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Outline

Objective

• Give an update on ongoing technical developments with OpenFOAM

• Present improvements in numerics and methodology needed to meet industrial

CFD requirements

Topics

• Landscape of industrial and academic CFD: 2016-2020 and beyond

• The Naval Hydro Pack: OpenFOAM in naval hydrodynamic

• Features and performance update for the coupled p-U solver

• Coupled solver methodology

• Harmonic balance for turbo-machinery simulations

• Complex physics models

• Summary
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CFD: 2016-2020 and Beyond

Status of the CFD Market

• The end of an era for general purpose CFD codes

◦ Tools that do all things for all people no longer exist: consider using ANSYS

CFX for wave modelling or internal combustion engines

◦ A CFD engineer who “knows all the models” belongs to a previous age

• Customised problem-oriented tools (not physics-oriented!)

• Integration, automatisation and transfer of knowledge: collaborative model

development, validation and verification

Customised Problem-Specific CFD Simulation Tool

• Extension from “general CFD” to problem-specific tools, eg. turbo-machinery

rotor-stator interfaces or free surface wave modelling

• 20-click CFD (or no-click CFD): general purpose GUIs front-end no longer

answers users’ needs: application language, minimal controls, scripted interface

Integration of Simulation Tools in Industrial Design

• Automated simulation (+meshing) with rapid turn-around: 8 hrs max!

• At least 99% simulation reliability; known scope of model applicability and

achievable accuracy of simulated results (error bars!)
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Why Does Open Source Matter

Open Source Simulation Tools

• Historically, CFD tools are treated as “black magic boxes” capable of solving all

problems for all people (provided not many questions are asked)

• . . . but to achieve a solution to known accuracy this is not sufficient

• Application-specific extensions are critical

◦ Cannot do added resistance for a ship in waves simulation unless the solver

can generate waves in a reliable and efficient manner

◦ Implementation of application-specific auxiliary models is sometimes more

complex than the basic fluid flow solver

◦ Black box user coding is not sufficiently flexible (data access? HPC? parallel

scaling?)

• This is no longer a general-purpose CFD solver (!)

• Ability to inspect, correct and modify the source code gives confidence in results

• Shared validation effort with third parties requires control over the code base

• Ideally, code validation is a shared industry effort: better simulation tools

benefit everyone!

Open Source simulation toolbox is the best way to design and deploy problem-specific

tools while re-using base building blocks

Numerics Improvements in OpenFOAM with Examples of Industrial CFD – p. 4



Validation and Verification

Validation and Verification: Beyond the Basics

• Requirement on validation and verification of CFD tools is well beyond the

traditional “does this model produce the data that matches (one) experiment?”:

◦ What is the range of applicability of the model? At what uncertainty?

◦ What is the mesh resolution requirement? Time-step requirement? Grid

uncertainty? Non-linear iteration coupling accuracy? Periodic uncertainty?

• Validation and verification studies of this type are extremely challenging and

limited in scope to the problem at hand

Example: CFD Validation of Added Resistance in Naval Hydrodynamics

• Guidance on mesh resolution relative to wave height/length, size or relaxation

zones, time-step size, number of non-linear correctors, number of simulated wave

encounters (periodic uncertainty)

• Multi-code, multi-experiment (public) validation exercise: Tokyo 2015 Workshop

• Validation effort: 16 person/months!
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Naval Hydro Pack

Numerical Simulations in Naval Hydrodynamics

• Traditionally, potential flow methods are widely used in naval hydrodynamics

◦ Potential flow solver captures waves accurately

◦ Interaction with a static and moving hull can be captured

◦ Ability to operate in spectral space

◦ (Some) viscous effects can be captured using ITTC procedures

• . . . but limits of applicability are upon us: forward speed, viscous drag, turbulence

modelling, breaking waves, non-linearity

• The cost of CFD has only recently become acceptable

• Objective: Extract significant added value from CFD to justify substantial

increase in computational cost

Limitations on CFD Methodology

• Range of scales and extreme Re number: 1e9 or 1e10

• Sea-keeping simulations need to account for 30-50 wave encounters in regular

sea states. In freak waves or irregular sea states the statistics requirement is even
more severe

• Free surface flow solver needs to operate at extreme CFL number: 500 to 10 000

A complete re-think and re-implementation of the naval hydro solver is required!
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Interface Jump Conditions

Naval Hydro Pack: Interface Jump Conditions for Free Surface Flows

• In free surface flows, a discrete surface discontinuity exists with a sharp change in

properties: ρ, ν: proper handling is needed for accurate free surface simulations

• Huang et.al. (2007) describe a ghost fluid single-phase formulation of interface

jump conditions in CFD-Ship Iowa

• Extended, modified and numerically improved treatment by Vukčević and Jasak

(2015) with 2-phase handling is implemented in the Naval Hydro pack

◦ Perfectly clean interface: no surface jets

◦ Pressure force evaluated exactly even for a smeared VOF interface

◦ Dramatically increased efficiency and accuracy of wave modelling
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Interface Jump Conditions

Interface Jump Conditions: Derivation

• Conditionally averaged momentum equation:

∂(ρu)

∂t
+∇•(ρuu) = ∇•σeff −∇pd − (g•x∇ρ)

• Looking at the RHS of the equation, the gradient of dynamic pressure (∇pd) is

balanced by the density gradient (∇ρ).

• The balance between pressure and density gradients happens in the

momentum equation...

• ...which in turn causes spurious air velocities because the pressure–density

coupling should not be resolved in the momentum equation using a segregated

solution algorithm
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Interface Jump Conditions

Interface Jump Conditions: Derivation

• "Mixture formulation" of the momentum equation:

∂u

∂t
+∇•(uu)−∇• (νe∇u) = −

1

ρ
∇pd

• Dynamic pressure jump conditions at the interface:

[pd] = −[ρ]g•x

[

1

ρ
∇pd

]

= 0

• Interface jumps implemented directly in discretisation operators

• Interface jump condition can be used both with level set and VOF

• . . . and smearing of the surface in VOF no longer affects the pressure forces!

• Extension to viscous force jump can be performed but currently not used
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Interface Jump Conditions

Interface Jump Conditions: Results

• Example: 2D ramp with free surface

• Relative error for water height at the outlet is −0.34% compared to analytical

solution

• Note sharp pd jump and α distribution

• The simulation with interFoam is not stable due to spurious air velocities
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Naval Hydro Pack

Steady Resistance in Calm Water for a Displacement Hull
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Naval Hydro Pack

Steady Resistance in Calm Water: KRISO Container Ship (KCS)

• Computer: Single processor Intel I7 4820K, 3.7 GHz, 4 cores , 16 GB RAM

• A converged and accurate resistance force in 30 min on 1 CPU!

Mesh size Drag [N] Simulation Time Converged Force

for 200 s Simulation Time [s]

600k 41.93 1153 = 19 min 50

700k 41.09 1285 = 21 min 50

950k 40.35 1752 = 29 min 50

1.6M 39.93 2996 = 50 min 50

2.6M 38.91 14249 = 4.0 hrs 125/75

4.6M 38.58 27888 = 7.7 hrs 125/75

• Computational and experimental uncertainty in sinkage and trim simulations
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Naval Hydro Pack

Example: Wave Generator and Potential Current

• Inlet wave relaxation zone: regular Stokes waves with soft ramp time

• Outlet relaxation zone: potential current, fixed water table
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Naval Hydro Pack

Prescription of Mean Current Profile in Wave Trains

• In shallow seas, boundary layer at the seabed may be important

• Example: wave force loading on static structures rising from seabed; sediment

transport driven by wave action

• Wave profile follows action of the wave train, with specified depth-wise profile,

imposed via the relaxation zones
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Naval Hydro Pack

Regular Wave Impact on a Semi-Submersed Trunk

• Incident wave parameters

Frequency Wave height Wave length Period

N f, h h, m λ, m T, s

1 0.70 0.060 3.19 1.43

2 0.70 0.120 3.19 1.43

3 0.90 0.123 1.93 1.11

4 1.10 0.050 1.30 0.90

5 1.43 0.049 0.76 0.70

• Mesh structure around the cylinder and free surface: high cell aspect ratio
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Naval Hydro Pack

Regular Wave Impact on a Semi-Submersed Trunk
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Naval Hydro Pack

Example: Regular Wave Impact on a Semi-Submersed Trunk

• Wave number study of diffraction: normalised harmonic force coefficients

• First to fourth order harmonics Re and Im part, comparison with Ferrant (1999)
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Naval Hydro Pack

Example: Freak Wave Impact on a Semi-Submersed Trunk

• Wave components correspond to the Pierson-Moskowitz sea energy spectrum

• Wave focusing method was used to create a freak wave at a given point in

time-space

◦ 30 harmonic wave components

◦ Phase shifts for individual wave components set up using optimisation

◦ Sea spectrum significant height hs = 0.12m

◦ Optimisation achieves freak wave height H = 0.28m

• Domain layout and mesh identical to wave train simulation
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Naval Hydro Pack

Example: Freak Wave Impact on a Semi-Submersed Trunk

• Characteristics of a desired freak wave prescribed at the point of impact

• Freak wave model describes decomposition into amplitudes, frequencies and

phase lags required to produce the freak wave at point of impact
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Naval Hydro Pack

Irregular Sea States and Directional Sea Spectra

• Realistic sea states cannot be described using one-dimensional sea spectra: there

exists a substantial scatter in directionality which needs to be accounted for

• Two-dimensional sea spectrum is applied in spectral components and in spreading

direction

• Typical number of spectra/directional components is approx 600

• HOS is necessary to capture the interaction between frequencies: more consistent

results than in linear superposition of spectral components

• “Short-crested” and “long-crested” waves can be created via variation of the

spectral directionality parameter m

Numerics Improvements in OpenFOAM with Examples of Industrial CFD – p. 20



Naval Hydro Pack

Sea-Keeping Validation in Regular Head Waves: Tokyo 2015 Workshop C 2.10 Case

• Towed ship in head waves at design Froude number: Fn = 0.26

• Model scale: LPP = 6.0702 m

• 5 wave conditions (and a steady resistance test)

1. C1; λ/LPP = 0.65, H = 0.062 m

2. C2; λ/LPP = 0.85, H = 0.078 m

3. C3 (resonant case); λ/LPP = 1.15, H = 0.123 m

4. C4; λ/LPP = 1.37, H = 0.149 m

5. C5; λ/LPP = 1.96, H = 0.196 m

• Experimentally measured heave, pitch and total resistance

• No experimental uncertainty reports

• Complete CFD validation and verification study

◦ Spatial and temporal resolution requirement

◦ Periodic uncertainty study

◦ Hydro-mechanical coupling study
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Naval Hydro Pack

Sea-Keeping Validation in Regular Head Waves: Tokyo 2015 Workshop C 2.10 Case
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Naval Hydro Pack

Performance test results

• Results correspond to temporal resolution study with 25 time steps per encounter

period

• This case represents trade–off between performance and accuracy (mean values

and phases are affected by such a low temporal resolution)

• Simulated time

1.87276 s (encounter period)

× 30 (number of periods simulated)

= 56.1828 s of simulated time

• Total execution time = 1677.87 s ≈ 30 minutes

• . . . yielding approximately 30 s of CPU time for 1 s of real time

• If better accuracy is desired, good results can be obtained with 200 time steps per

encounter period = 4 min of CPU time for 1 s of real time ≈ 2 min of CPU time

per encounter period
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Naval Hydro Pack

Sharp, non–ventilating free surface
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Naval Hydro Pack

KCS 2.11–C2 seakeeping case, 45◦
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Naval Hydro Pack

KCS 2.11–C4 seakeeping case, 135◦
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Naval Hydro Pack

Sea-Keeping, Irregular Sea States and 2-D HOS Spectrum Freak Wave

• Combining the wave modelling and sea-keeping features in a simulation of a

focused freak wave impact on a floating object: barge and full-scale KCS hull

• Freak wave has developed naturally from a 2-D spectrum without focusing

◦ Long time-series simulation of potential theory HOS model

◦ Screening wave elevation for a freak wave event

◦ Coordinate transformation for wave impact on a floating object

◦ Using HOS data to initialise CFD simulation
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Naval Hydro Pack

Total resistance grid uncertainties for 5 cases:

1. Mean value average uncertainty 10%

2. First order harmonic uncertainties less than 3%, except for the beam waves C3

case with UG = 59% (note: very small response)

Heave grid uncertainties for 5 cases:

1. Mean value uncertainties range from 2% for head waves case to 27% for the

quartering waves case

2. First order harmonic uncertainties are less than 2%, except for the following waves

case with UG = 18%

Roll grid uncertainties for 5 cases:

1. Mean value: 3% and 7% for bow and quartering waves, respectively

2. Mean value for beam waves is high: 63%–needs further investigation

3. First order harmonic average grid uncertainty approximately 4%.

Pitch grid uncertainties for 5 cases:

1. First order harmonic uncertainties below 2%, except for the beam waves case

(very small pitch response)
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Naval Hydro Pack

Feasibility Estimate of a Head Wave Seakeeping Study

• Performed 33 simulations in total:

◦ 6 simulations for the temporal resolution study

◦ 4 simulations for the hydro–mechanical coupling study

◦ 7 short simulations for parallel scaling test

◦ 1 performance test

◦ 15 simulations for grid refinement study

• In approximately 2 weeks using 56 cores, one can get a good estimate of transfer

functions at design Froude number, including numerical uncertainty assessment!

• Without uncertainty assessment, the transfer function can easily be obtained

within a few days

• Note: it is feasible to run a 3–hour storm simulations with CFD
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Naval Hydro Pack

Manoeuvring Simulations: Propeller (Sail?) Modelling

• Prescribed trajectory simulations performed routinely: turning circle, zig-zag
manoeuvre

• Manoeuvring validation under way: free sailing or thruster performance for global

positioning for off-shore objects
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Naval Hydro Pack

Simulation of Mooring Systems for Global Performance of Off-Shore Objects

• Mooring forces are modelled via addition of explicit force, added mass or added

damping to the 6-DOF motion equation

• Currently, only simple mooring models are implemented in the Naval Hydro pack:

single- and multiple-point spring damper systems. Kinematic constraints currently

not handled

• Interface to external mooring system libraries: in collaboration with Technip

and SHI: OTC 2016 paper
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Naval Hydro Pack

Violent Free Surface Flow Simulations

• Options on sloshing/slamming motion

1. Static mesh with time-varying direction of gravity + acceleration

2. Dynamic mesh: prescribed rigid body motion, either harmonic or graph-based

3. 6-DOF motion of the hull, as a part of sea-keeping simulations: slamming

occurs in hull-wave interaction, eg. resonant case

◦ Solid body domain motion with CFD boundary conditions which allow

“far-field” condition on the complete outside boundary

◦ New feature: zonal algebraic mesh deformation around moving body
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Block Matrix in OpenFOAM

Background

• OpenFOAM uses equation mimicking to perform field algebra and discretisation:

perfect for simple PDE-s or segregated solution algorithms

• . . . but sometimes we use equation segregation inappropriately

• There exists a family of problems that cannot be solved efficiently without

inter-equation coupling; some simulations “that work” can be performed 10-s or

100-s of times faster than with equivalent segregated algorithms

Objective

• Implement flexible and efficient block-coupled solution infrastructure

• Re-use all operator-based discretisation schemes, parallelisation and boundary

condition tools already available in OpenFOAM

• Optimise top-level code for efficient execution and ease of assembly

Examples

• Incompressible steady pressure-velocity system (with turbulence)

• Compressible multi-phase free surface simulations: under-water explosions
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Block Matrix in OpenFOAM

Block-Coupled Solution Algorithms

• For cases of strong coupling between the components of a vector, the components

can be solved as a block variable: (ux, uy , uz) will appear as variables in the

same linear system

• In spite of the fact that the system is much larger, the coupling pattern still exists:

components of u in cell P may be coupled to other components in the same point

or to vector components in the neighbouring cell

• With this in mind, we can still keep the sparse addressing defined by the mesh: if a

variable is a vector, a tensorial diagonal coefficients couples the vector

components in the same cell. A tensorial off-diagonal coefficient couples the

components of uP to all components of uN , which covers all possibilities

• For multi-variable block solution like the compressible Navier-Stokes system

above, the same trick is used: the cell variable consists of (ρ, ρu, ρE) and the

coupling can be coupled by a 5× 5 matrix coefficient

• Important disadvantages of a block coupled system are

◦ Large linear system: several variables are handled together

◦ Different kinds of physics can be present, e.g. the transport-dominated

momentum equation and elliptic pressure equation. At matrix level, it is

impossible to separate them, which makes the system more difficult to solve
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Block Matrix in OpenFOAM

Matrix Connectivity and Mesh Structure

• Irrespective of the level of coupling, the FVM dictates that a cell value will depend

only on values in surrounding cells

PW E

N

S

• We still have freedom to organise the matrix by ordering entries for various

components of the solution variable x

• Global sparseness pattern related to mesh connectivity: easier coefficient

assembly
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Block Matrix in OpenFOAM

Coupling Coefficient

• Matrix implemented with block coefficients

• Consider general linear dependence between two vectors m and n

m = Ab

• Component-wise coupling describes the case where mx depends only on nx, my

on ny and mz on nz

1. Scalar component-wise coupling

2. Vector component-wise coupling

3. Full (block) coupling

• Explicit methods do not feature here because it is not necessary to express them

in terms of matrix coefficients

• For reference, the linear equation for each cell featuring in the matrix reads

APmP +
∑

N

ANmN = R
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Coupled p-U Solver

Turbulent Steady Incompressible Flows: SIMPLE or Coupled System

• Equation set contains linear p-U and non-linear U-U coupling

∂u

∂t
+∇•(uu)−∇• (ν∇u) = −∇p

∇•u = 0

• Traditionally, this equation set is solved using the segregated SIMPLE algorithm

◦ Low memory peak: solution + single scalar matrix in peak storage

◦ p-U coupling is handled explicitly: loss of convergence (under-relaxation)

◦ Number of iterations is substantial; not only due to non-linearity

◦ Convergence dependent on mesh size: SIMPLE slows down on large meshes

• Block-implicit p-U coupled solution

◦ Coupled solution significantly increases matrix size: 4 blocks instead of 1

◦ . . . but the linear p-U coupling is fully implicit!

◦ Iteration sequence only needed to handle the non-linearity in the U-equation

◦ Net result: significant convergence improvement (steady or transient) at a

cost of increase in memory usage: reasonable performance compromise!
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Coupled p-U Solver

SIMPLE-Based Segregated p-U Solver

// Momentum equation assembly and solution

fvVectorMatrix UEqn

(

fvm::div(phi, U)

+ turbulence->divDevReff(U)

);

UEqn.relax();

solve(UEqn == -fvc::grad(p));

// Pressure equation assembly and solution

U = UEqn().H()/UEqn.A();

phi = fvc::interpolate(U) & mesh.Sf();

fvScalarMatrix pEqn

(

fvm::laplacian(1/UEqn.A(), p) == fvc::div(phi)

);

pEqn.solve();

phi -= pEqn.flux();

p.relax();
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Block Matrix in OpenFOAM

Block-Coupled u− p System Matrix Structure
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Coupled p-U Solver

Coupled Implicit p-U Solver: Source Code

fvVectorMatrix UEqn

(

fvm::div(phi, U)

+ turbulence->divDevReff(U)

);

fvScalarMatrix pEqn

(

- fvm::laplacian(rUAf, p) == -fvc::div(fvc::grad(p))

);

blockVectorSystem pInU(fvm::grad(p));

blockVectorSystem UInp(fvm::div(U));

BlockLduMatrix<vector4> A(mesh);

blockMatrixTools::insertEquation(0, UEqn, A, x, b);

blockMatrixTools::insertEquation(3, pEqn, A, x, b);

blockMatrixTools::insertBlockCoupling(3, 0, UInp, U, A, b, false);

blockMatrixTools::insertBlockCoupling(0, 3, pInU, p, A, b, true);

BlockLduSolver<vector4>::New("Up", A, dict)->solve(Up, b);

blockMatrixTools::retrieveSolution(0, U.internalField(), Up);

blockMatrixTools::retrieveSolution(3, p.internalField(), Up);
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Coupled p-U Solver

Performance Improvements of the Coupled p-U Solver: Speed and Robustness
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Coupled p-U Solver

Performance Improvements of the Coupled p-U Solver: Speed and Robustness
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Coupled p-U Solver

Performance Improvements and Extensions in the Coupled p-U Solver

• Improvements in performance for the coupled solver: consistency, numerics

• Extension to compressible flows, MRF and porous media (implicit!)

• Major performance jump: block-coupled AMG with additive correction

(Hutchinson 1988)

• Block-coupled k − ǫ and k − ω SST turbulence models

◦ Turbulence equations solved in a single block-coupled system

◦ Analysis of source terms to establish favourable cross-equation coupling

◦ Implemented in Diploma Thesis assignment: Robert Keser, Uni Zagreb

• Example: steady (MRF) and transient centrifugal pump
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Coupled p-U Solver

Performance Improvements and Extensions in the Coupled p-U Solver
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Coupled Solution

Coupled Solution Algorithms: Consequences

• Coupled algorithms are still used rarely because of code complexity and guidance

on “appropriate coupling formulation”: problem solved

• NUMAP-FOAM Summer School 2016: Dominated by projects on coupled implicit

solution for complex non-linear problems

◦ Coupled eddy viscosity turbulence models

◦ Coupled visco-elasto-plastic rheology solver (double Rhie-Chow)

◦ Coupled poly-dispersed multi-phase DQ-MOM solver: moment equation

◦ Coupled lift/drag terms in multi-phase momentum equations

◦ Coupled solid mechanics: better non-linear convergence

◦ Coupled Finite-Volume to Finite Area solver: cracking porous media

• There are many more problems where linearised implicit inter-equation coupling

may prove a game-changer: accelerated convergence, increased robustness,

improved
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New Solution Algorithms

Expanding the Horizons: Spectral Modelling of Time-Periodic Flows

• Many CFD problems involve temporally periodic flows

◦ Flows induced by periodic boundary condition

◦ Flows with periodically moving objects

◦ Wave-like phenomena

• To remove irregular start-up unsteadiness, a number of periods is simulated:

expensive, complicated – periodic uncertainty issues

Harmonic Balance Method: n coupled quasi-steady coupled equations

• Variables are developed into Fourier series in time with n-harmonics and

substituted into transport equation independently for each computational point

• Example: Harmonic Balance scalar equation set

∇•(uQtj
)−∇•(γ∇Qtj

) = −
2ω

2n+ 1

(

2n
∑

i=1

P(i−j)Qti

)

Pi =

n
∑

k=1

k sin(kωi∆t), for i = {1,2n}.
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New Solution Algorithms

Harmonic Balance Solver: ERCOFTAC Centrifugal Pump

• Validation of harmonic balance in turbulent incompressible periodic flow

• HB simulations performed using 1 and 2 harmonics: rotor and stator blade count

• Results compared against full transient simulation: excellent agreement

◦ Integral properties: typical error of 2%

◦ Local solution features: pressure on surface in time

◦ Mode and nature of flow instability

• Results are significantly better than expected!

• Substantial reduction in simulation time:

◦ Intel Core i5-3570K, 3.4 GHz computer with 16 GB memory

◦ Transient run needs approx. 50 blade passages to become quasi-periodic

Transient HB, 1 h HB, 2 h

Simulation time 5 hrs/rotation 52 mins 78 mins

Iterations 600, dt = 5e-5 s 3000 2400

1 rotation = 0.03 s
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New Solution Algorithms

Harmonic Balance Solver: ERCOFTAC Centrifugal Pump
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Transient HB, 1h err, % HB, 2h err, % MRF err, %

Efficiency 89.72 88.80 1.0 89.76 0.0 89.65 0.07

t = T
3

Head 81.48 81.80 0.4 80.45 1.3 84.12 3.14

Torque 0.0297 0.0302 1.7 0.0294 0.9 0.0308 3.57

Efficiency 89.92 88.78 1.3 89.81 0.1

t = 2T
3

Head 81.48 81.85 0.4 80.6 1.1

Torque 0.0296 0.0302 2.0 0.0295 0.4

Efficiency 89.83 88.85 1.1 89.71 0.1

t = T Head 81.49 81.79 0.4 80.39 1.3

Torque 0.0297 0.0302 1.6 0.0294 1.0
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New Solution Algorithms

Harmonic Balance Solver: ERCOFTAC Centrifugal Pump
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New Solution Algorithms

Harmonic Balance Solver: Periodic Two-phase Surface Flow
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New Solution Algorithms

Harmonic Balance Solver: Periodic Two-phase Surface Flow

• Zeroth and 1th order harmonic amplitudes of the free surface with iterative

uncertainty obtained with different spectral resolution

No. Harmonics ηa,0, m ηa,1, m UI,0, % UI,1, % ǫ0,m ǫ1, %

1 0.001898 0.1531 0.5962 0.03494 -0.0006 -0.328

2 0.000302 0.1520 0.9360 0.01349 0.0010 0.393

3 0.000411 0.1519 0.3916 0.01975 0.0009 0.459

4 0.000394 0.1518 0.1845 0.00099 0.0009 0.524

5 0.000352 0.1517 0.1215 0.00033 0.0009 0.590

6 0.000438 0.1517 0.1651 0.00033 0.0009 0.590

7 0.000337 0.1516 0.1386 0.00033 0.0010 0.655

8 0.000332 0.1516 0.1008 0.00033 0.0010 0.655
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New Solution Algorithms

Harmonic Balance Solver: DTMB Ship on Waves

• Ship model parameters: L = 3.05 m

• Froude number: Fr = 0.28, U = 1.52 m/s

• Wave parameters: H = 0.036 m, T = 1.09 s, λ = 4.57 m

• 2 harmonics are used in the HB simulation

• 200 time steps per encounter wave period are used in the transient simulation
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New Solution Algorithms

Harmonic Balance Solver: DTMB Ship on Waves

• Convergence of longitudinal and vertical force harmonics
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Item Transient Harmonic Balance ε, %

Fx,0, N 9.20 10.14 -10.2

Fx,1, N 10.70 10.34 3.36

Fz,0, N 784.88 785.72 -0.11

Fz,1, N 62.63 58.14 7.17
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Complex Physics Models

Non-Linear Solid Mechanics Simulations

• Geometric and material non-linearity, large deformation, modelling of contact

(linear and non-linear) with complex friction models

• Textbook example of practical collaborative development: academia + industry

• New generation of mixed mode lubricated contact modelling
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Complex Physics Models

Complex Physics of Wetting Processes: TU Darmstadt

• Modelling of interaction of individual droplets and complex surfaces

• Free surface is modelled using interface capturing and interface tracking models

• Stabilisation library for visco-elastic rheology at extreme Weissenberg numbers

• Excellent example of building research on top of existing capabilities
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Summary

Summary

• CFD 2020 is moving beyond general-purpose CFD products and “universal

solution providers”

• Outlook: Vertically integrated problem-specific applications

◦ Application-specific extensions to complete the modelling

◦ User interface speaking language of the application

• Strict requirements on solution accuracy and uncertainty; guidance on mesh

resolution, discretisation settings, choice of physical models

• Practical use requires automated or script-driven tools with turn-around time below

8 hours

• Validation and verification effort is the major challenge!

• Open Source libraries are a natural baseline for such environment: low-level CFD

discretisation is re-used across the board

• Handling complex physics brings CFD closer to the user requirements: new

algorithms, execution environments and multi-scale modelling data exchange
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