

Transfer Learning for Morphological Tagging in Russian

Ivan Andrianov Vladimir Mayorov

ISP RAS Open 2017

Morphological tagging task

Assign a morphological tag to each word with respect to its context

	Мама	была	очень	рада
	Mom	was	very	glad
Part-of-speech	Noun	Verb	Adverb	Adjective
Case	Nominative			—
Number	Singular	Singular		Singular
Gender	Feminine	Feminine		Feminine
Animacy	Animated			
Shortness				Short
Tense		Past		
Mode		Indicative		

Morphologically annotated corpora for Russian before 2017

- There is no such thing as *Russian morphology*
- Linguists do not agree on, for example, how many cases do we have in Russian: 6 or 8
- Machine learning methods require unified tag sets to be properly trained on all data

	Tokens	PoS	Morph.
Ruscorpora	1.3 M	14	1321
SynTagRus ¹	1.1 M	12	459
SynTagRus UD ¹	1.0 M	17	700

MorphoRuEval-2017

- Shared task for Russian morphological tagging
- Introduced 4 new* corpora with unified tag sets
- Best participants employed the only one as joint training performed worse

Source: https://imgs.xkcd.com/comics/standards.png

Morphologically annotated corpora for Russian after 2017

	Tokens	PoS	Morph.
Ruscorpora	1.3 M	14	1321
SynTagRus ¹	1.1 M	12	459
SynTagRus UD ¹	1.0 M	17	700
MorphoRuEval GICR	1.1 M	13	303
MorphoRuEval SynTagRus ¹	0.9 M	13	250
MorphoRuEval OpenCorpora	0.5 M	14	397*
MorphoRuEval RNC	1.35 M	15	2146*

Training against incompatible tag sets

- We have to have a separate classifier for each tag set but what about reusing features?
- Neural networks are known to be good at learning feature representations:
 - We can employ recurrent neural networks to construct feature representation of a word with respect to both its left and right contexts
 - To do this we additionally need a word embedding model: word2vec or fasttext

Ensemble transfer learning NN architecture

Experiments: «Classic» corpora

 Averaged measures of 5 random holdouts (90% / 10%) on target corpus

target	SynTagRus UD		SynTagRus		Ruscorpora	
subsid.	Ø	RNC	Ø	RNC	Ø	STR
$Full_{word}$	92.42	93.35	93.32	93.96	92.04	92.78
Full _{sent}	35.07	38.97	39.94	43.68	42.81	45.22
POS_{word}	97.37	97.68	97.68	97.91	97.38	97.66
POS _{sent}	65.50	68.73	68.81	71.42	70.32	72.69
$POSF_{_1}$	86.08	87.15	86.04	86.96	92.99	93.46

Experiments: MorphoRuEval

Testing on MorphoRuEval gold data

	News		Social media		Fiction		Altogether	
	Acc word	Acc sent	Acc word	Acc sent	Acc word	Acc sent	Acc word	Acc sent
GICR	92.20	47.21	89.86	54.58	90.77	48.48	90.97	50.76
-RNC	<u>94.35</u>	<u>56.98</u>	91.02	57.57	92.11	53.55	92.54	56.21
All	94.23	56.42	<u>91.33</u>	<u>60.21</u>	<u>92.63</u>	<u>55.08</u>	<u>92.77</u>	<u>57.65</u>
MSU-1	93.71	64.80	92.29	65.85	94.16	65.23	93.39	65.29
IQMEN	93.99	63.13	92.39	64.08	92.87	60.91	93.08	62.71
Sagteam	93.35	55.03	92.42	63.56	92.16	56.60	92.64	58.40

Conclusions

- Unification of morphological tag sets by hand is a labour-intensive and error-prone task
- Transfer learning improves quality consistently for all datasets by incorporating knowledge from subsidiary corpora
- fasttext word embedding model has a better sense of morphology than word2vec one thanks to its awareness of word character composition
- Results will be available at Texterra website

Thanks for your attention. Any questions?