
Scalable framework for binary code comparison*

Hayk Aslanyan, Arutyun Avetisyan, Mariam Arutunian, Grigor Keropyan, Shamil

Kurmangaleev, Vahagn Vardanyan

(ISP RAS)

Ivannikov ISPRAS Open Conference 2017

hayk@ispras.ru

*The paper is supported by RFBR grant 15-07-07541



Problem definition

Develop a tool for binary file comparison

Requirements:

• High accuracy

• Overcome instruction reordering

• Overcome register name changing

• Ability to analyze binaries from different architectures (x86, x86-64, ARM, 

MIPS, PPC)

• Scalable (ability to analyze large binary files)



Use Cases

• Detect programmatic changes between two binaries

• Find old versions of statically linked libraries to prevent using well-known bugs

• Protection of author rights



Related work

• BMAT

• BinDiff

• DarunGrim2 

• BinHunt



Tool architecture



Stage 1

New binary

Assembler

REIL code

PDGs and CG

Ida Pro

Binnavi

Save in database

Old binary

Assembler

REIL code

PDGs and CG

Save in database



REIL (Reverse Engineering Intermediate language)

• Platform independent

• 17 simple instructions (and, add, ldm, stm…)

• No side effects



Program Dependence Graph (PDG, example)



Stage 2

Heuristics

Detect similarity based on maximum subgraph detection



𝑧0 = 𝑡𝑜𝑝𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙𝑜𝑟𝑑𝑒𝑟(𝑠𝑟𝑐 𝑒 ),
𝑧1 = 𝑖𝑛𝑑𝑒𝑔𝑟𝑒𝑒(𝑠𝑟𝑐(𝑒)),

𝑧2 = 𝑜𝑢𝑡𝑑𝑒𝑔𝑟𝑒𝑒 𝑠𝑟𝑐 𝑒 ,

𝑧3 = 𝑖𝑛𝑑𝑒𝑔𝑟𝑒𝑒(𝑑𝑒𝑠𝑡(𝑒)),
𝑧4 = 𝑜𝑢𝑡𝑑𝑒𝑔𝑟𝑒𝑒(𝑑𝑒𝑠𝑡(𝑒))

𝑒 ∈ 𝐸𝑑𝑔𝑒𝑠(𝐺)

hash(e) = 𝑧0+ 𝑧1 2 + 𝑧2 3 + 𝑧3 5 + 𝑧4 7

 

𝑒 ∈𝐸𝑑𝑔𝑒𝑠(𝐺𝑟𝑎𝑝ℎ)

1

ℎ𝑎𝑠ℎ(𝑒)

10

MD-index



Stage 2 (Heuristics)

1. Match functions based on hash of the original raw function bytes

2. Match CGs edges based on their source and target function's PDGs MD indices

3. Match functions based on a hash of the CG edges with MD-index calculation of destination and 

source vertices neighbors

4. Match functions based on a MD-index hash of the PDGs edges

5. Match functions based on a hash of the PDGs nodes (considers data dependencies between PDG 

instructions to group nodes, computes hash for every group and combines them to final hash)

6. Match functions based on based on a prime signature matching of original PDGs instructions 

(assign prime number to each instruction and then compute product of assigned primes for entire 

function)



Stage 2 (Maximum common subgraph)

1. For each matched pair of CGs vertices consider their predecessors (successors) : P1 (S1) and P2 

(S2)

2. For all pairs of vertices from P1 (S1) and P2 (S2) detect maximum common subgraphs and 

construct matrix from matched parts

3. Apply Hungarian algorithm on the matrix for finding the best correspondence of PDGs

4. Repeat 1-3 steps until there are not considered pairs of matched vertices



13

Result demonstration



Results sequential version

Tests are performed on 3.3GHz processor with 4 physical cores

Test names
Versions Sizes (MB) Functions’ count Matching time 

(sec.)

Matched pairs 

(count)old new old new old new

python 3.5.1 3.5.2 12 12 3944 3951 55 3944

php 7.0.5 7.0.6 29 29 8287 8292 99 8287

libxml2 2.9.2 2.9.3 5.4 5.4 2584 2603 20 2584

openssl 1.0.1r 1.0.1s 2.8 2.9 5395 5430 47 5395

openssl 1.0.1f 1.0.1s 2.2 2.9 5414 5430 48 5414

rsync 3.0.9 3.1.1 1.6 1.8 599 636 8 599

gcc 4.9.0 5.4.0 3.2 3.5 1094 1145 12 1094

git 2.6.0 2.9.5 9.4 9.8 3335 3471 32 3334



Comparison with BinDiff

Test names
Versions BinDiff results Our results Common 

partold new Matched pairs False positives Matched pairs False positives

python 3.5.1 3.5.2 3931 36 3944 8 3895

php 7.0.5 7.0.6 8287 16 8287 9 8271

libxml2 2.9.2 2.9.3 2581 4 2584 3 2577

openssl 1.0.1r 1.0.1s 5303 6 5395 6 5373

openssl 1.0.1f 1.0.1s 5413 108 5414 27 5305

rsync 3.0.9 3.1.1 569 148 599 79 420

gcc 4.9.0 5.4.0 1068 208 1094 79 860

git 2.6.0 2.9.5 3335 350 3334 68 2984



Comparison of binaries, which are generated from different compilers

Compiler version

Programs

python openssl postgresql libxml php

gcc 4.8 vs 5.4.0 88.5% 83.5% 88.9% 88.9% 89.4%

gcc 4.8 vs 7.2.0 99% 92% 99.6% 92.6% 99.6%

gcc 5.4 vs 7.2.0 88.6% 88.7% 92% 95% 89%

clang 5.0 vs gcc 4.8.0 99% 90% 99.7% 70% 99%

16



Result summary 
• Comparison of sequential versions which are compiled with the same compile 

options, true positives > 95%

• Comparison of sequential versions which are compiled with O2 and O3 options, 

true positives > 90%

• Comparison of sequential versions which are compiled with gcc and clang (linux) 

with the same option, true positives > 80%

• Comparison of sequential versions which are compiled with O0 and O3 options, 

true positives < 30%

• Comparison of sequential versions which are compiled in windows and linux –

true positives < 30%

17



Future work

• Detection of old versions of statically linked libraries in binaries

• Mapping of binary to source code

• Reduce false positives



Thank you!


