
Dynamic
program	analysis

Gerasimov	Alexander



Dynamic	program	analysis	–

program	analysis	while	execution
or	using	execution	results



• Input	data	generation	for	code	coverage	
purposes

• Defects	and	vulnerabilities	detection
• Program	profiling
• Resource	profiling	(memory,	files,	…)
• Performance	profiling

Dynamic	analysis:	applications



• Fuzzing

• Dynamic	symbolic	execution

• Special	methods

Dynamic	analysis:	methods



Fuzzing



Fuzzing:	Seeded	run	



Fuzzing:	Mutation	1



Fuzzing:	Mutation	2



Fuzzing:	Mutation	3



Fuzzing:	Mutation	4



Fuzzing:	analyzed	compartment



Fuzzing:	discovered	defects



Fuzzing:	tool	structure

Seed

Mutation

Input	for	
defect

Generation

Run Coverage New	
inputs

Fuzzer



• Black-box	fuzzing

• Grey-box	fuzzing

• White-box	fuzzing

Fuzzing:	kinds



• most	of	CVEs	excavated	using	fuzzing	method
• there	are	commercial	products

Fuzzing:	gains



It	is	unlikely	to	guess	

input	to	pass	through	

conditional	jump	with	

constant	comparison

If(a	==	1000){…

Fuzzer:	problems	of	black-box/grey-box	fuzzing



Fuzzing:	compartments

Analyzed	
Compartment

Unanalyzed	
Compartment



Fuzzing:	unlikely	to	guess	input	for	constant	comparisons

Analyzed	
Compartment

Unanalyzed	
Compartment



Dynamic	symbolic	
execution



Coverage	driven	analysis



Dynamic	program	analysis:	program	jump	map



Dynamic	program	analysis:	program	run	on	some	input



Dynamic	program	analysis:	defect	on	execution	trace



Dynamic	program	analysis:	potential	paths	for	further	
analysis



Dynamic	program	analysis:	 the	most	“promising”	
(maximum	coverage	growth)	path	for	next	analysis	step



•Number	of	paths	to	
analyze	grows	~2n of	
conditional	jumps	
reached

•Defects	detected	only	on	
specific	execution	paths Number	of	conditional	jumps	reached

N
um

be
r	o

f	p
at
hs
	to

	a
na
ly
ze

Problems	of	coverage	driven	dynamic	symbolic	
execution



• Fuzzer +	Dynamic	Symbolic	Execution

• Static	analysis	+	Dynamic	Symbolic	Execution

Solution	stay	at	the	turn	of	methods



Fuzzing:	unlikely	to	guess	input	for	constant	comparisons

Analyzed	
Compartment

Unanalyzed	
Compartment



Fuzzing:	desired	jumps

Analyzed	
Compartment

Unanalyzed	
Compartment



Combine	Dynamic	Symbolic	Execution	and	Fuzzer

Seed Fuzzer DSE

Input	and	
jump	address

New	input

At	the	limit	only	one	run	of

Dynamic	Symbolic	Execution

needed	to	pass	through	desired	

conditional	jump	and	break	through	

to	an	unanalyzed	compartment	



Input	to	pass	through	constant	comparison	jump

Analyzed	
Compartment

Unanalyzed	
Compartment



Combining	dynamic	and	static	program	analysis	
for	reaching	specific	instruction



Combining	dynamic	and	static	program	analysis	
for	reaching	specific	instruction

Excavate	execution	paths	with	
static	analysis



Combining	dynamic	and	static	program	analysis	
for	reaching	specific	instruction

Excavate	execution	paths	with	
static	analysis



Combining	dynamic	and	static	program	analysis	
for	reaching	specific	instruction

Excavate	execution	paths	with	
static	analysis



Combining	dynamic	and	static	program	analysis	
for	reaching	specific	instruction

Excavate	execution	paths	with	
static	analysis



4

33 3

2 22

11

Combining	dynamic	and	static	program	analysis	
for	reaching	specific	instruction

Evaluate	jump	direction	length	
to	specific	basic	block	with	
static	analysis



4
3

Combining	dynamic	and	static	program	analysis	
for	reaching	specific	instruction

Run	program	under	Dynamic	
Symbolic	Execution



3

∞ 2

Combining	dynamic	and	static	program	analysis	
for	reaching	specific	instruction

Calculate	new	input	data	to	
reach	specific	basic	block	by	
less	lengthy	path



3

∞

2

1

Combining	dynamic	and	static	program	analysis	
for	reaching	specific	instruction

Calculate	new	input	data	to	
reach	specific	basic	block	by	
less	lengthy	path



3

2

1

Combining	dynamic	and	static	program	analysis	
for	reaching	specific	instruction

Calculate	new	input	data	to	
reach	specific	basic	block	by	
less	lengthy	path



• Indirect	jumps
• Indirect	taint	data	dependencies
• Defect	formulae	for	SMT	solver

Further	research



Questions	session


