

Static analysis techniques in security
software development lifecycle:

requirements, problems, features

Andrey Belevantsev
Leading Researcher, ISP RAS
abel@ispras.ru

Agenda

2

Static analysis industrial requirements

Svace architecture

Problems to solve
Infrastructure (build interception, compatibility, parser, ...)
Analysis (IR, core design, interprocedural, path sensitive, ...)
Warning review
Multiple levels/languages of analysis

Research directions

Conclusions

Message of the talk

3

Static analysis: an innovative technology
requiring many efforts for successful
production deployment
Many research problems, from fundamental

to industrial research
Many tasks to solve that do not follow from research,

but only from customer feedback

Static analysis: a technology requiring
constant research to stay within or ahead
state-of-the-art

 Static Analysis Requirements

4

Wide applicability: defect detection, program
understanding, performance, ...

Application for secure development lifecycle
On development phase (nightly builds) or on Q&A phase

Requirements that follow:
Fully automatic analysis (no need to change the code)
Scalable to millions of LOC
Fair percent of true positives (>60%)
Support of programming languages (C/C++/Java/...),

defect types (many), environments (Windows/Linux)
Extensibility with new checkers, flexibility (tailored config)
CI integration

Svace Architecture

5

2.

1.

3.

Build Interception

6

Detect process launch
LD_PRELOAD to dynamically linked executables
Debugging API (ptrace, WinAPI)
Wrappers (e.g. MS-DOS machine within Windows)
Java: agent injection for compilation APIs interception
C#: msbuild DLL injection (similar to Java)

Parse cmdline/environment
Trace “interesting” launches
Decide on action (usually – run own compiler)
Transform cmdline (options/envvars) for our compiler,

not loosing significant options, include paths, ...

Launch our compiler for generating IR
(or other needed tools)

 Constructing Own Compiler

7

Harsh requirements
Need to be as failproof as possible
Need to understand C/C++ dialects of dozens of

desktop/embedded compilers
Need to understand modern language standards

Has to base on production open source
(C/C++  GCC/LLVM), or buy EDG
Add some “fuzzy parsing” mechanism (ie not stop on error,

but recover as much as possible)
Fixup for dialects (or “morph” user source to get rid of them)
Inject additional data if needed by the analyzer
>1000 patches wrt vanilla Clang

Java/C# is no problem (one compiler)
But then Google invented Jack compiler for Android...

Environment Support

8

Build your tools on all supported hosts
Various Windows flavors (mostly fine but WinAPI

differences can be trouble)
Various Linux distributions (hello kernel version 2.4)
Some tools should work under harsh restrictions

(e.g. chroot system)

Avoid conflicts with system tools

Provide enough logging capabilities for fixing
issues reported by a customer
Usually both customer environment and source code is not

available
Need to direct 1st line of support to get required data

Analysis: Intermediate Representation

9

Multiple analysis levels
AST-level checkers are usually language specific and

performed within corresponding compiler environments
Clang Static Analyzer, FindBugs, Roslyn, ...

Main analysis intermediate representation
Capable of presenting several languages (C/C++/Java)
Tradeoffs: somewhat high level (closer to rich AST) ...

• Harder analysis (many node types) but no problem with
source code connection

... or somewhat lower level (closer to bitcode, LLVM IR)
• Easier analysis but need good debug information

(issues with reconstructing types, names, ...)
May be lured to the IR chosen by your compiler

Extensibility

10

Need to support many warning types
(dozens) and many checkers (hundreds)
Design the analysis engine so that it would
be easy to extend
Core part: compute program information (call graph, control

flow, data flow) needed by most checkers
• When made right, adding a new checker wouldn’t

slow down the analyzer (much)
Checkers part: plugins caring for specific “situations” in

source code that look like a certain type of error
• May have many checkers detecting the same error type

(with different confidence, approach, limitations, etc)
• Checkers calculate some special data (“attributes”)

based on the core engine information

Extensibility - II

11

Typical data to put into core
Memory model and alias analysis
Value reasoning (akin to numbering)
Interprocedural handling (separate slide)
Conditions tracking for path sensitivity

(e.g. conditions necessary for the execution to reach the
current program point)

Multiple levels of checkers are also present
in the main engine
Not all checkers need everything the core part computes
Should be possible to differentiate based on checker rqs

Main engine is generally unsound
But need a part to compute sound (conservative)

dataflow information to rely on (e.g. unreachable code)

Interprocedural Issues

12

Need to select the basic design
for interprocedural analysis
Resume / annotation – based (most popular choice)
Inlining based (limited scalability)

Issues to solve
What to put in function annotations
How to limit the amount of data
Any limitations should be dependent on the core data

computed, not checkers
• Otherwise enabling/disabling a checker may lead to

change in reported warnings for an unrelated checker

Path Sensitivity

13

Various degrees of freedom
Way to represent the conditions (e.g. we allow conjunction

/ disjunction, but negation is allowed only on atoms)
Which SMT solver to use (Z3 is the usual choice)
Whether the conditions should be (somewhat) simplified or

fed to the solver as is (we make some easy ones)

Changes in the interprocedural support
Limit on the boolean formula length that can be put in

the annotation
Policy on shorting the formula (making it more rough by

replacing some parts with true constant)

Linking Tracking Support

14

Analyzer needs to distinguish between
program components when processing a
complex system (e.g. Android)

For C/C++, take this data from the linking info
(knowledge what got linked into where)

Allows analyzer to:
Properly connect functions when building a call graph

(when having multiple choice for a external function,
sometimes just choosing heuristically is not enough)
Analyze by component and throw away data calculated

for internal functions

Scalability

15

Parts of call graph can be analyzed in parallel
Strive for maximum “breadth” within call graph
When reading a module, schedule for analysis a function

from another already read one
When a module is fully read, try to process functions

within it as much as possible while they are in memory

Load balancing
Find a trade off between amount of parallel work and

consumed memory
Coordinate between different analyzers working

simultaneously on the host

Determinism

16

Users want to see the same set of warnings
from each analysis run of the same source
(or slightly different source)
Even if the source was built several times
Reason is to avoid spurious new/removed warnings during

warning review process

Not easy to achieve this in a large system
Analyzer has various limits to avoid extreme complexity for

corner cases and large functions
Limits should be chosen carefully being not dependent on

checkers, only on core data
Any decisions the analyzer makes should not be based on

possibly varying data between builds

Other specifics

17

Multiple language support
With lower level IR some higher concepts (templates,

exceptions, etc.) are already lowered by the compiler
Need to recover them carefully
Basic algorithms baked into the core part should work well

for all supported languages
Avoid language specific heuristics in the analyzer

Incremental / remote analysis
Separate use cases that require support in all tool parts

(build interception, analysis, results handling)
Merging analysis data of the newly changed part with

the main analysis data can be tricky

Warning Review

18

 Database of analysis runs
Should be able to hold a number of analysis results,

source code analyzed
Should be able to compare arbitrary runs

Basic requirement: hide any warning that was
reviewed once as a false positive

User interface
Web-based interface – a popular choice
IDE integration
“Dashboard” (manager data)
Not possible to build without deployment and real

customer feedback

Future Research

19

Constant research within and around the
main analysis technology
Most ideas do not get into the product, but it is the only way

to maintain competitive technology level

Main engine tasks
Better memory model (alias analysis)
Better call graph construction (devirtualization)
Loop analysis
A subsystem for popular kind of taint-based checkers
A user API or a DSL for such a subsystem

Future Research - II

20

Analysis approaches that are different
enough from mainstream
E.g. separation logic allows to have precise shape analysis

for dynamic memory (Infer tool)
E.g. searching for code clones of known true positives

Automatic code fixes / suggestions
(not easy for non-trivial checkers)

Applying machine learning techniques
Warning prioritization
Fixes suggestion
Statistical checkers (already present in production tools)

And more ...

Message of the talk

21

Static analysis:
an innovative technology requiring
many efforts for successful deployment

a technology requiring constant research
to stay within or ahead state-of-the-art

For success you need:
An experienced large enough team

Feedback from industrial partner

Many years of work (started research in 2002,
started productization in 2009, deployed in 2015)

Thank You

	Static analysis techniques in security�software development lifecycle:�requirements, problems, features
	Agenda
	Message of the talk
	 Static Analysis Requirements
	Svace Architecture
	Build Interception
	 Constructing Own Compiler
	Environment Support
	Analysis: Intermediate Representation
	Extensibility
	Extensibility - II
	Interprocedural Issues
	Path Sensitivity
	Linking Tracking Support
	Scalability
	Determinism
	Other specifics
	Warning Review
	Future Research
	Future Research - II
	Message of the talk
	Slide Number 22

