.01
- $ightharpoonup T_{exp} < T_{krit} \Rightarrow$ гипотеза достоверна

Оценка производительности алгоритмов

Мера	Точность
Евклидово расстояние	O(<i>m</i>)
АДТ	$O(m^2)$
САП+ДТ	$O(m^2)$
САП	$O(m^2)$

Таблица 3: Оценки производительности алгоритмов для вычисления рассматриваемых мер сходства для временного ряда длины m.

Заключение

- Проведен сравнительный анализ меры сходства временных рядов, САП трансформ с Евклидовой и АДТ мерами
- Предложен алгоритм, улучшающий точность меры САП трансформ на временных рядах сдвинутых относительно друг друга по оси X