
Inter-procedural buffer overflows detection in
C/C++ source code via static analysis

Irina Dudina

Institute for System
Programming of the Russian

Academy of Sciences
Lomonosov Moscow State

University

Moscow
1 dec 2016.

Buffer overflow error

Accessing (reading or writing) the buffer with value that exceedes it’s
bounds.

may lead to program fall, incorrect operation of the program, security
vulnerability;
for the last ten years remains one of the most common source of vulnerability.

https://nvd.nist.gov/visualizations/cwe-over-time

Introduction 2 /16

Buffer overflow detection

Detecting buffer overflow vulnerabilities by analyzing code in general is
an undecidable problem.

The halting problem can be trivially reduced to the buffer overflow detection
problem.

Analyzer use cases define the treshold between:
recall,
scalability,
resource consumption,
speed,
FP rate.

Introduction 3 /16

Goal

Developing buffer overflow detector within SVACE .

Requirements
hight scalability,

full Android analysis in 5 hours (all detectors),

hight True Positive rate (50% – 70%),
path-sensitivity,
inter-procedural detection,
warning message with detailed trace.

Limitatons
Buffers on stack or on static memory with compile-time known size
only.

Introduction 4 /16

Approach based on critical edge
detection

A BOF warning is fired if CFG of a function contains
an edge, for which every path containing this edge
always has out of bounds buffer access.

Advantages

Hight TP rate.
This BOF defect definition is based on the
assumption that programmers do not write
unreachable code, which is satisfied for the vast
majority of cases.

Efficient detection algorithm.

Flaw
Missing real defects.

Not all BOF errors satisfy this criteria.

Introduction 5 /16

Defect depending on path conditions

Out of bounds access happens if
cond1 && cond1 is satisfiable.

No critical edge.
Satisfiability of conjunctions of
path conditions must be
checked to report such kind of
an error.

Introduction 6 /16

Unknown function precondition

1 #define S 10
2 int buf [S] ;

3 void foo (int idx) {
4 buf [idx] + + ;
5 }

BOF if idx >= S

6 int bar (int a , int b) {
7 i f (a >= S−1) {
8 // . . .
9 }
10 i f (b)
11 a ++ ;
12 return buf [a] ;
13 }

BOF if a >= S - 1 && (b)

Introduction 7 /16

Unknown function precondition

1 #define S 10
2 int buf [S] ;

3 void foo (int idx) {
4 buf [idx] + + ;
5 }

BOF if idx >= S
For the single path BOF
depends on idx

6 int bar (int a , int b) {
7 i f (a >= S−1) { //true
8 // . . .
9 }
10 i f (b) //true
11 a ++ ;
12 return buf [a] ;
13 }

BOF if a >= S - 1 && (b)
The path contains BOF regardless
input values

Introduction 7 /16

Unknown function precondition

1 #define S 10
2 int buf [S] ;

3 void foo (int idx) {
4 buf [idx] + + ; //OK
5 }

BOF if idx >= S
For the single path BOF
depends on idx

6 int bar (int a , int b) {
7 i f (a >= S−1) { //true
8 // . . .
9 }
10 i f (b) //true
11 a ++ ;
12 return buf [a] ; //BOF here
13 }

BOF if a >= S - 1 && (b)
The path contains BOF regardless
input values

Introduction 7 /16

Formal definition of BOF

A function is said to have a BOF defect if it’s CFG contains a path, for
which the following hold

it contains an access to the buffer of size S with index i,
for each set of input values either this path is infeasible or i /∈ [0, S-1],
it is feasible for at least one set of input values*.

*We don’t have any information about possible sets of input values according to
the precondition. Hence, in case where this faulty path is forbidden by the
precondition we will have a FP-warning.

Formal description 8 /16

SVACE infrastructure

SVACE core is responsible for base analyses, such as building CFG, unreachable
code detection, detecting functions terminating program, etc.

SVACE core performs value numbering which produces a set of value
identificators (V Id).

Each detector can use results of core analyses and it operates by mapping some
properties to value indentificators (v ∈ V Id) at every program point q ∈ Instr.
These mappings are known as attributes.

Attr : V Id× Instr → AttrV al

SVACE core performs symbolic execution with state merging. It notifies all
detectors about all program events. To develop a checker one should specify
handlers for essential events.

During symbolic execution SVACE computes necessary reachability conditions for
all program points as formulas on value identificators.

ReachCond : Instr → Cond

Formal description 9 /16

NotLess and NotGreated formulas

Suppose for particular q ∈ Instr and v ∈ V Id and arbirtrary x ∈ V Id we
have formula NotLess(q, v, x).

For arbirtrary x, NotLess(q, v, x) is a suffisient condition for the fact that if
execution reached q, than it went along a path, on which always (regardless
function input values) v ⩾ x.

Similarly for NotGreater(q, v, x).

Then, for the point ac ∈ Instr, where buffer of size S is accessed by
i ∈ V Id, a suffisient condition of overflow (according to the definition) is
satisfiability of

ReachCond(q) ∧ (NotLess(ac, i, vs) ∨NotGreater(ac, i, v−1)),

where vs and v−1 are value identificators for constants S and −1
respectively.

Intra-procedural detection 10 /16

Example

Why do we need such complex condition?

1 #define S 10
2 int buf [S] ;
3 int foo (int a ,
4 int c)
5 {
6 int idx ;
7 i f (c > 7)
8 idx = 10 ;
9 else
10 idx = a ;
11 i f (c < 1 5)
12 return buf [idx] ;
13 return a ;
14 }

NotLess(p12, idx, x) = (c > 7) ∧ (10 ≥ x)

NotGreater(p12, idx, x) = (c > 7) ∧ (10 ≤ x)

ReachCond(p12) = (c < 15)∧
((c > 7 ∧ (idx = 10)) ∨ (c ≤ 7 ∧ (idx = a)))

BOF_Cond = (c < 15) ∧ (c > 7)

∧ (idx = 10) ∧ (10 ≥ S)

Satisfiable (a = 0, c = 8, idx = 10)
⇒ fire warning! (faulty path 6-7-8-11-12)

Just idx ≥ S will not work because of the
unknown precondition.
Eg precondition is (a ≤ 9), but as long as we
don’t know it, we will report warning for
a = 42, c = 3, idx = 42.

Intra-procedural detection 11 /16

Calculating NotLess and NotGreated

formulas

Calculating these formulas for constants is trivial.

Eg. NotLess(q, c, x) = (c ≥ x)

If you know these formulas for a and b you can calculate formulas for
values that were compared to a in some dominant vertex (eg. for t if in
current point holds t > a),
the result of an arithmetic operation r = a ⋄ b,
join value of a and b in the merged state (eg. c = cond ? a : b),
...

Intra-procedural detection 12 /16

Inter-procedural BOF detection

Three points on the program form BOF:
index definition,
buffer definition,
access instruction.

All three poins can belong to the different functions, so the warning
should be reported in the closest common ancestor (in cycle-free
callgraph).

SVACE uses function summaries to perform inteprocedural analysis.
All functions are analyzed from bottom to top in the callgraph and results
of the callee analysis are used in the caller.

Inter-procedural detection 13 /16

Inter-procedural calculation of NotLess

and NotGreater formulas

1 #define S 10
2 int buf [S] ;
3 int foo (int a ,
4 int c)
5 {
6 int idx ;
7 i f (c > 7)
8 idx = 10 ;
9 else
10 idx = a ;
11 i f (c < 1 5)
12 return buf [idx] ;
13 return a ;
14 }

Propagating whole formula for
variables which are present in caller
to the caller context when applying
the summary.
Creating stubs for formal argument
while calculating formula. They will
be replaces with formula for actual
argument in caller context if it has
one.

r = foo(k, c);

NotLess(k) = P

NotLess(r) = (c ≥ 15) ∧ (r = k) ∧ P

Inter-procedural detection 14 /16

Conditional facts of buffer access
inside a function

1 #define S 10
2 int buf [S] ;
3 int foo (int a ,
4 int c)
5 {
6 int idx ;
7 i f (c > 7)
8 idx = 10 ;
9 else
10 idx = a ;
11 i f (c < 1 5)
12 return buf [idx] ;
13 return a ;
14 }

access to the buffer with known size,
access to buffer of size: S

with index: a
if (c <= 7) && (c < 15)

access to the buffer, passed as an
argument.

Inter-procedural detection 15 /16

Implementation

BUFFER_OVERFLOW.EX – main checker.
BUFFER_OVERFLOW.LIB.EX – uncorrect use of libcalls.
OVEFLOW_AFTER_CHECK.EX – BOF in cycle.

Evaluation results on Android 5.0.2

Warning type Count TP, %

BUFFER_OVERFLOW.EX 221 62

BUFFER_OVERFLOW.LIB.EX 64 64

OVERFLOW_AFTER_CHECK.EX 66 67

Inter-procedural detection 16 /16

	 Introduction
	 Formal description
	Intra-procedural detection
	Inter-procedural detection

