

Static analysis techniques in security
software development lifecycle:

requirements, problems, features

Andrey Belevantsev
Leading Researcher, ISP RAS
abel@ispras.ru

Agenda

2

Static analysis industrial requirements

Svace architecture

Problems to solve
Infrastructure (build interception, compatibility, parser, ...)
Analysis (IR, core design, interprocedural, path sensitive, ...)
Warning review
Multiple levels/languages of analysis

Research directions

Conclusions

Message of the talk

3

Static analysis: an innovative technology
requiring many efforts for successful
production deployment
Many research problems, from fundamental

to industrial research
Many tasks to solve that do not follow from research,

but only from customer feedback

Static analysis: a technology requiring
constant research to stay within or ahead
state-of-the-art

 Static Analysis Requirements

4

Wide applicability: defect detection, program
understanding, performance, ...

Application for secure development lifecycle
On development phase (nightly builds) or on Q&A phase

Requirements that follow:
Fully automatic analysis (no need to change the code)
Scalable to millions of LOC
Fair percent of true positives (>60%)
Support of programming languages (C/C++/Java/...),

defect types (many), environments (Windows/Linux)
Extensibility with new checkers, flexibility (tailored config)
CI integration

Svace Architecture

5

2.

1.

3.

Build Interception

6

Detect process launch
LD_PRELOAD to dynamically linked executables
Debugging API (ptrace, WinAPI)
Wrappers (e.g. MS-DOS machine within Windows)
Java: agent injection for compilation APIs interception
C#: msbuild DLL injection (similar to Java)

Parse cmdline/environment
Trace “interesting” launches
Decide on action (usually – run own compiler)
Transform cmdline (options/envvars) for our compiler,

not loosing significant options, include paths, ...

Launch our compiler for generating IR
(or other needed tools)

 Constructing Own Compiler

7

Harsh requirements
Need to be as failproof as possible
Need to understand C/C++ dialects of dozens of

desktop/embedded compilers
Need to understand modern language standards

Has to base on production open source
(C/C++ GCC/LLVM), or buy EDG
Add some “fuzzy parsing” mechanism (ie not stop on error,

but recover as much as possible)
Fixup for dialects (or “morph” user source to get rid of them)
Inject additional data if needed by the analyzer
>1000 patches wrt vanilla Clang

Java/C# is no problem (one compiler)
But then Google invented Jack compiler for Android...

Environment Support

8

Build your tools on all supported hosts
Various Windows flavors (mostly fine but WinAPI

differences can be trouble)
Various Linux distributions (hello kernel version 2.4)
Some tools should work under harsh restrictions

(e.g. chroot system)

Avoid conflicts with system tools

Provide enough logging capabilities for fixing
issues reported by a customer
Usually both customer environment and source code is not

available
Need to direct 1st line of support to get required data

Analysis: Intermediate Representation

9

Multiple analysis levels
AST-level checkers are usually language specific and

performed within corresponding compiler environments
Clang Static Analyzer, FindBugs, Roslyn, ...

Main analysis intermediate representation
Capable of presenting several languages (C/C++/Java)
Tradeoffs: somewhat high level (closer to rich AST) ...

• Harder analysis (many node types) but no problem with
source code connection

... or somewhat lower level (closer to bitcode, LLVM IR)
• Easier analysis but need good debug information

(issues with reconstructing types, names, ...)
May be lured to the IR chosen by your compiler

Extensibility

10

Need to support many warning types
(dozens) and many checkers (hundreds)
Design the analysis engine so that it would
be easy to extend
Core part: compute program information (call graph, control

flow, data flow) needed by most checkers
• When made right, adding a new checker wouldn’t

slow down the analyzer (much)
Checkers part: plugins caring for specific “situations” in

source code that look like a certain type of error
• May have many checkers detecting the same error type

(with different confidence, approach, limitations, etc)
• Checkers calculate some special data (“attributes”)

based on the core engine information

Extensibility - II

11

Typical data to put into core
Memory model and alias analysis
Value reasoning (akin to numbering)
Interprocedural handling (separate slide)
Conditions tracking for path sensitivity

(e.g. conditions necessary for the execution to reach the
current program point)

Multiple levels of checkers are also present
in the main engine
Not all checkers need everything the core part computes
Should be possible to differentiate based on checker rqs

Main engine is generally unsound
But need a part to compute sound (conservative)

dataflow information to rely on (e.g. unreachable code)

Interprocedural Issues

12

Need to select the basic design
for interprocedural analysis
Resume / annotation – based (most popular choice)
Inlining based (limited scalability)

Issues to solve
What to put in function annotations
How to limit the amount of data
Any limitations should be dependent on the core data

computed, not checkers
• Otherwise enabling/disabling a checker may lead to

change in reported warnings for an unrelated checker

Path Sensitivity

13

Various degrees of freedom
Way to represent the conditions (e.g. we allow conjunction

/ disjunction, but negation is allowed only on atoms)
Which SMT solver to use (Z3 is the usual choice)
Whether the conditions should be (somewhat) simplified or

fed to the solver as is (we make some easy ones)

Changes in the interprocedural support
Limit on the boolean formula length that can be put in

the annotation
Policy on shorting the formula (making it more rough by

replacing some parts with true constant)

Linking Tracking Support

14

Analyzer needs to distinguish between
program components when processing a
complex system (e.g. Android)

For C/C++, take this data from the linking info
(knowledge what got linked into where)

Allows analyzer to:
Properly connect functions when building a call graph

(when having multiple choice for a external function,
sometimes just choosing heuristically is not enough)
Analyze by component and throw away data calculated

for internal functions

Scalability

15

Parts of call graph can be analyzed in parallel
Strive for maximum “breadth” within call graph
When reading a module, schedule for analysis a function

from another already read one
When a module is fully read, try to process functions

within it as much as possible while they are in memory

Load balancing
Find a trade off between amount of parallel work and

consumed memory
Coordinate between different analyzers working

simultaneously on the host

Determinism

16

Users want to see the same set of warnings
from each analysis run of the same source
(or slightly different source)
Even if the source was built several times
Reason is to avoid spurious new/removed warnings during

warning review process

Not easy to achieve this in a large system
Analyzer has various limits to avoid extreme complexity for

corner cases and large functions
Limits should be chosen carefully being not dependent on

checkers, only on core data
Any decisions the analyzer makes should not be based on

possibly varying data between builds

Other specifics

17

Multiple language support
With lower level IR some higher concepts (templates,

exceptions, etc.) are already lowered by the compiler
Need to recover them carefully
Basic algorithms baked into the core part should work well

for all supported languages
Avoid language specific heuristics in the analyzer

Incremental / remote analysis
Separate use cases that require support in all tool parts

(build interception, analysis, results handling)
Merging analysis data of the newly changed part with

the main analysis data can be tricky

Warning Review

18

 Database of analysis runs
Should be able to hold a number of analysis results,

source code analyzed
Should be able to compare arbitrary runs

Basic requirement: hide any warning that was
reviewed once as a false positive

User interface
Web-based interface – a popular choice
IDE integration
“Dashboard” (manager data)
Not possible to build without deployment and real

customer feedback

Future Research

19

Constant research within and around the
main analysis technology
Most ideas do not get into the product, but it is the only way

to maintain competitive technology level

Main engine tasks
Better memory model (alias analysis)
Better call graph construction (devirtualization)
Loop analysis
A subsystem for popular kind of taint-based checkers
A user API or a DSL for such a subsystem

Future Research - II

20

Analysis approaches that are different
enough from mainstream
E.g. separation logic allows to have precise shape analysis

for dynamic memory (Infer tool)
E.g. searching for code clones of known true positives

Automatic code fixes / suggestions
(not easy for non-trivial checkers)

Applying machine learning techniques
Warning prioritization
Fixes suggestion
Statistical checkers (already present in production tools)

And more ...

Message of the talk

21

Static analysis:
an innovative technology requiring
many efforts for successful deployment

a technology requiring constant research
to stay within or ahead state-of-the-art

For success you need:
An experienced large enough team

Feedback from industrial partner

Many years of work (started research in 2002,
started productization in 2009, deployed in 2015)

Thank You

	Static analysis techniques in security�software development lifecycle:�requirements, problems, features
	Agenda
	Message of the talk
	 Static Analysis Requirements
	Svace Architecture
	Build Interception
	 Constructing Own Compiler
	Environment Support
	Analysis: Intermediate Representation
	Extensibility
	Extensibility - II
	Interprocedural Issues
	Path Sensitivity
	Linking Tracking Support
	Scalability
	Determinism
	Other specifics
	Warning Review
	Future Research
	Future Research - II
	Message of the talk
	Slide Number 22

