
Dynamic Diluted Taint 
Analysis for Evaluating 

Detected Policy Violations 
Maksim Bakulin



Dynamic taint analysis
3 set of rules:

1. When to mark data as tainted.
2. How to propagate tainted data during the execution
3. When to raise a warning

2



Existing dynamic taint analysis systems
● ARGOS - manual instrumentation. Guest system is used as a honeypot.
● DECAF - TCG-level instrumentation.
● PANDA - Intermediate and helper code is translated to LLVM bitcode and the 

result is instrumented. 
● TaintBosch

3



Typical causes of under- and overtainting
● Address dependencies
● Control flow dependencies
● One-way functions
● Incorrect taint propagation for some instructions

4



Fixed overtaint and undertaint causes in DECAF
1. DMA transactions
2. SYSENTER, SYSEXIT, IRETD instructions
3. SETcc
4. SBB Reg, Reg
5. OR and AND instructions (Fixed in newer version of DECAF)
6. Data transfer through floating point registers. TODO: XMM registers

Even after the fixes, warnings for benign files were sometimes triggered

5



Symbolic execution?
Idea: build path predicate during the execution, combine with security predicate 
and use solver to perform checks when symbolic data reaches EIP or is used as 
code

+ More detailed than dynamic taint analysis
+ Potentially lower number of false positives
- Much slower
- Solver is not always capable of providing the solution

6



Diluted taint: middle ground between regular taint 
and symbolic execution
● Each tainted byte contains a value, that represents its threat
● Data straight from the source has the highest value (0xFF)
● Each operation between tainted and untainted data results in a lower taint 

value. This reflects the idea that an attacker has less control over the result
● When a warning is raised, taint value is used to estimate the potential threat 

of a found detection
● Lower values (0x01) are used for results, that are affected by input, but do not 

possess major threat, e.g. sign-extended higher parts or shift operations, 
when shift count is tainted

7



Dilute function

8

1. If taint values are equal, attacker has equal control over the variables, taint 
value is preserved.

2. If one value is more tainted than the other, the maximum is decreased by one
3. If taint value is already 1, it is not decreased further



Diluted taint example

9

Trace Taint of AL after instruction

MOV EAX, DWORD PTR[X]
ADD EAX, 10
SUB EAX, EBX
MOV DWORD PTR[Y], EAX
XOR EAX, EAX
...
MOV EBX, DRORD PTR[Y]
...
MOV EAX, EBX

0xFF
0xFE
0xFD
0xFD
0

0

0xFD



Detection results
Application Behaviour Max EIP taint Max instruction taint

Notepad++ calc.exe startup 0xFF 0xFF

AllPlayer calc.exe startup 0 (0xFF*) 0 (0xFF*)

Calavera calc.exe startup 0xFF 0xFF

AlReader calc.exe startup 0xFF 0xFF

Adobe 9 Application crash 0xFF 0xFF

Adobe 11 benign 1 Normal execution 0xd0 0xd0

Adobe 11 benign 2 Normal execution 0x01 0x01

* After manual fix of undertainting due to address dependencies 10



Slowdown

Execution mode Taint Files? XP, s PNG, s x264, s

Native - - 7 22

QEMU - 43 68 508

Regular taint
- 124 423 2259

+ - 435 2393

Diluted taint
- 150 503 2824

+ - 558 3802

11



Problems
● Not applicable to malicious programs
● Byte-level granularity causes problems with shift operations
● One instruction can cause stronger taint decrease than intended due to 

TCG-level instrumentation.

12



Future work
● Detecting sensitive data leaks?
● More penalty for complex operations (multiplication, division, floating point)
● Applying the concept to address dependencies: use the highest bit as flag to 

show the source of the taint
● Implementing (diluted) taint propagation through XMM registers and for 

x86-64 guest

13



Questions?

14


