An Implementation of Hybrid CFD/BEM Technology For Prediction Acoustic Environments Using Open-Source Software

Victoria N. Korchagova

Institute for System Programming of the Russian Academy of Sciences

v.korchagova@ispras.ru

Moscow, Russia 02.12.2016

Hybrid CFD/BEM Acoustic

Introduction

Sound source	SPL, dB
Diesel truck, 10 m away	90
Chainsaw, 1 m distance	110
Threshold of discomfort, near an ear	120
Threshold of pain, near an ear	130-140
Jet engine, 1 m distance	130-160

Danger zone: >140 dB!

Hybrid CFD/BEM modelling

Governing equations

CFD part (Lighthill's equation [7]): $\frac{\partial^2 \rho}{\partial t^2} - c^2 \Delta \rho \neq 0$; **CAA part** (homogeneous wave equation): $\frac{\partial^2 \rho}{\partial t^2} - c^2 \Delta \rho = 0$. Static fluid: Helmholtz equation for complex amplitude of sound pressure p: $\Delta p + k^2 p = 0$.

Estimates of resources

Pure CFD modelling (near-field + far-field): \approx 530 billions cells. Hybrid modelling: \approx 10 millions cells in near-field, \approx 30 000 on the control surface.

Boundary conditions

CFD part

Various boundary conditions which satisfied to mathematical model of fluid flows.

BEM part

Control surface: interpolate pressure data from gas dynamic solution. Use Dirichlet boundary conditions:

$$p(\mathbf{x}_c) = p^*(\mathbf{x}_c).$$

Reflecting surfaces: use Neumann boundary conditions for sound reflection:

$$\frac{\partial p(\mathbf{x}_c)}{\partial \mathbf{n}} = 0$$

"Infinity": no surface, solution automatically satisfies to Sommerfeld boundary conditions [3]:

$$\frac{\mathbf{x}}{|\mathbf{x}|} \cdot \nabla p(\mathbf{x}) - ikp(\mathbf{x}) \bigg| = O\left(\frac{1}{|\mathbf{x}|^2}\right) \text{ as } |\mathbf{x}| \to \infty.$$

General scheme of the technology implementation

CFD/BEM technology implementation

Existing implementation (NASA) [6]

Example: Jet impingement noise from SHJAR (Small Hot Jet Aeroacoustics Rig)

Packages: Loci/CHEM for CFD part, FastBEM for CAA part (*commercial packages*).

The main goal

To implement a hybrid model using open-source packages.

Chosen open-source packages

	Structure	Case description	Solver
OpenFOAM	C++ apps and dynamic libraries, set of overloaded primitive objects and functions.	Folder which contains a set of dictionaries with description of different parts of case.	Gas dynamic solver (rhoPimpleFoam, rhoCentralFoam, pisoCentralFoam)
BEM++	C++ kernel and Python interface.	One file with Python script for one case. Standard Python libraries can be used.	No separate solvers. Use implemented elliptic operators to construct needed scheme in the file for specific case.

Scheme of technology implementation using OpenFOAM and BEM++

Pulsating sphere

CFD parametersBEISize of flow domain:Rad $10 \times 10 \times 10$ m.surfSolver:SizepisoCentralFoam. ≈ 5 Mesh cell size:Con ≈ 20 cells per wave length.form

BEM parameters

Radius of control surface: $R_c = 2$ m. Size of mesh cells: \approx 5, 10, 20 cpwl. Combined [3] formulation of BIE.

Input data

Radius of sphere: R = 1 mPressure oscillations: $p(R, t) = A \sin(2\pi f t)$ Pressure amplitude: A = 1 PaFrequency: f = 100 HzSpeed of sound: c = 343 m/sDensity of air: $\rho_0 = 1204 \text{ kg/m}^3$ Analytical solution

$$p(r,t) = \operatorname{Re}\left[\frac{A}{r}e^{-i(\omega t - kr)}\right];$$

here $\omega = 2\pi f$, $A = \rho_0 c U_0 e^{-ikR}$, $k = \omega/c$.

Simulation time

CFD part: 0.2 s (20 periods) BEM part: 0.06 s

Pulsating sphere

V. Korchagova

Hybrid CFD/BEM Acoustic

02.12.2016 10 / 18

Vibrating sphere

CFD parametersBENSize of flow domain:
 $10 \times 10 \times 10 \text{ m.}$ Radii
surfaSolver:
pisoCentralFoam.Size
 ≈ 5 ,
Com
form

BEM parameters

Radius of control surface: $R_c = 2$ m. Size of mesh cells: \approx 5, 10, 20 cpwl. Combined [3] formulation of BIE.

Input data

Radius of sphere: R = 1 mVelocity oscillations: $U(R, \theta, t) = A \sin(2\pi f t) \cos \theta$ Velocity amplitude: A = 1 m/sFrequency: f = 100 HzSpeed of sound: c = 343 m/sDensity of air: $\rho_0 = 1204 \text{ kg/m}^3$ Analytical solution $p(r, \theta, t) =$ $= \operatorname{Re}\left[\left(1 + \frac{1}{ikr}\right) \frac{-A_1 e^{-i(\omega t - kr)}}{kr} \cos \theta\right],$ where $A_1 = -\frac{\rho_0 cka U_0 e^{ika}}{1 - \frac{2}{(ka)^2} + \frac{2}{ika}}.$

Vibrating sphere

V. Korchagova

Hybrid CFD/BEM Acoustic

Launch vehicle lift-off

First results

CFD parameters Number of cells: \approx 7 mln. Solver: pisoCentralFoam. Simulation time: 0.1 s.

BEM parameters

Control surface: 343 nodes, 516 triangle cells.

Reflecting surfaces: 32391 nodes, 63630 triangle elements.

Combined [3] formulation of BIE for mixed exterior problem (to avoid non-uniqueness of solution).

Launch vehicle lift-off: CFD part

Execution time: \approx 15 h (144 kernels)

Launch vehicle lift-off: BEM part

Conclusions

- Main stages of hybrid technology of far-field noise prediction were described.
- The first version of the hybrid technology implementation was designed using open-source software OpenFOAM and BEM++.
- Validation cases (pulsating sphere and oscillating sphere) were considered. Agreement with analytical solution is observed.
- Some factors has a large influence to the solution:
 - size of CFD mesh cells near the control surface;
 - size of triangle elements in the boundary mesh on the control surface;
 - interpolation scheme using for sampling;
 - number of frames used in complex pressure data calculation;
 - settings of numerical methods using both in CFD ans BEM parts.
- Possibility to use CFD/BEM technology in "large" cases has been presented.

Thank you for attention!

Literature |

- O. Steinbach. Numerical Approximation Methods for Elliptic Boundary Value Problems. Finite and Boundary Elements. Austria: Springer, 2008. 396 p.
- W. Śmigaj, S. Arridge, T. Betcke, J. Phillips, M. Schweiger. Solving Boundary Integral Problems with BEM++ // ACM Trans. Math. Software. 2015. Vol. 41. Pp. 6:1–6:40.
- [3] S. Engleder, O. Steinbach. Modified boundary integral formulations for the Helmholtz equation // Journal of Mathematical Analysis and Applications. 2007. Vol. 331. Pp. 396–407.
- [4] A. Kleefeld. The exterior problem for the Helmholtz equation with mixed boundary conditions in three dimensions // International Journal of Computer Mathematics. 2012. Vol. 89, No. 17. Pp. 2392-2409.
- [5] BEM++. Documentation. URL: http://www.bempp.org/docs.html

Literature II

- [6] A. Tosh, P. Liever, F. Owens. A High-Fidelity CFD/BEM Methodology For Launch Pad Acoustic Environment Prediction // 18th AIAA/CEAS Aeroacoustics Conference (33rd AIAA Aeroacoustics Conference), 04–06 June, 2012.
- [7] M. E. Goldstein. Aeroacoustics. McGraw-Hill International Book Company. 1976. 293 p.