Joining Dictionaries and Word Embeddings for Ontology Induction

Dmitry Ustalov

Krasovskii Institute of Mathematics and Mechanics

December 1, 2016
Introduction

Definition

A **lexical ontology** (or a **thesaurus**) is a lexical database that groups the words into the sets of synonyms called synsets or concepts, and records a number of semantic relations between these concepts.

Thesauri are widely used for addressing different NLP problems:

- word sense disambiguation;
- document classification;
- dialogue systems, etc.

Prominent thesauri: WordNet, BabelNet, RussNet, RuThes.

The Problem

Currently, there is no WordNet-like thesaurus for Russian being available under a libre license.
The present study has been conducted within the Yet Another RussNet project.

The Goal

To develop means for ontology induction from unstructured data using both automatic methods and crowdsourcing.

Objectives:

- to discover the concepts (also called the synsets);
- to establish relations between them;
- to evaluate them.

The Approach

Principles

- Re-using the existing resources.
- Minimal efforts from the humans.
- Focusing on nouns, is-a relations, and domain ontologies.
Openly available synonym dictionaries:
- the Russian Wiktionary (84,625 pairs);
- the Abramov’s dictionary (501,612 pairs);
- the Universal Dictionary of Concepts (21,657 pairs).

Constructing an undirected graph \(G = (V, E) \), where
- \(V \) is the set of the words;
- \((v, u) \in E \iff \) the words \(v \in V \) and \(u \in V \) are synonyms.

Assumption: cliques in \(G \) form the synsets.

Challenges
- The clique problem is NP-complete.
- The phenomenon of polysemy.
Construct an ego-network \(Ego(v) \) for \(v \in V \) and exclude \(v \).

Cluster \(Ego(v) \) using Chinese Whispers.

Reconstruct and disambiguate the global graph \(G \).

Cluster \(G \) using Chinese Whispers.
Gold Standard: RuThes-lite 2.0.

Metrics: pairwise IR metrics and V-measure.

<table>
<thead>
<tr>
<th>Method</th>
<th># sets</th>
<th>Pr</th>
<th>Re</th>
<th>F$_1$-score</th>
<th>V-measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chinese Whispers</td>
<td>16 063</td>
<td>0.135</td>
<td>0.022</td>
<td>0.038</td>
<td>0.866</td>
</tr>
<tr>
<td>MaxMax</td>
<td>16 870</td>
<td>0.181</td>
<td>0.004</td>
<td>0.007</td>
<td>0.835</td>
</tr>
<tr>
<td>This</td>
<td>5 984</td>
<td>0.193</td>
<td>0.039</td>
<td>0.065</td>
<td>0.860</td>
</tr>
</tbody>
</table>

Examples

- {зелёный, неспелый, недозрелый, ...}
- {зелёный, юный, молодой, ...}
- {билет, купюра, банкнота, ...}
- {билет, свидетельство, удостоверение, ...}
Definition

Hyponymy and *hypernymy* are asymmetric semantic relations that connect the more specific term (the hyponym) to the more general term (the hypernym).

The *is-a* relation: *cat* $\xrightarrow{is-a}$ *animal* (*genus* and *species* in biology).

Challenges

- Availability of dictionaries.
- Relations between the synsets needed.

Idea: transform the \vec{x} embedding into its hypernym embedding \vec{y} and use these projections for connecting the synsets.
Embeddings: 100 dimensions, skip-gram, 13 billion words corpus.

Baseline (Fu et al., 2014)

\[
\Phi^* = \arg\min_{\Phi} \frac{1}{N} \sum_{(\mathbf{x}, \mathbf{y})} \|\mathbf{x}\Phi - \mathbf{y}\|^2
\]

Regularization (weighted by \(\lambda\))

- hyponym \(\mathbf{x}\): \(\lambda \sum \mathbf{x} (\mathbf{x}\Phi\Phi \cdot \mathbf{x})^2\)
- synonym \(\mathbf{z}\) of \(\mathbf{x}\): \(\lambda \sum_{(\mathbf{x}, \mathbf{z})} (\mathbf{x}\Phi\Phi \cdot \mathbf{z})^2\)

Training set: 21 997 pairs; **test set:** 10 811 pairs; \(k\)-means clustering; \(hit@10 \approx 0.37\).
So far, the relations correspond to individual words. However, now we have nearest neighbours $\text{NN}(\vec{x})$ for the embedding x corresponding to the word x.

Heuristic

1. Compute the matchings $C(s) = \arg \max_{g \in |V| \setminus \{s\}} \left| g \cap \bigcup_{x \in s} \text{NN}(\vec{x} \Phi^*) \right|$ for each synset s.

2. Connect the synset s with $C(s)$.

Looking ahead, the performance of this heuristic combined with projection learning is not impressive, but the baseline is still needed.
A candidate relation is said to be correct \(\iff \) there exists a directed path from the hyponym concept to the hypernym concept in RuThes-lite 2.0.

<table>
<thead>
<tr>
<th>Method</th>
<th># candidates</th>
<th># correct</th>
</tr>
</thead>
<tbody>
<tr>
<td>Russian Wiktionary</td>
<td>1627</td>
<td>113</td>
</tr>
<tr>
<td>Projection Learning</td>
<td>3918</td>
<td>133</td>
</tr>
</tbody>
</table>

Examples

- \{атлет, силач, ...\} \rightarrow \{личность, человек\}
- \{преграда, препона, ...\} \rightarrow \{препятствие, трудность\}
- \{наводнение, потоп, ...\} \rightarrow \{злосчастье, катаклизм\}
Conclusion

- An ontology induction approach utilizing both dictionaries and word embeddings has been described and preliminary evaluated.
- Further studies should be primarily focused on improving the relation establishment approach.

Open Source Software

- https://github.com/dustalov/concept-discovery
- https://github.com/dustalov/projlearn
Thank You!

Dmitry Ustalov

LinkedIn: https://linkedin.com/in/ustalov
Email: dau@imm.uran.ru

The reported study was funded by Russian Foundation for Basic Research according to the research project № 16-37-00354 мол_а “Adaptive Crowdsourcing Methods for Linguistic Resources”. This work was supported by the Russian Foundation for the Humanities project № 13-04-12020 “New Open Electronic Thesaurus for Russian” and project № 16-04-12019 “RussNet and YARN thesauri integration”. The present work is also supported by a short-term grant provided by the Deutscher Akademischer Austauschdienst.