

# Numerics Improvements in OpenFOAM with Examples of Industrial CFD

Hrvoje Jasak

Wikki Ltd. United Kingdom

Faculty of Mechanical Engineering and Naval Architecture, Uni Zagreb, Croatia

ISPRAS Open 2016, Moscow 1-2 December 2016



# Outline

**WIK(I** 

#### Objective

- Give an update on ongoing technical developments with OpenFOAM
- Present improvements in numerics and methodology needed to meet industrial CFD requirements

Topics

- Landscape of industrial and academic CFD: 2016-2020 and beyond
- The Naval Hydro Pack: OpenFOAM in naval hydrodynamic
- Features and performance update for the coupled p-U solver
- Coupled solver methodology
- Harmonic balance for turbo-machinery simulations
- Complex physics models
- Summary





Status of the CFD Market

- The end of an era for general purpose CFD codes
  - Tools that do all things for all people no longer exist: consider using ANSYS CFX for wave modelling or internal combustion engines
  - A CFD engineer who "knows all the models" belongs to a previous age
- Customised problem-oriented tools (not physics-oriented!)
- Integration, automatisation and transfer of knowledge: collaborative model development, validation and verification

Customised Problem-Specific CFD Simulation Tool

- Extension from "general CFD" to problem-specific tools, eg. turbo-machinery rotor-stator interfaces or free surface wave modelling
- **20-click CFD** (or no-click CFD): general purpose GUIs front-end no longer answers users' needs: application language, minimal controls, scripted interface

Integration of Simulation Tools in Industrial Design

- Automated simulation (+meshing) with rapid turn-around: 8 hrs max!
- At least 99% simulation reliability; known scope of model applicability and achievable accuracy of simulated results (error bars!)



WIK

#### **Open Source Simulation Tools**

- Historically, CFD tools are treated as "black magic boxes" capable of solving all problems for all people (provided not many questions are asked)
- ... but to achieve a solution to known accuracy this is not sufficient
- Application-specific extensions are critical
  - Cannot do added resistance for a ship in waves simulation unless the solver can generate waves in a reliable and efficient manner
  - Implementation of application-specific auxiliary models is sometimes more complex than the basic fluid flow solver
  - Black box user coding is not sufficiently flexible (data access? HPC? parallel scaling?)
- This is no longer a general-purpose CFD solver (!)
- Ability to inspect, correct and modify the source code gives confidence in results
- Shared validation effort with third parties requires control over the code base
- Ideally, code validation is a shared industry effort: better simulation tools benefit everyone!

Open Source simulation toolbox is the best way to design and deploy problem-specific tools while re-using base building blocks





Validation and Verification: Beyond the Basics

- Requirement on validation and verification of CFD tools is well beyond the traditional "does this model produce the data that matches (one) experiment?":
  - What is the range of applicability of the model? At what uncertainty?
  - What is the mesh resolution requirement? Time-step requirement? Grid uncertainty? Non-linear iteration coupling accuracy? Periodic uncertainty?
- Validation and verification studies of this type are extremely challenging and limited in scope to the problem at hand

Example: CFD Validation of Added Resistance in Naval Hydrodynamics

- Guidance on mesh resolution relative to wave height/length, size or relaxation zones, time-step size, number of non-linear correctors, number of simulated wave encounters (periodic uncertainty)
- Multi-code, multi-experiment (public) validation exercise: Tokyo 2015 Workshop
- Validation effort: 16 person/months!





Numerical Simulations in Naval Hydrodynamics

- Traditionally, potential flow methods are widely used in naval hydrodynamics
  - Potential flow solver captures waves accurately
  - Interaction with a static and moving hull can be captured
  - Ability to operate in spectral space
  - (Some) viscous effects can be captured using ITTC procedures
- ... but limits of applicability are upon us: forward speed, viscous drag, turbulence modelling, breaking waves, non-linearity
- The cost of CFD has only recently become acceptable
- Objective: Extract significant added value from CFD to justify substantial increase in computational cost

Limitations on CFD Methodology

- Range of scales and extreme Re number: 1e9 or 1e10
- Sea-keeping simulations need to account for 30-50 wave encounters in regular sea states. In freak waves or irregular sea states the statistics requirement is even more severe
- Free surface flow solver needs to operate at extreme CFL number: 500 to 10 000

A complete re-think and re-implementation of the naval hydro solver is required!





Naval Hydro Pack: Interface Jump Conditions for Free Surface Flows

- In free surface flows, a discrete surface discontinuity exists with a sharp change in properties:  $\rho$ ,  $\nu$ : proper handling is needed for accurate free surface simulations
- Huang et.al. (2007) describe a ghost fluid single-phase formulation of interface jump conditions in CFD-Ship Iowa
- Extended, modified and numerically improved treatment by Vukčević and Jasak (2015) with 2-phase handling is implemented in the Naval Hydro pack
  - Perfectly clean interface: no surface jets
  - Pressure force evaluated exactly even for a smeared VOF interface
  - Dramatically increased efficiency and accuracy of wave modelling







### **Interface Jump Conditions**

WIK

Interface Jump Conditions: Derivation

• Conditionally averaged momentum equation:

$$\frac{\partial(\rho \mathbf{u})}{\partial t} + \nabla \bullet(\rho \mathbf{u} \mathbf{u}) = \nabla \bullet \sigma_{eff} - \nabla p_d - (\mathbf{g} \bullet \mathbf{x} \nabla \rho)$$

- Looking at the RHS of the equation, the gradient of dynamic pressure  $(\nabla p_d)$  is balanced by the density gradient  $(\nabla \rho)$ .
- The balance between pressure and density gradients happens in the momentum equation...
- ...which in turn causes spurious air velocities because the pressure-density coupling should not be resolved in the momentum equation using a segregated solution algorithm



### **Interface Jump Conditions**



Interface Jump Conditions: Derivation

• "Mixture formulation" of the momentum equation:

$$\frac{\partial \mathbf{u}}{\partial t} + \nabla \mathbf{\bullet}(\mathbf{u}\mathbf{u}) - \nabla \mathbf{\bullet} \left(\nu_e \nabla \mathbf{u}\right) = -\frac{1}{\rho} \nabla p_d$$

• Dynamic pressure jump conditions at the interface:

$$[p_d] = -[\rho] \mathbf{g} \cdot \mathbf{x}$$
$$\frac{1}{\rho} \nabla p_d \bigg] = 0$$

- Interface jumps implemented directly in discretisation operators
- Interface jump condition can be used both with level set and VOF
- ... and smearing of the surface in VOF no longer affects the pressure forces!
- Extension to viscous force jump can be performed but currently not used



### **Interface Jump Conditions**

WIK

Interface Jump Conditions: Results

- Example: 2D ramp with free surface
- Relative error for water height at the outlet is -0.34% compared to analytical solution
- Note sharp  $p_d$  jump and  $\alpha$  distribution
- The simulation with interFoam is not stable due to spurious air velocities







Steady Resistance in Calm Water for a Displacement Hull





Steady Resistance in Calm Water: KRISO Container Ship (KCS)

- Computer: Single processor Intel I7 4820K, 3.7 GHz, 4 cores , 16 GB RAM
- A converged and accurate resistance force in 30 min on 1 CPU!

| Mesh size | Drag [N] | Simulation Time Converged For |                     |
|-----------|----------|-------------------------------|---------------------|
|           |          | for 200 s                     | Simulation Time [s] |
| 600k      | 41.93    | 1153 = 19 min                 | 50                  |
| 700k      | 41.09    | 1285 = 21 min                 | 50                  |
| 950k      | 40.35    | 1752 = 29 min                 | 50                  |
| 1.6M      | 39.93    | 2996 = 50 min                 | 50                  |
| 2.6M      | 38.91    | 14249 = 4.0 hrs               | 125/75              |
| 4.6M      | 38.58    | 27888 = 7.7 hrs               | 125/75              |

Computational and experimental uncertainty in sinkage and trim simulations







Example: Wave Generator and Potential Current

- Inlet wave relaxation zone: regular Stokes waves with soft ramp time
- Outlet relaxation zone: potential current, fixed water table





Prescription of Mean Current Profile in Wave Trains

- In shallow seas, boundary layer at the seabed may be important
- Example: wave force loading on static structures rising from seabed; sediment transport driven by wave action
- Wave profile follows action of the wave train, with specified depth-wise profile, imposed via the relaxation zones







Regular Wave Impact on a Semi-Submersed Trunk

• Incident wave parameters

|   | Frequency | Wave height | Wave length   | Period |
|---|-----------|-------------|---------------|--------|
| Ν | f, h      | h, m        | $\lambda$ , m | T, s   |
| 1 | 0.70      | 0.060       | 3.19          | 1.43   |
| 2 | 0.70      | 0.120       | 3.19          | 1.43   |
| 3 | 0.90      | 0.123       | 1.93          | 1.11   |
| 4 | 1.10      | 0.050       | 1.30          | 0.90   |
| 5 | 1.43      | 0.049       | 0.76          | 0.70   |

• Mesh structure around the cylinder and free surface: high cell aspect ratio









#### Regular Wave Impact on a Semi-Submersed Trunk

Wave loads on vertical cylinder



Force on the truncated cylinder



Wetted surface of the truncated cylinder







Example: Regular Wave Impact on a Semi-Submersed Trunk

- Wave number study of diffraction: normalised harmonic force coefficients
- First to fourth order harmonics Re and Im part, comparison with Ferrant (1999)





Example: Freak Wave Impact on a Semi-Submersed Trunk

- Wave components correspond to the Pierson-Moskowitz sea energy spectrum
- Wave focusing method was used to create a freak wave at a given point in time-space
  - 30 harmonic wave components
  - Phase shifts for individual wave components set up using optimisation
  - Sea spectrum significant height  $h_s = 0.12 \,\mathrm{m}$
  - $\circ$  Optimisation achieves freak wave height  $H=0.28\,\mathrm{m}$
- Domain layout and mesh identical to wave train simulation







Example: Freak Wave Impact on a Semi-Submersed Trunk

- Characteristics of a desired freak wave prescribed at the point of impact
- Freak wave model describes decomposition into amplitudes, frequencies and phase lags required to produce the freak wave at point of impact

Freak wave



#### Time: 2.73





Irregular Sea States and Directional Sea Spectra

- Realistic sea states cannot be described using one-dimensional sea spectra: there exists a substantial scatter in directionality which needs to be accounted for
- Two-dimensional sea spectrum is applied in spectral components and in spreading direction
- Typical number of spectra/directional components is approx 600
- HOS is necessary to capture the interaction between frequencies: more consistent results than in linear superposition of spectral components
- "Short-crested" and "long-crested" waves can be created via variation of the spectral directionality parameter m







Sea-Keeping Validation in Regular Head Waves: Tokyo 2015 Workshop C 2.10 Case

- Towed ship in head waves at design Froude number:  $F_n = 0.26$
- Model scale:  $L_{PP} = 6.0702 \text{ m}$
- 5 wave conditions (and a steady resistance test)
  - 1. C1;  $\lambda/L_{PP} = 0.65$ , H = 0.062 m
  - 2. C2;  $\lambda/L_{PP} = 0.85$ , H = 0.078 m
  - 3. C3 (resonant case);  $\lambda/L_{PP} = 1.15$ , H = 0.123 m
  - 4. C4;  $\lambda/L_{PP} = 1.37$ , H = 0.149 m
  - 5. C5;  $\lambda/L_{PP} = 1.96$ , H = 0.196 m
- Experimentally measured heave, pitch and total resistance
- No experimental uncertainty reports
- Complete CFD validation and verification study
  - Spatial and temporal resolution requirement
  - Periodic uncertainty study
  - Hydro-mechanical coupling study



**WIK(I** 

Sea-Keeping Validation in Regular Head Waves: Tokyo 2015 Workshop C 2.10 Case





WIK

Performance test results

- Results correspond to temporal resolution study with 25 time steps per encounter period
- This case represents trade–off between performance and accuracy (mean values and phases are affected by such a low temporal resolution)
- Simulated time
  - 1.87276 s (encounter period)
  - $\times$  30 (number of periods simulated)
  - = 56.1828 s of simulated time
- Total execution time = 1677.87 s  $\approx$  30 minutes
- ... yielding approximately **30 s of CPU time for 1 s of real time**
- If better accuracy is desired, good results can be obtained with 200 time steps per encounter period = 4 min of CPU time for 1 s of real time ≈ 2 min of CPU time per encounter period







#### Sharp, non-ventilating free surface







KCS 2.11–C2 seakeeping case, 45°







KCS 2.11–C4 seakeeping case, 135°





Sea-Keeping, Irregular Sea States and 2-D HOS Spectrum Freak Wave

- Combining the wave modelling and sea-keeping features in a simulation of a focused freak wave impact on a floating object: barge and full-scale KCS hull
- Freak wave has developed naturally from a 2-D spectrum without focusing
  - Long time-series simulation of potential theory HOS model
  - Screening wave elevation for a freak wave event
  - Coordinate transformation for wave impact on a floating object
  - Using HOS data to initialise CFD simulation

Time: 1s







#### Total resistance grid uncertainties for 5 cases:

- 1. Mean value average uncertainty 10%
- 2. First order harmonic uncertainties less than 3%, except for the beam waves C3 case with  $U_G = 59\%$  (note: **very small response**)

#### Heave grid uncertainties for 5 cases:

- 1. Mean value uncertainties range from 2% for head waves case to 27% for the quartering waves case
- 2. First order harmonic uncertainties are less than 2%, except for the following waves case with  $U_G = 18\%$

#### Roll grid uncertainties for 5 cases:

- 1. Mean value: 3% and 7% for bow and quartering waves, respectively
- 2. Mean value for beam waves is high: 63%-needs further investigation
- 3. First order harmonic average grid uncertainty approximately 4%.

#### Pitch grid uncertainties for 5 cases:

1. First order harmonic uncertainties below 2%, except for the beam waves case (very small pitch response)





Feasibility Estimate of a Head Wave Seakeeping Study

- Performed 33 simulations in total:
  - 6 simulations for the temporal resolution study
  - 4 simulations for the hydro-mechanical coupling study
  - 7 short simulations for parallel scaling test
  - 1 performance test
  - 15 simulations for grid refinement study
- In approximately 2 weeks using 56 cores, one can get a good estimate of transfer functions at design Froude number, including numerical uncertainty assessment!
- Without uncertainty assessment, the transfer function can easily be obtained within a few days
- Note: it is feasible to run a 3-hour storm simulations with CFD





Manoeuvring Simulations: Propeller (Sail?) Modelling

- Prescribed trajectory simulations performed routinely: turning circle, zig-zag manoeuvre
- Manoeuvring validation under way: free sailing or thruster performance for global positioning for off-shore objects







Simulation of Mooring Systems for Global Performance of Off-Shore Objects

- Mooring forces are modelled via addition of explicit force, added mass or added damping to the 6-DOF motion equation
- Currently, only simple mooring models are implemented in the Naval Hydro pack: single- and multiple-point spring damper systems. Kinematic constraints currently not handled
- Interface to external mooring system libraries: in collaboration with Technip and SHI: OTC 2016 paper





WIK

Violent Free Surface Flow Simulations

- Options on sloshing/slamming motion
  - 1. Static mesh with time-varying direction of gravity + acceleration
  - 2. Dynamic mesh: prescribed rigid body motion, either harmonic or graph-based
  - 3. 6-DOF motion of the hull, as a part of sea-keeping simulations: slamming occurs in hull-wave interaction, eg. resonant case
    - Solid body domain motion with CFD boundary conditions which allow "far-field" condition on the complete outside boundary
    - New feature: zonal algebraic mesh deformation around moving body





## **Block Matrix in OpenFOAM**

WIK

Background

- OpenFOAM uses equation mimicking to perform field algebra and discretisation: perfect for simple PDE-s or segregated solution algorithms
- ... but sometimes we use equation segregation inappropriately
- There exists a family of problems that cannot be solved efficiently without inter-equation coupling; some simulations "that work" can be performed 10-s or 100-s of times faster than with equivalent segregated algorithms

Objective

- Implement flexible and efficient block-coupled solution infrastructure
- Re-use all operator-based discretisation schemes, parallelisation and boundary condition tools already available in OpenFOAM
- Optimise top-level code for efficient execution and ease of assembly

Examples

- Incompressible steady pressure-velocity system (with turbulence)
- Compressible multi-phase free surface simulations: under-water explosions



WIK

**Block-Coupled Solution Algorithms** 

- For cases of strong coupling between the components of a vector, the components can be solved as a **block variable**:  $(u_x, u_y, u_z)$  will appear as variables in the same linear system
- In spite of the fact that the system is much larger, the coupling pattern still exists: components of u in cell P may be coupled to other components in the same point or to vector components in the neighbouring cell
- With this in mind, we can still keep the sparse addressing defined by the mesh: if a variable is a vector, a tensorial diagonal coefficients couples the vector components in the same cell. A tensorial off-diagonal coefficient couples the components of u<sub>P</sub> to all components of u<sub>N</sub>, which covers all possibilities
- For **multi-variable block solution** like the compressible Navier-Stokes system above, the same trick is used: the cell variable consists of  $(\rho, \rho \mathbf{u}, \rho E)$  and the coupling can be coupled by a  $5 \times 5$  matrix coefficient
- Important disadvantages of a block coupled system are
  - Large linear system: several variables are handled together
  - Different kinds of physics can be present, *e.g.* the transport-dominated momentum equation and elliptic pressure equation. At matrix level, it is impossible to separate them, which makes the system more difficult to solve



## **Block Matrix in OpenFOAM**

Matrix Connectivity and Mesh Structure

• Irrespective of the level of coupling, the FVM dictates that a cell value will depend only on values in surrounding cells



- We still have freedom to organise the matrix by ordering entries for various components of the solution variable x
- Global sparseness pattern related to mesh connectivity: easier coefficient assembly



VIK



**Coupling Coefficient** 

- Matrix implemented with **block coefficients**
- Consider general linear dependence between two vectors  $\mathbf{m}$  and  $\mathbf{n}$

#### $\mathbf{m} = \mathbf{A} \mathbf{b}$

- Component-wise coupling describes the case where  $m_x$  depends only on  $n_x$ ,  $m_y$  on  $n_y$  and  $m_z$  on  $n_z$ 
  - 1. Scalar component-wise coupling
  - 2. Vector component-wise coupling
  - 3. Full (block) coupling
- Explicit methods do not feature here because it is not necessary to express them in terms of matrix coefficients
- For reference, the linear equation for each cell featuring in the matrix reads

$$\mathbf{A}_P \mathbf{m}_P + \sum_N \mathbf{A}_N \mathbf{m}_N = \mathbf{R}$$





Turbulent Steady Incompressible Flows: SIMPLE or Coupled System

• Equation set contains linear p-U and non-linear U-U coupling

$$\frac{\partial \mathbf{u}}{\partial t} + \nabla_{\bullet}(\mathbf{u}\mathbf{u}) - \nabla_{\bullet}(\nu\nabla\mathbf{u}) = -\nabla p$$
$$\nabla_{\bullet}\mathbf{u} = 0$$

- Traditionally, this equation set is solved using the segregated SIMPLE algorithm
  - Low memory peak: solution + single scalar matrix in peak storage
  - p-U coupling is handled explicitly: loss of convergence (under-relaxation)
  - Number of iterations is substantial; not only due to non-linearity
  - Convergence dependent on mesh size: SIMPLE slows down on large meshes
- Block-implicit p-U coupled solution
  - Coupled solution significantly increases matrix size: 4 blocks instead of 1
  - ... but the linear p-U coupling is fully implicit!
  - Iteration sequence only needed to handle the non-linearity in the U-equation
  - Net result: **significant convergence improvement** (steady or transient) at a cost of increase in memory usage: **reasonable performance compromise!**





#### SIMPLE-Based Segregated p-U Solver

```
// Momentum equation assembly and solution
fvVectorMatrix UEqn
    fvm::div(phi, U)
  + turbulence->divDevReff(U)
);
UEqn.relax();
solve(UEqn == -fvc::grad(p));
// Pressure equation assembly and solution
U = UEqn().H()/UEqn.A();
phi = fvc::interpolate(U) & mesh.Sf();
fvScalarMatrix pEqn
    fvm::laplacian(1/UEqn.A(), p) == fvc::div(phi)
);
pEqn.solve();
phi -= pEqn.flux();
p.relax();
```



### **Block Matrix in OpenFOAM**

Block-Coupled  $\mathbf{u} - p$  System Matrix Structure







```
Coupled Implicit p-U Solver: Source Code
```

```
fvVectorMatrix UEqn
    fvm::div(phi, U)
  + turbulence->divDevReff(U)
);
fvScalarMatrix pEqn
   - fvm::laplacian(rUAf, p) == -fvc::div(fvc::grad(p))
);
blockVectorSystem pInU(fvm::grad(p));
blockVectorSystem UInp(fvm::div(U));
BlockLduMatrix<vector4> A(mesh);
blockMatrixTools::insertEquation(0, UEqn, A, x, b);
blockMatrixTools::insertEquation(3, pEqn, A, x, b);
blockMatrixTools::insertBlockCoupling(3, 0, UInp, U, A, b, false);
blockMatrixTools::insertBlockCoupling(0, 3, pInU, p, A, b, true);
```

```
BlockLduSolver<vector4>::New("Up", A, dict)->solve(Up, b);
blockMatrixTools::retrieveSolution(0, U.internalField(), Up);
blockMatrixTools::retrieveSolution(3, p.internalField(), Up);
```





Performance Improvements of the Coupled p-U Solver: Speed and Robustness







Performance Improvements of the Coupled p-U Solver: Speed and Robustness







WIK

Performance Improvements and Extensions in the Coupled p-U Solver

- Improvements in performance for the coupled solver: consistency, numerics
- Extension to compressible flows, MRF and porous media (implicit!)
- Major performance jump: block-coupled AMG with additive correction (Hutchinson 1988)
- Block-coupled  $k-\epsilon$  and  $k-\omega$  SST turbulence models
  - Turbulence equations solved in a single block-coupled system
  - Analysis of source terms to establish favourable cross-equation coupling
  - Implemented in Diploma Thesis assignment: Robert Keser, Uni Zagreb
- Example: steady (MRF) and transient centrifugal pump







#### Performance Improvements and Extensions in the Coupled p-U Solver





## **Coupled Solution**



**Coupled Solution Algorithms: Consequences** 

- Coupled algorithms are still used rarely because of code complexity and guidance on "appropriate coupling formulation": **problem solved**
- NUMAP-FOAM Summer School 2016: Dominated by projects on coupled implicit solution for complex non-linear problems
  - Coupled eddy viscosity turbulence models
  - Coupled visco-elasto-plastic rheology solver (double Rhie-Chow)
  - Coupled poly-dispersed multi-phase DQ-MOM solver: moment equation
  - Coupled lift/drag terms in multi-phase momentum equations
  - Coupled solid mechanics: better non-linear convergence
  - Coupled Finite-Volume to Finite Area solver: cracking porous media
- There are many more problems where linearised implicit inter-equation coupling may prove a game-changer: accelerated convergence, increased robustness, improved





Expanding the Horizons: Spectral Modelling of Time-Periodic Flows

- Many CFD problems involve temporally periodic flows
  - Flows induced by periodic boundary condition
  - Flows with periodically moving objects
  - Wave-like phenomena
- To remove irregular start-up unsteadiness, a number of periods is simulated: expensive, complicated periodic uncertainty issues

#### Harmonic Balance Method: n coupled quasi-steady coupled equations

- Variables are developed into Fourier series in time with *n*-harmonics and substituted into transport equation independently for each computational point
- Example: Harmonic Balance scalar equation set

$$\nabla \bullet (\mathbf{u} \mathbf{Q}_{t_j}) - \nabla \bullet (\gamma \nabla \mathbf{Q}_{t_j}) = -\frac{2\omega}{2n+1} \left( \sum_{i=1}^{2n} \mathsf{P}_{(i-j)} \mathsf{Q}_{t_i} \right)$$

$$\mathsf{P}_i = \sum_{k=1}^n k \sin(k\omega i \Delta t), \qquad \text{for} \quad i = \{1, 2n\}.$$





Harmonic Balance Solver: ERCOFTAC Centrifugal Pump

- Validation of harmonic balance in turbulent incompressible periodic flow
- HB simulations performed using 1 and 2 harmonics: rotor and stator blade count
- Results compared against full transient simulation: excellent agreement
  - Integral properties: typical error of 2%
  - Local solution features: pressure on surface in time
  - Mode and nature of flow instability
- Results are significantly better than expected!
- Substantial reduction in simulation time:
  - Intel Core i5-3570K, 3.4 GHz computer with 16 GB memory
  - Transient run needs approx. 50 blade passages to become quasi-periodic

|                 | Transient             | HB, 1 h | HB, 2 h |
|-----------------|-----------------------|---------|---------|
| Simulation time | 5 hrs/rotation        | 52 mins | 78 mins |
| Iterations      | 600, dt = 5e-5 s      | 3000    | 2400    |
|                 | 1 rotation = $0.03$ s |         |         |





#### Harmonic Balance Solver: ERCOFTAC Centrifugal Pump



|                    |            | Transient | HB, 1h | err, % | HB, 2h | err, % | MRF    | err, % |
|--------------------|------------|-----------|--------|--------|--------|--------|--------|--------|
| $t = \frac{T}{3}$  | Efficiency | 89.72     | 88.80  | 1.0    | 89.76  | 0.0    | 89.65  | 0.07   |
|                    | Head       | 81.48     | 81.80  | 0.4    | 80.45  | 1.3    | 84.12  | 3.14   |
|                    | Torque     | 0.0297    | 0.0302 | 1.7    | 0.0294 | 0.9    | 0.0308 | 3.57   |
| $t = \frac{2T}{3}$ | Efficiency | 89.92     | 88.78  | 1.3    | 89.81  | 0.1    |        |        |
|                    | Head       | 81.48     | 81.85  | 0.4    | 80.6   | 1.1    |        |        |
|                    | Torque     | 0.0296    | 0.0302 | 2.0    | 0.0295 | 0.4    |        |        |
| t = T              | Efficiency | 89.83     | 88.85  | 1.1    | 89.71  | 0.1    |        |        |
|                    | Head       | 81.49     | 81.79  | 0.4    | 80.39  | 1.3    |        |        |
|                    | Torque     | 0.0297    | 0.0302 | 1.6    | 0.0294 | 1.0    |        |        |







WIK



Harmonic Balance Solver: Periodic Two-phase Surface Flow







Harmonic Balance Solver: Periodic Two-phase Surface Flow

• Zeroth and 1th order harmonic amplitudes of the free surface with iterative uncertainty obtained with different spectral resolution

| No. Harmonics | $\eta_{a,0}$ , m | $\eta_{a,1},m$ | $U_{I,0}$ , % | $U_{I,1}$ , % | $\epsilon_0,m$ | $\epsilon_1, \%$ |
|---------------|------------------|----------------|---------------|---------------|----------------|------------------|
| 1             | 0.001898         | 0.1531         | 0.5962        | 0.03494       | -0.0006        | -0.328           |
| 2             | 0.000302         | 0.1520         | 0.9360        | 0.01349       | 0.0010         | 0.393            |
| 3             | 0.000411         | 0.1519         | 0.3916        | 0.01975       | 0.0009         | 0.459            |
| 4             | 0.000394         | 0.1518         | 0.1845        | 0.00099       | 0.0009         | 0.524            |
| 5             | 0.000352         | 0.1517         | 0.1215        | 0.00033       | 0.0009         | 0.590            |
| 6             | 0.000438         | 0.1517         | 0.1651        | 0.00033       | 0.0009         | 0.590            |
| 7             | 0.000337         | 0.1516         | 0.1386        | 0.00033       | 0.0010         | 0.655            |
| 8             | 0.000332         | 0.1516         | 0.1008        | 0.00033       | 0.0010         | 0.655            |



#### Harmonic Balance Solver: DTMB Ship on Waves



- Ship model parameters: L = 3.05 m
- Froude number:  $F_r = 0.28$ , U = 1.52 m/s
- Wave parameters: H = 0.036 m, T = 1.09 s,  $\lambda = 4.57$  m
- 2 harmonics are used in the HB simulation
- 200 time steps per encounter wave period are used in the transient simulation



**WIK** 



Harmonic Balance Solver: DTMB Ship on Waves

• Convergence of longitudinal and vertical force harmonics





### **Complex Physics Models**

WIK

Non-Linear Solid Mechanics Simulations

- Geometric and material non-linearity, large deformation, modelling of contact (linear and non-linear) with complex friction models
- Textbook example of practical collaborative development: academia + industry
- New generation of mixed mode lubricated contact modelling





### **Complex Physics Models**



Complex Physics of Wetting Processes: TU Darmstadt

- Modelling of interaction of individual droplets and complex surfaces
- Free surface is modelled using interface capturing and interface tracking models
- Stabilisation library for visco-elastic rheology at extreme Weissenberg numbers
- Excellent example of building research on top of existing capabilities





### Summary

WIK

Summary

- CFD 2020 is moving beyond general-purpose CFD products and "universal solution providers"
- Outlook: Vertically integrated problem-specific applications
  - Application-specific extensions to complete the modelling
  - User interface speaking language of the application
- Strict requirements on solution accuracy and uncertainty; guidance on mesh resolution, discretisation settings, choice of physical models
- Practical use requires automated or script-driven tools with turn-around time below 8 hours
- Validation and verification effort is the major challenge!
- Open Source libraries are a natural baseline for such environment: low-level CFD discretisation is re-used across the board
- Handling complex physics brings CFD closer to the user requirements: new algorithms, execution environments and multi-scale modelling data exchange

