Validation of open source code BEM++ for simulation of acoustic problems

P. Lukashin (ISP RAS, Russia), S. Strijhak, (ISP RAS, Russia), G. Shcheglov (BMSTU, Russia)

Aeroacoustic sources

A rotating 7-bladed propeller on submarine

Jet's engines of Launch abort vehicle

Compressor stator test rig

Car's outside rear-view mirror

Sound-pressure levels

Table 1.1. Sound-pressure levels for common sounds

(dB(A))	Common sounds
30	whisper
50	rainfall, quiet office, refrigerator
60	dishwasher, normal conversation
70	traffic, vacuum cleaner, restaurant
80	alarm clock, subway, factory noise
90	electric razor, lawnmower, heavy truck or road drill at 7 m
100	garbage truck, chain saw, stereo system set above halfway mark
110	rock concert, power saw
120	jet takeoff, nightclub, thunder
130	jack hammer
140	shotgun, air raid system
180	rocket-launching pad

C. Wagner, T. Hüttl, and P. Sagaut, eds. Large-Eddy Simulation for Acoustics. Cambridge Univ. Press, New York, 2007.

Definition of acoustic's problem and boundary conditions

The main approaches for numerical modelling in aeroacoustics

Approach	Numerical method	Accuracy	Required resources / Applicability
Solution of «full» Navier – Stokes equations	Direct Numerical Simulation (DNS)	Fine	Very much / Impossible
Large Eddy Simulation (LES)	Good	Very much / Impossible	
Unsteady Reynolds- Averaged Navier – Stokes (URANS)	Low	Few / Possible but not reliable	
CFD-CAA CFD-ALE CFD-APE	Linearized Euler Equation (LEE) or Acoustic Perturbation Equation (APE)	Good	Needs many resources due to grid resolution for LES and acoustics. Applicable for small-scale cases.
CFD Surface Integral Analytic Methods (Lighthill, Kirchhoff, FW-H)	Hybrid methods (LES/RANS) and analytical methods for far-field modelling	Sufficient	Can not used in cases with reflection of acoustic waves somewhere in considered region
CFD-BEM	Connection of the CFD solution (LES/RANS) in the near-field and the solution of Helmholtz equation by BEM (Boundary Element Method) in the far- field	Good	Good for large cases to avoid big grids

The BEM++ Library

- Core library in C++, complete interface via
 Python
- Support for Laplace, Helmholtz, Maxwell
- Shared-Memory parallelization
- H-matrix assembly
- Open source license
- Mac and Linux supported

Introduction to BEM++

BEM++ project: <u>www.bempp.org</u> University College London Classification of acoustic problems Acoustic wave equation: $\nabla^2 u - \frac{1}{c^2} \cdot \frac{\partial^2 u}{\partial t^2} = 0$, u = f(x, t) $u(x,t) = U(x) \cdot e^{-i\omega t} \Rightarrow$

Helmholtz equation: $\nabla^2 U + k^2 \cdot U = 0$, $k = \omega / c$ – wavenumber

Boundary conditions on S:

Formulation of the test problem

Scattering from the unit sphere of plane wave:

$$\begin{cases} \nabla^{2}U + k^{2} \cdot U = 0 \\ \frac{\partial U}{\partial n} - i\beta U = 0 \\ U = U^{S} + U^{I} \\ U^{I} = U_{0} \cdot e^{ikx\bar{a}} \\ \lim_{R \to \infty} \left[R \left| \frac{\partial U^{S}}{\partial R} - ikU^{S} \right| \right] = 0 \end{cases}$$
 (Neumann problem)
Source data: k, U_{0}, R, \bar{a}

BEM problem

Boundary Integral equation (BIE) for

Dirichlet problem:

Neumann problem:

$$\left(\frac{1}{2}I + T - i\eta S\right)U_n^* = \left(\frac{\partial U^I}{\partial n} - i\eta U^I\right)|_S \qquad (H + i\eta(\frac{1}{2}I - K))U^* = -\left(\frac{\partial U^I}{\partial n} - i\eta U^I\right)|_S$$

 U_n^* and U^* are surface potentials, which need to be calculated.

$$T[U](x) = \int_{S} \frac{\partial G(x, y)}{\partial n(x)} \cdot U(y) dS(y) \qquad H[U](x) = \frac{\partial}{\partial n(x)} \int_{S} \frac{\partial G(x, y)}{\partial n(y)} \cdot U(y) dS(y)$$
$$S[U](x) = \int_{S} G(x, y) \cdot U(y) dS(y) \qquad K[U](x) = \int_{S} \frac{\partial G(x, y)}{\partial n(y)} \cdot U(y) dS(y)$$
$$I[U](x) = \int_{S} U(x) dS(x)$$
10

BEM solution

Integral equation to derive the solution for

Dirichlet problem:

Neumann problem:

 $U = U^{I} - S'[U_{n}^{*}]$ $U = U^{I} + K'[U^{*}]$

Single-layer potential operator: $S'[U](x) \coloneqq \int_{S} G(x, y) \cdot U(y) dS(y)$

Double-layer potential operator: $K'[U](x) \coloneqq \int_{S} \frac{\partial G(x, y)}{\partial n(y)} U(y) dS(y)$

Green's function:
$$G(x, y) = \frac{e^{ik|x-y|}}{4\pi |x-y|}$$

11

Discretization of the BIE and solving

Continuous piecewise linear functions for Dirichlet data:

$$\psi_k(x) = \begin{cases} 1, & x \in \tau_k \\ 0, & x \notin \tau_k \end{cases}$$

Piecewise constant functions for Neumann data:

$$\phi_j(x_i) = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$

Triangulatedsurface withelements τ_k and nodes x_i

Solving the system by GMRES or CG

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1N} \\ a_{21} & a_{22} & \dots & a_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ a_{N1} & a_{N2} & \dots & a_{NN} \end{bmatrix} \begin{cases} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_N \end{cases} = \begin{cases} b_1 \\ b_2 \\ \vdots \\ b_N \end{cases}$$

Interface basics of BEM++

	Implementation in BEM++
Geometry	grid = bempp.api.shapes.regular_sphere (n)
Space function	<pre>space = bempp.api.function_space(grid, "P", 1)</pre>
BCs	gr_fun = bempp.api.GridFunction(space, fun=fun)
Identity	I = bempp.api.operators.boundary.sparse.identity(space, space, space)
operator	
Boundary	K = bempp.api.operators.boundary.helmholtz.double_layer (space, space, space, k)
Integral	H = bempp.api.operators.boundary.helmholtz.hypersingular (space, space, space, k)
Operators	
Potential	S = bempp.api.operators.potential.helmholtz.single_layer(space, points, k)
Operators	K = bempp.api.operators.potential.helmholtz.double_layer(space, points, k)
Solving the	func,info=bempp.api.linalg.gmres (-H+1j *k*(0.5*I-K))=gr_fun)
System	
Deriving the	res = np.absolute(u_inc + K.evaluate(func)+1j*k*S.evaluate(b*func))
results	

Analytical Solution

$$U = U^{I} + U^{S}$$
$$U^{S} = \sum_{l=0}^{n} A_{l}h_{l}(kr)P_{l}(\cos\theta)$$
$$U^{I} = U_{0} \cdot e^{ikx\bar{a}} = \sum_{l=0}^{n} (2l+1)i^{l}j_{l}(kr)P_{l}(\cos\theta)$$

Dirichlet problem:

Neumann problem:

---S

$$U^{I} + U^{S} = 0, \quad at \quad r = a \qquad \qquad \frac{\partial U^{I}}{\partial r} + \frac{\partial U^{S}}{\partial r} = 0, \quad at \quad r = a$$
$$A_{l} = -U_{0}(2l+1)i^{l} \frac{j_{l}(ka)}{h_{l}(ka)} \qquad \qquad A_{l} = -U_{0}(2l+1)i^{l} \frac{lj_{l-1}(ka) - (l+1)j_{l+1}(ka)}{lh_{l-1}(ka) - (l+1)h_{l+1}(ka)}$$

 \dot{J}_l **Spherical Bessel function** P_l Legendre function Spherical Hankel function h_l

Compare the results for Dirichlet problem

$$k = 10, U_0 = 1, R = 1, \vec{a} = \{1; 0; 0\}$$

BEM solution

OXY plane

Analytical solution

Compare the results for Neumann problem

 $k = 10, U_0 = 1, R = 1, \vec{a} = \{1; 0; 0\}$

BEM solution

Analytical solution

OXY plane

Polar plots

$$k = 10, U_0 = 1, R = 1, \vec{a} = \{1; 0; 0\}$$

OXY plane

Simulation for prototype of Launch Vehicle

CPU Time

Pressure plot

19

Conclusions

- Successful validation of the BEM++ open source library on test case «Sphere»
- •The pressure error is less than 5 % compared to analytical solution
- Shared memory technology restricts efficiency of solver: sufficiently time of computation for industrials problems with large meshes is possible for low frequencies (~100 Hz)