Static analysis techniques In security
software development lifecycle:
requirements, problems, features

Andrey Belevantsev
Leading Researcher, ISP RAS

abel@ispras.ru

Agenda

AStatic analysis industrial requirements

ASvace architecture

JProblems to solve

» Infrastructure (build interception, compatibility, parser, ...)
»Analysis (IR, core design, interprocedural, path sensitive, ...)
»\Warning review

»Multiple levels/languages of analysis

JResearch directions

J1Conclusions

Message of the talk LETRAS

dStatic analysis: an innovative technology
requiring many efforts for successful
production deployment

»Many research problems, from fundamental
to industrial research

»Many tasks to solve that do not follow from research,
but only from customer feedback

dStatic analysis: a technology requiring
constant research to stay within or ahead
state-of-the-art

Static Analysis Requirements 3828

dWide applicability: defect detection, program
understanding, performance, ...

JApplication for secure development lifecycle
»0On development phase (nightly builds) or on Q&A phase

JRequirements that follow:

» Fully automatic analysis (no need to change the code)
»Scalable to millions of LOC
» Fair percent of true positives (>60%)

» Support of programming languages (C/C++/Javal...),
defect types (many), environments (Windows/Linux)

» Extensibility with new checkers, flexibility (tailored config)
»Cl integration 4

Svace Architecture

| Build process |

L

et
-,
o
.

e

Lightweight

o,

———» C# analysis

)

Build
__—"|__capturing C# build trace/
- Y solution
/
L /
Own / Java)
compilers :\\ (bytecode
[3

™,

.,
{(Cic++ bitcode)
“‘“{St}urce code)

CIC++ 'gnalysis

o

e
-

C/C++ bitcode

-.{ Warnings)

2.

Main analysis

Java bytecode

-
e
———

—h.
Lightweight
Java analysis

specifications

| Call graph

_———— = t ______ b
f Function analysis :)
=
R .
» Core \L
Sound T : \\
dataflow || Checkers | SMT salver
kY

eriEIIIF_I.I' OB
I
I
I
I
I

T

",

b
)

REun 1
Run 2
Run 3

|
|
)|
|
|
|

4

ISP(LH

Web interface

&
)

Waming
review

(

ISP(LH

Build Interception

dDetect process launch
»LD_PRELOAD to dynamically linked executables
»Debugging API (ptrace, WIinAPI)

»Wrappers (e.g. MS-DOS machine within Windows)
»Java: agent injection for compilation APls interception
» C#:. msbuild DLL injection (similar to Java)

dParse cmdline/environment

» Trace “interesting” launches
»Decide on action (usually - run own compiler)

» Transform cmdline (options/envvars) for our compiler,
not loosing significant options, include paths, ...

dLaunch our compiler for generating IR
(or other needed tools) 5

Constructing Own Compiler LEJdRAS

JHarsh requirements
»Need to be as failproof as possible

»Need to understand C/C++ dialects of dozens of
desktop/embedded compilers

»Need to understand modern language standards

JHas to base on production open source
(C/C++ - GCC/LLVM), or buy EDG

»Add some “fuzzy parsing” mechanism (ie not stop on error,
but recover as much as possible)

» Fixup for dialects (or “morph” user source to get rid of them)
»Inject additional data if needed by the analyzer
»>1000 patches wrt vanilla Clang

dJava/C# is no problem (one compiler)
»But then Google invented Jack compiler for Android...

7

ISP(LH

Environment Support

dBuild your tools on all supported hosts

»Various Windows flavors (mostly fine but WinAPI
differences can be trouble)

»Various Linux distributions (hello kernel version 2.4)

»Some tools should work under harsh restrictions
(e.g. chroot system)

JAvoid conflicts with system tools

dProvide enough logging capabilities for fixing
Issues reported by a customer

»Usually both customer environment and source code is not
available

»Need to direct 15! line of support to get required data

ISIRAS
Analysis: Intermediate Representation

dMultiple analysis levels

»AST-level checkers are usually language specific and
performed within corresponding compiler environments

» Clang Static Analyzer, FindBugs, Roslyn, ...

dMain analysis intermediate representation

»Capable of presenting several languages (C/C++/Java)
» Tradeoffs: somewhat high level (closer to rich AST) ...

* Harder analysis (many node types) but no problem with
source code connection

» ... or somewhat lower level (closer to bitcode, LLVM IR)

« Easier analysis but need good debug information
(issues with reconstructing types, names, ...)

»May be lured to the IR chosen by your compiler 9

Extensibility

dNeed to support many warning types
(dozens) and many checkers (hundreds)

Design the analysis engine so that it would

be easy to extend

» Core part: compute program information (call graph, control
flow, data flow) needed by most checkers
 When made right, adding a new checker wouldn’t
slow down the analyzer (much)
» Checkers part: plugins caring for specific “situations” in
source code that look like a certain type of error
 May have many checkers detecting the same error type
(with different confidence, approach, limitations, etc)

 Checkers calculate some special data (“attributes”) .,
based on the core engine information

Extensibility - 11

Typical data to put into core

»Memory model and alias analysis

»Value reasoning (akin to numbering)

» Interprocedural handling (separate slide)

» Conditions tracking for path sensitivity
(e.g. conditions necessary for the execution to reach the
current program point)

dMultiple levels of checkers are also present

In the main engine
»Not all checkers need everything the core part computes
»Should be possible to differentiate based on checker rgs
dMain engine is generally unsound

»But need a part to compute sound (conservative)
dataflow information to rely on (e.g. unreachable code)

Interprocedural Issues LESdRAS

Need to select the basic design
for interprocedural analysis

»Resume / annotation - based (most popular choice)
»Inlining based (limited scalability)

Issues to solve

»What to put in function annotations
»How to limit the amount of data

»Any limitations should be dependent on the core data
computed, not checkers

e Otherwise enabling/disabling a checker may lead to
change in reported warnings for an unrelated checker

12

Path Sensitivity

dVarious degrees of freedom

»\Way to represent the conditions (e.g. we allow conjunction
/ disjunction, but negation is allowed only on atoms)

»Which SMT solver to use (Z3 is the usual choice)

»Whether the conditions should be (somewhat) simplified or
fed to the solver as is (we make some easy ones)

dChanges in the interprocedural support

»Limit on the boolean formula length that can be put in
the annotation

»Policy on shorting the formula (making it more rough by
replacing some parts with true constant)

13

Linking Tracking Support LETRAS

dAnalyzer needs to distinguish between
program components when processing a
complex system (e.g. Android)

dFor C/C++, take this data from the linking info
(knowledge what got linked into where)

JAllows analyzer to:

» Properly connect functions when building a call graph
(when having multiple choice for a external function,
sometimes just choosing heuristically is not enough)

»Analyze by component and throw away data calculated

for internal functions
14

ISP(LH

Scalability

dParts of call graph can be analyzed in parallel

» Strive for maximum “breadth” within call graph

»\When reading a module, schedule for analysis a function
from another already read one

»When a module is fully read, try to process functions
within it as much as possible while they are in memory

Load balancing

»Find a trade off between amount of parallel work and
consumed memory

» Coordinate between different analyzers working
simultaneously on the host

15

ISP(LH

Determinism

dUsers want to see the same set of warnings
from each analysis run of the same source

(or slightly different source)

»Even if the source was built several times
»Reason is to avoid spurious nhew/removed warnings during
warning review process

Not easy to achieve this in a large system

»Analyzer has various limits to avoid extreme complexity for
corner cases and large functions

» Limits should be chosen carefully being not dependent on
checkers, only on core data

»Any decisions the analyzer makes should not be based on

possibly varying data between builds 16

ISP(LH

Other specifics
dMultiple language support

»With lower level IR some higher concepts (templates,
exceptions, etc.) are already lowered by the compiler

»Need to recover them carefully

»Basic algorithms baked into the core part should work well
for all supported languages

»Avoid language specific heuristics in the analyzer

dIncremental / remote analysis
»Separate use cases that require support in all tool parts
(build interception, analysis, results handling)
»Merging analysis data of the newly changed part with
the main analysis data can be tricky

17

ISP(LH

Warning Review

1 Database of analysis runs

»Should be able to hold a number of analysis results,
source code analyzed

»Should be able to compare arbitrary runs

dBasic requirement: hide any warning that was
reviewed once as a false positive

dUser interface

»\Web-based interface - a popular choice
» IDE integration
»“Dashboard” (manager data)

»Not possible to build without deployment and real

customer feedback
18

ISP(LH

Future Research

1Constant research within and around the
main analysis technology

»Most ideas do not get into the product, but it is the only way
to maintain competitive technology level

dMain engine tasks

» Better memory model (alias analysis)

» Better call graph construction (devirtualization)
»Loop analysis

» A subsystem for popular kind of taint-based checkers
» A user API| or a DSL for such a subsystem

19

ISP(LH

Future Research - 11

Analysis approaches that are different
enough from mainstream

»E.g. separation logic allows to have precise shape analysis
for dynamic memory (Infer tool)

»E.g. searching for code clones of known true positives

JAutomatic code fixes / suggestions
(not easy for non-trivial checkers)

JApplying machine learning techniques

»\Warning prioritization
» Fixes suggestion
» Statistical checkers (already present in production tools)

JANnd more ... 20

ISP(LH

Message of the talk

dStatic analysis:

»an innovative technology requiring
many efforts for successful deployment

»a technology requiring constant research
to stay within or ahead state-of-the-art

dFor success you need:
»An experienced large enough team
»Feedback from industrial partner

»Many years of work (started research in 2002,
started productization in 2009, deployed in 2015)
21

Thank You

	Static analysis techniques in security�software development lifecycle:�requirements, problems, features
	Agenda
	Message of the talk
	 Static Analysis Requirements
	Svace Architecture
	Build Interception
	 Constructing Own Compiler
	Environment Support
	Analysis: Intermediate Representation
	Extensibility
	Extensibility - II
	Interprocedural Issues
	Path Sensitivity
	Linking Tracking Support
	Scalability
	Determinism
	Other specifics
	Warning Review
	Future Research
	Future Research - II
	Message of the talk
	Slide Number 22

