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INTRODUCTION

Current LPA codes are 1-D (e.g., two-fluid model (RELAP5) or drift flux

model (RETRAN)).

Problem: how to take into account the real 2D (and 3-D) flow characteristics

in 1-D models.

Typical solution: using flat profiles model -> field equations become 1-D.

This provides high calculation speed and saves memory.

But, important distributed information is lost.

These lost parameters are important not only for simple tube geometry, but

also annular and sub-channel geometry.

Dr. N. Zuber offered the classic solution to distribution parameter (DP) via

C0 for continuity equation, Drs. Hancox and Nicoll provided empirical

extensions to energy and momentum equations.

This work presents analytical derivation of the DPs using power-mode

approximation for the monotone (and non-monotone) profile of basic

variables to the continuity, energy and momentum equations.
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Conservation Laws and Averaging 
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Analytical and simple model 

formulations 

for Сk  1,   ,   St or hq 

(round pipe and slot channel) 

 Homogeneous model without 

fine parameter space structure: 

Сk  1,   ,   St or  hq 

 

 Analytical and simple 

model formulations 

for Сkn  1, n, Stn or hqn 

(subchannel geometry) 
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Figure 2a. Block-diagram of quasi-1-D model deriving, simple geometry.
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PRESETATION GOALS (Part 1)

1. To construct a more complete and universal analytical

formulations of closure relationships for the distribution

parameters (DPs) Cks (k=f –fluid or g - vapor; s=0,1,2,3 - mass, energy,

momentum) in non-equilibrium two-phase flows

φks = enthalpy hk, or superficial j, or phase wk (wk
2) velocity.

2. To provide the representation of the integral formulations of

these main effects that control the phase parameter distribution.

3. To introduce some examples of effects of radial variations of

parameters on the above mentioned characteristics.
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Main assumptions  and properties of the derived 

quadrature relationships for DPs are: 

(a) the use of the drift flux model,

(b) the quasi-steady-state approximation, and

(c) the power-mode approximations of the local distribution of the

variables,

(d) two-zone accounting for heterogeneity of void fraction and enthalpy

profiles in the channel cross-section.

1. These DPs Cks quadrature are expressed in terms of elementary

functions, they directly reflect the principle of superposition, generalize

and unify not only the Zuber-Findlay method, but also Hancox-Nicoll and

Hibiki-Ishii methods.

2. The revealed complementarity properties are particularly useful for the

purposes of testing, validating and verifying DPs.
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Figure 3. Power approximations for the parameter profiles: a) volumetric flux 

density;         b) k-phase enthalpy - hk, and              c) k-phase void fraction - k.

A set of analytical relationships for Cki were derived by inserting the power-mode

approximation of the monotone variable profiles (Fig. 3) into the original

definitions and integrating the linear combination of differential binomials.
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Table 1. Functional 

forms of distribution 

parameters for 1-D 

conservation law 

equations of two-phase 

(two-component) flow 

for monotonic void pro-

files of k-phase (k= g; 

k= f ).

…2-nd column DP …

Ck0 for k-phase is a part

of each of the DP Cks,

controlling nature of the

behavior of each.

Obviously, the DP Ck0

reduces to the classical

DP Zuber-Findlay-C0,

when k=g for void

fraction.



9

h

h
c2

hw2

10

k

R

a)

h
c1

h
w1

h'
f

R




c2

c1

w1




R R


w2



0



1



k

b)

a) for enthalpies (Bh)
















1,)(

0,)(

2

1

222

111

RRRhhhh

RRRhhhh
h

l
cwcg

l
cwcf

Fig. 4. Model of two monotonic profile superposition ("B").

b) for phase void fractions (B)
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An analogous set of  analytical relationships w as  der ived fo r  the case of  non-

monotonous var iable profile (Fig. 4), including a compound channel or  sub-channel 

(see Table 2) in the form of  so-called two-zone representation of  two monotone  
"cross-linked"  on the border line RГ  of  two power-mode approximations.  
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Table 2. Functional forms 

of distribution parameters 

for one-dimensional 

conservation law 

equations of two-phase 

flow for the case  

of non-monotonic profiles. 
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Co=1

0.6

H

Cg3j=1

0.9
1.1

H

Figure 5. Distr ibution parameter  C0. for  
convex and concave void fraction profiles; 

w=0.4;    H – Hancox & Nicoll [5]. 

Figure 6.  Distr ibution parameter 

for  momentum flux Cg3
j , w=0.4;   

H – Hancox & Nicoll [5]. 

The two-phase flow parameter  C0 is included in the structure of each 
distr ibution parameter  affecting the character  of their  behavior . 
Consequently, the main character istics of the C0 may serve as the basis 
for  investigating the behavior  of other  distr ibut ion parameters as well in 
the general case of non-monotonic void fraction profiles. The compar ison 
with Hancox-Nicoll empir ical relationship is shown in the Figs. 5 and 6. 
Though the compar ison rather  satisfactory, but one can see the vast 
expanses of differences from each other and from unity.  
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Cf3=1

Cf3=1

Cf3=1

Figure 7. Distribution parameter for 

momentum flux Cf3, for w=0.4,   

fjW
~

 = 0.5. 


~

Ck1=1.0 Ck1=1.0

Figure 8. Distribution parameter for 

enthalpy Ck1 as function of Ckh and form 

factor  kkw /1~ . 

Due to the hierarchical structure of  the obtained analytical relationships 
for  distr ibution parameters it is possible to build the more complicated 
distr ibution parameters (for  example, energy and momentum equation 
components) as the function of  more simple distr ibution parameters 
(for  example, Ck0 and Ckh).  
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Fig. 10. Distribution parameter for 

enthalpy flux Ck2 as function of 

Ck2j for 5.0/ 01 kk CC . 

Fig. 9. Distribution parameter for 

enthalpy flux Ck2
j as function of Ckh 

and Ck0, for Fk=2. 

The property of the hierarchical structure provides the most laconic and universal 

presentations of the compound parameter distributions, see Figs. 7-10. These Figures 

illustrate the vast expanses of differences from the unity for distribution parameters. 

This fact points out the invalidity to use flat profile approximation in the 1-D model 

for number of the non-equilibrium flow regimes, in particularly, for “subcooled” flow 

boiling and for the “post critical” heat transfer. 
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CONCLUSIONS (Part 1)

A set of analytical relationships for DPs Cks was derived with power-mode 

approximation of the monotone variable profiles and integrating of the linear 

combination of differential binomials, which were expressed in terms of elementary 

functions. There are generalize and unify not only the Zuber-Findlay, but also the 

Hancox-Nicoll and Hibiki-Ishii methods. An analogous set of relationships was 

derived for non-monotonous profiles, including a compound channel or sub-

channel. 

These integral forms of the DPs make up the interrelation of the hierarchical 

structure between continuity, energy and momentum conservation law equations. 

Moreover, kinematic (i.e., simple form) DPs, such as Сk0 and Сk1, are a part of 

more compound DPs for an energy transfer Сk2 and momentum transfer Сk3

relationships and affect in many respects the character of their behavior.

The system of the DPs reciprocal products  and the k-phase average contents for 

the quasi-1-D model are derived. These complementation properties reflect the 

integral balances mass, enthalpy, momentum and their fluxes. In turn, it is a 

consequence of the unified consideration of DPs for each phase through its volume 

fraction: as - void, or (1-)- fluid fraction. These integral balances between phases 

are useful both to the quasi-1-D theories of two-phase flow modeling, and to semi-

empirical applications, including testing and verification problems for the Сks closure 

relationships.
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Paper 40 part 2

LYON-TYPE INTEGRAL FORMS OF WALL FRICTION, HEAT- AND MASS 
TRANSFER CLOSURE RELATIONSHIPS FOR NON-EQUILIBRIUM TWO- 

PHASE FLOWS. GENERALIZATION FOR ANNULAR 
AND ROD CLUSTER GEOMETRIES 
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Main assumptions of the derived closure relationships

for friction, heat- and mass-transfer factors: 

(a) coolant flows (with high aspect ratio of length to diameter), which

occur in the frames of the boundary layer various models,

(b) the quasi-steady-state approximation,

(c) the use of the drift flux model,

(d) the phenomenological theory of hydrodynamics, heat, and mass

transfer - gradient hypotheses (Fick’s, Fourier’s and Newton’s) are

used to describe the substance, heat, and momentum fluxes

(e) the generalized of variables separation method (A.D. Polyanin)
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Field equations of: Definitions: 
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Tab. 2: Non-conservative (transportable) forms of conservation law equations
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The mathematical descriptions of similarity among the 

three transfer processes mentioned above (see the top line in 

Tab. 1 ) make it possible to introduce a formally generalized 

equation, in which the substance flux J is expressed by means 

of the  total transfer characteristic εT and the gradient of the 

transfer potential φ normal to the wall as follows: 

 

yJ T   ,                                                              (1) 

 

where εT= ε + εt - is the total (molecular ( ε) + turbulent (εt)) 

substance transfer characteristic (coefficient), namely, viscosity, 

thermal diffusivity or diffusion coefficient (see the 2 -nd line of 

Tab. 1).   
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After scaling variables in equation (1) with respect to 

their wall values and after integrating along radius Y, we can 

obtain the profile of variation for any of the potentials under 

consideration in the channel cross-section, if the substance flux 

and molecular + turbulent transfer characteristics are known. 

This is expressed by the formula: 

 
'~~

~

0

dY
J

Pe
Y

w

T


 


                                     (2) 

The detailed description of the substance fluxes and the key to 

decode the designations are obvious from the first six lines of 

the Tab.1. Using the definitions given in Tab. 1, one can easily 

reconstruct specific relationships for the profiles of axial 

velocity, enthalpy (temperature), and concentrations from the 

integral (2), see the 3-d line.  
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Separate effects (e=1 ÷6- is used to identify the components , 

e=1÷4 pipe/flat channel) are explained in the Tab.3: 

 

                      e=1↓    e=2↓      e=3↓    e=4↓    e=5↓      e=6↓   
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where r=r1+y, w , v and v are axial radial and azimuthal 

velocities; and J is the azimuthal substance flux.  
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After variables scaling in the equation ( 10) for local substance 

flux, integrating it over cross section of pipe and each of zone 

annular and sub-channel, first with the variable upper limit Yn, 

and then up to the wall Yn=1, and, joining the obtained integrals 

(using Tab.3 designations), we have:  

for pipe 
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and for sub-channel 
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Averaged transfer components  - Φeφ, which are generalized 

mass forces in the form of component Froude numbers are 

given in the 4th column of Tab. 3.  



24

 2      Friction factor, heat and mass transfer coefficients 3    Form-factors of source/sink 4    Weight function 

1            Simple 

geometry: 

flat gap γ=1, 

round pipe γ=2 

 

 
dR

R

K

T

e ewew









1

0

1

2

~~Re
8










, 

 












 


1

0
1~~

2

~1
dR

R
T

k

qe eh
K

eh
Pe

qtS 



  

dRR

dRR

K

R

w
















1

0

0

~

~

1 ,

dRRq

dRRq

K

v

R

v

qh










1

0

0

~

~

1
 






1

0

0

dRRw

dRRw
R












, 

σ=0 and (σ=τ ) for λ, 

σ=1 and (σ=q) for Stq 

2      Concentric 

annular 

channel 

with inner zone 

a=1, sign “-“ 

and outer zone 

a=2, sign “+” 

  
dY

Y

K

aTaa

ae ewaewawa
a

a


 


1

0

2

~~
1

~
21

Re
8












, 

  
dY

Yk

K
Pe

tS
qaTaa

qae ehaehaqa

aa

qa


 



1

0

2

~~

1
~

21
~1







 

 

 




1

0

0

~
1~

~
1~

1

dYYYY

dYY

K

awaaaa

Y

waaa

wa

a














, 

 

 dYYYYq

dYYq

K

ahaaqava

haqa

Y

va

qha

a





~
1~

~
1~

1
1

0

0










 






1

0

0

dYYw

dYYw

Jaaa

Y

Jaaa

a

a










, 

aaJa YY 
~

21  

3       Azimuthal 

angle segment ∆ 

near of the pin 

wall number-n 
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Tab. 4: Analytical closure relationships for friction factor, heat and mass transfer for 

pipe/gap, annular and sub-channel geometries



Bubbly upward tube flow at low mass velocities have recorded the occurrence of 

heterogeneous (saddle-shaped) void fraction profiles and anomalous shear stresses. 
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Fig. 2. Wall shear stress ratio (λ/λ0)

vs gas volumetric flow ratio. 

Anomalous for 0.01< β < 0.2÷0.3.  

Experiments of Nakoryakov et al., 

1981.

Fig. 1. Bubble saddle-shape void fraction 

profile for adiabatic two-phase tube flow 

for inlet condition Re=19100, β=0.15. 

Experiments of  Nakoryakov et al., 1981.

dbubble = 3 ÷ 5 mm; dtube = 86.4 mm 
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CONCLUSIONS (Part 2)
A simple and descriptive approach has been proposed to construct

generalized quasi-one-dimensional integral Lyon-type relationships for the pipe,

annular, and sub-channel wall friction, heat and mass transfer coefficients. The

approach is based on: 1) the drift flux model, 2) the boundary layer approximations

and 3) a generalized substance transfer notations. The model takes into account

both the effect of non-uniform flow profiles as the effect of the geometry (pipe,

annular and sub-channel type).

With this approach, one can formulate the integral analytical expressions

for the wall friction factor, heat, and mass transfer coefficients to account for the

contribution of various complementary effects. These additional effects are

heterogeneous profiles of generalized mass forces arising due to the presence of

local variable gradients in the non-equilibrium flows. They include not only the

density (in the mixed convection), but also other components in the momentum,

heat, and mass transfer processes, and their sources and sinks in the channel flow

cross section.

Unlike Lyon’, Kutateladze-Leont’yev’, Petukhov-Popov’, Novikov-

Voskresensky’, and Iannello-Suh-Todreas’ relationships, the integral forms

deduced are more general and are characterized by an additive form of notation of

the effects under consideration. This is significant for the criteria to assess the

contribution of the effect in question.
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Tab. 3: Definitions for Φeφ components’ average values and form-factors Keφ in equations of () 

substances transport for pipe/gap, annular and sub-channel geometries.  2* - absent for heat and mass 

fluxes, using ∂φ+/∂Z
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Tab. 3 (continued): Definitions for Φeφ components’ average values and form-factors Keφ in 

equations of () substances transport for pipe/gap, annular and sub-channel geometries.  2* - absent 

for heat and mass fluxes, using ∂φ+/∂Z


