
Applying GCC-based Address Sanitizer
to Tizen OS

Vycheslav Barinov

2017-12-01

Samsung R&D Institute, Russia Page 2

Outline

1 IntroductionIntroduction
Address SanitizerAddress Sanitizer
TizenTizen
ProblemProblem

2 Building sanitized TizenBuilding sanitized Tizen
Integration approachIntegration approach
CompilerCompiler
Build systemBuild system
Build accelerationBuild acceleration

3 Running sanitized TizenRunning sanitized Tizen
Running on deviceRunning on device
Binary sizeBinary size
RAM usageRAM usage
UX improvementsUX improvements

4 Other issuesOther issues

5 ResultsResults

Samsung R&D Institute, Russia Page 3

IntroductionIntroduction

1 IntroductionIntroduction
Address SanitizerAddress Sanitizer
TizenTizen
ProblemProblem

2 Building sanitized TizenBuilding sanitized Tizen

3 Running sanitized TizenRunning sanitized Tizen

4 Other issuesOther issues

5 ResultsResults

Samsung R&D Institute, Russia Page 4

Address Sanitizer

Definition

Address Sanitizer (ASan) is a fast memory error detector. It finds use-after-free and
heap,stack,global-buffer overflow bugs in C/C++ programs.

Structure

Address Sanitizer consists of two major parts

I Compiler internal part

I Run-time support library libasan.so

Pros and cons
I Requires recompilation

I Much faster than Valgrind (×2 − × 3 overhead)

Samsung R&D Institute, Russia Page 5

Tizen

OS

Tizen is an open source operating system based on the Linux kernel and the GNU C Library
implementing the Linux API.

Toolchain
I Linaro GCC

I GNU Glibc

I GNU Binutils

Package management

Tizen uses rpm as package manager and OBS to build packages.

Applicable software

Tizen OS contains lots of code in C/C++ languages which are known to have issues which
can’t be detected during compilation stage but can affect resulting application. Sanitizer is the
tool for issues detection during runtime.

Samsung R&D Institute, Russia Page 6

Problem statement

Background

Address Sanitizer investigation in SRR started in 2013, after several years of technology
stabilizing it was applied to several applications.
The investigation of ASan applicability to Tizen apps started in 2015 (the Article [22] has been
prepared).
After we ensured that ASan could be applied to Tizen applications the idea extended into full
firmware sanitization.

Project target

Build every Tizen binary with Address Sanitizer and create a ”mirror” firmware fully equal to
plain Tizen, but fully sanitized.

Additional targets
I Check existing code and report to maintainers

I Create tooling for ASan in Tizen toolchain

I Prepare full documentation set

Samsung R&D Institute, Russia Page 7

Building sanitized TizenBuilding sanitized Tizen

1 IntroductionIntroduction

2 Building sanitized TizenBuilding sanitized Tizen
Integration approachIntegration approach
CompilerCompiler
Build systemBuild system
Build accelerationBuild acceleration

3 Running sanitized TizenRunning sanitized Tizen

4 Other issuesOther issues

5 ResultsResults

Samsung R&D Institute, Russia Page 8

Integration steps

1. Build GCC with ASan support

2. Integrate with OBS build

3. Prevent build from failing all the time

4. Enable build acceleration with ASan

5. Run on device

6. Add UI

Samsung R&D Institute, Russia Page 9

GCC Build

Introducing compiler feature

Tizen is locked to certain toolchain build, merge windows are tied to release time frames.
Minor updates are possible only if they do not require any changes to non-sanitized builds.

Approach
I Enable build of ASan infrastructure

I Create new rpm-package with libasan.so

I Test compiler with and without the package

I Make full build of staging project

GCC sanitization

Should we perform sanitized bootstrap --with-build-config=bootstrap-asan or not?
Our decision: both.

I Sanitized GCC in internal staging project

I Non-sanitized GCC in external “release” project

Samsung R&D Institute, Russia Page 10

OBS Integration

Build procedure

I Each build is performed in isolated container (qemu-kvm)

I Each package build results into rpm (or several ones)

I rpm’s joined into projects

I Each project is configured separately and has common metadata

Naive approach

Project has special configuration macro Optflags which contains compiler flags applied to
every build in scope of this project.

Issues
I Not all packages are built using GNU Autotools or CMake

I Not all packages do honor Optflags

I libtool

Working approach

Custom compiler wrapper with fine tuning possibility we named gcc-force-options

Samsung R&D Institute, Russia Page 11

OBS Integration

ASan environment in container

Each build container for rpm package is create right before the build start so the ASan
environment must be set up together with it. At least the following steps are needed:

I Install libasan.so
Done via project config and Preinstall

I Add libasan.so into LD PRELOAD

Done via creation of aux package with right post-install script

I Provide ASAN OPTIONS

Done via run-time part patch. Our libasan.so reads an option file /ASAN OPTIONS

I Collect ASan logs after build is finished
Done via additional rpm scripts

ASan build influence

Running all the tools under Address Sanitizer usually causes two main issues:

I Memory errors caught by ASan with following failure
Resolved via recovery mode

I configure/cmake failures due to unexpected ASan output
Resolved via output redirection

Samsung R&D Institute, Russia Page 12

Build acceleration

Reason

There is a lot of hardware targets for Tizen, we build at least i586, x86 64, armv7l, aarch64
and mips and qemu-user is used to run the target binaries during build.
Since qemu-user is rather slow, it’s better to use cross-compiler and set of other cross-tools.

Implementation

It’s possible to create and use cross-
x86 64-to-armv7l toolchain, but its not
possible e.g. for m4 or grep which are
widely used in build. The solution is to
replace armv7l tools to x86 64 ones right
inside the container.

1. Pack x86 64 binaries into
qemu-accel.rpm

2. Move them into special /emul dir

3. Use patchelf to update library
paths

4. Add qemu-arm-binfmt wrapper

5. Install package to every buildroot

Structure

Build container

qemu-accel

sed grep

sed.armv7l grep.armv7l

sed.x86 64 grep.x86 64

Figure: qemu-accel structure

Samsung R&D Institute, Russia Page 13

Build acceleration

Pros
I Huge speed-up (up to ×6 times)

glibc configure time for armv7l

Mode Time
No qemu-accel 1m25s
qemu-accel 0m13s

I Easy to switch off (remove /emul)

I Ease to maintain (single rpm)

Cons
I Rather large (had to separate)

Added:
I python-accel
I clang-accel

I Requires efforts for hacks

I Not very clear for understanding
We regularly get questions on
qemu-accel internals in a form
“Suddenly everything got broken!”.

Structure

.../build # sh configure qemu-arm-binfmt

qemu-arm /emul

ld-linux-x86 64.so

cc1plus

libmpc.so

libasan.so

ld-linux.so.2

conftest

libdl.so

libasan.so

Figure: Accelerated buildroot structure

Samsung R&D Institute, Russia Page 14

ASan build setup

OBS setup

To enable ASan build:
I Add ASan to project config� �

Preinstall: asan-force-options
%define asan 1
Macros:
%asan 1
:Macros� �

I Switch off Thumb for armv7l build (recommended)a� �
Optflags: armv7l ... -marm -fno-omit-frame-pointer� �

I Wait for until packages are built

aASan fast unwinder (fp-based) doesn’t work in Thumb mode

Results
I Build firmware after package build is finished

I Scan build logs for errors found by ASan

Structure

Build container

Project config

asan-force-options

libasan.so

/ASAN OPTIONS

qemu-accel

libasan.so

armv7l

x86 64

(/emul)

Figure: Build container in Tizen OBS

Samsung R&D Institute, Russia Page 15

Running sanitized TizenRunning sanitized Tizen

1 IntroductionIntroduction

2 Building sanitized TizenBuilding sanitized Tizen

3 Running sanitized TizenRunning sanitized Tizen
Running on deviceRunning on device
Binary sizeBinary size
RAM usageRAM usage
UX improvementsUX improvements

4 Other issuesOther issues

5 ResultsResults

Samsung R&D Institute, Russia Page 16

Running on device

Goals
I Short term

Boot target device with fully sanitized image and make sure that it works properly:
I Launch each application manually and make sure that they work properly (OK, just don’t fail

due to ASan)

I Long term
Establish regular builds and perform regular testing of sanitized images:

I Run automated Tizen testsuite on sanitized image regulary
I Integrate ASan into Tizen images verification process

Challenges
I Sanitized image size

Size of sanitized image is much bigger then size of regular one

I Memory consumption
Sanitized image consumes much more physical memory then regular one

I Bugs in ASan itself
ASan is pretty stable nowadays, we still hit on bugs in some corner cases

Samsung R&D Institute, Russia Page 17

Sanitized image size

Firmware size

Sanitized image is much bigger then regular one:

I Original size (compressed tarball): 327.6 MB

I Sanitized size (compressed tarball): 456.4 MB

I Difference: 128.8 MB (40%)

Reason: package size bloating

Section Regular (MB) Sanitized (MB) Difference (MB) Difference (%)
.text 29.3 108.1 78.8 268%
.rodata 4.4 19.0 14.6 332%
.data 1.8 9.7 8.1 450%
...
Total: 39 146 107 274%

Table: Binary size comparison for libchromium.so

Samsung R&D Institute, Russia Page 18

Image size reduction

Recipes
I Optimize for code size

CFLAGS+="-Os"

I Do not instrument global variables
CFLAGS+="--param asan-globals=0"

I Use outline instrumentation
CFLAGS+="--param asan-instrumentation-with-call-threshold=0"

Mode .text(MB) .rodata (MB) .data (MB) Total (MB)
Normal code 29.3 4.4 1.8 39
Inline instrumentation 108.1 19.0 9.7 146
Increase vs normal 268% 332% 450% 274%
Without globals 98.6 4.4 1.8 109
Increase vs normal 248% 0% 0% 179%
Outline instrumentation 62.9 19.0 9.7 101
Increase vs normal 116% 332% 420% 158%

Table: Binary size comparison with different options for libchromium.so

Samsung R&D Institute, Russia Page 19

Memory consumption

Memory overhead sources
I Allocator quarantine

Can be tuned by quarantine size mb runtime option
I ASan redzones

Can be reduced by not instrumenting some parts of applications (e.g. global variables)
I ASan shadow

Can be reduced by using more compact shadow (e.g. 16:1)
I ASan fake stacks

Can be eliminated by disabling stack-use-after-return detection
I Code and data bloating

Can be reduced by optimizing for code size (-Os, --param

asan-instrumentation-with-call-threshold=0)
I Allocator implementation

Sanitizer allocator is tuned for speed and scalability. Yet it can be tuned to be less
memory consuming

Samsung R&D Institute, Russia Page 20

Memory consumption

Mitigating OOM killer in Tizen

I Reduce quarantine size to minimally possible value (1MB in our case)
In theory this can lead to missing some use-after-free bugs, but we haven’t seen this in
practice

I Disable stack-use-after-return detection
Use-after-return mode is very memory consuming (up to ×2 additional memory overhead)

I Tweak ASan allocator

I ASan’s primary allocator divides memory chunks in size classes (52 of them)
I For each size class except the largest one ASan mmaps 1MB of memory on demand (these regions

are called memory regions) and uses it as banks of chunks. For the last class ASan just uses
mmap.

I For most applications 1MB for each memory region is too wasteful so region size was reduced to
128KB. This gave additional 100MB of memory footprint reduction.

I We also thougth about tweaking size classes number (reduce from 52 to, say, 40) but this didn’t
give us any noticable improvement

I NOTE: all these tweaks were performed for SanitizerAllocator32. The 64-bit
SanitizerAllocator64 uses completely different allocation strategy.

I Enable swapping

I Allows to run heavy applications like Tizen browser
I Makes sanitized image more stable

Samsung R&D Institute, Russia Page 21

UX improvements

Points
I Recovery mode

I Originally was a local patch, contributed upstream by Yuri Gribov
I Allows to find more bugs during one test cycle
I Available in GCC 6+

I Automatic /proc mounting

I Needed for systemd sanitization

I print cmdline runtime option
I Can be useful when debugging background processes

I libbacktrace separate debuginfo support [33]
I Greatly improves usability in stripped environment
I Patch is under review upstream

I Reading ASAN OPTIONS from file
I Makes ASan runtime setup more flexible in our environment

I SMACK support
I setxattr(2) is called to set SMACK label for logs and make them readable for user

I Various bugfixes e.g. wrong global variables alignment in sanitized binary [11]

Samsung R&D Institute, Russia Page 22

Resulting setup

Build container

Project config

asan-force-options

libasan.so

/ASAN OPTIONS

qemu-accel

libasan.so

armv7l

x86 64

(/emul)

Device

libasan.so

libbacktrace.a

/ASAN OPTIONS

Swap partition

Recovery mode

/proc mount

Tuned allocator

File logger

Figure: Resulting ASan setup in Tizen

Samsung R&D Institute, Russia Page 23

Other issuesOther issues

1 IntroductionIntroduction

2 Building sanitized TizenBuilding sanitized Tizen

3 Running sanitized TizenRunning sanitized Tizen

4 Other issuesOther issues

5 ResultsResults

Samsung R&D Institute, Russia Page 24

Source code issues

Build issues
I Static builds

Some binaries must be linked statically (e.g. initrd internals), they require additional
efforts to build. We either add custom build scripts or use non-sanitized version.

I Support tools like patchelf

Unfortunately patchelf is not perfect and sometimes corrupts binaries.

I Rebuild time
Any libsanitizer patch causes rebuilds of compiler, which causes rebuild of the whole
OS and takes lots of time.

Open-Source code issues
I Ancient bugs

Sometimes really old bugs are met, like bison bug [44] in unexpected places.

I Unexpected failures
Sometimes weird things happen, like one found in gzip.� �
[gzip_cv_underline=yes
AC_TRY_COMPILE([int foo() {return 0;}], [],

[$NM conftest.$OBJEXT | grep _foo >/dev/null 2>&1 || # _GLOBAL__sub_I_00099_0_foo
gzip_cv_underline=no])]� �

Samsung R&D Institute, Russia Page 25

Integration issues

OS integration issues
I systemd timeout

ASan gives certain performance penalty and some services get killed by systemd.

I systemd slice limits
Most services are in cgroup slices and some limits are too small for sanitized binaries.

Corporate issues
I Company size

Many teams work on Tizen in different ways and with different requirements and
development practices.

I Rules and processes
Corporate limitations do exist, so support different divisions and code open-sourcing is
not so easy.

Samsung R&D Institute, Russia Page 26

ResultsResults

1 IntroductionIntroduction

2 Building sanitized TizenBuilding sanitized Tizen

3 Running sanitized TizenRunning sanitized Tizen

4 Other issuesOther issues

5 ResultsResults

Samsung R&D Institute, Russia Page 27

Results

Short-term goals reached

After we enabled Address Sanitizer and were able to boot firmware we found 12 bugs
instantly:

I 1 SEGV type bug

I 2 stack-buffer-overflow type bugs

I 3 heap-buffer-overflow type bugs

I 1 global-buffer-overflow type bug

I 4 heap-use-after-free type bugs

I 1 stack-use-after-return type bug

And those were found just after running device and random clicking buttons in apps!
The bugs were fixed quickly by developers after they received ASan reports.

Long-term goals reached
I Regular build procedure of sanitized firmware established

I Sanitized images tested by QA team periodically

I Infrastructure prepared during ASan integration will be reused for other sanitizers

Samsung R&D Institute, Russia Page 28

Thank You!

Samsung R&D Institute, Russia Page 1

References

[1] GCC Bugzilla. Bug 81697 - incorrect asan global variables alignment on arm, 2017. URL
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=81697#add_commenthttps://gcc.gnu.org/bugzilla/show_bug.cgi?id=81697#add_comment.

[2] Yury Gribov, Maria Guseva, Andrey Ryabinin, JaeOok Kwon, SeungHoon Lee, HakBong
Lee, and ChungKi Woo. Fast memory debugger for large software projects, 2015. URL
http://injoit.org/index.php/j1/article/viewFile/231/184http://injoit.org/index.php/j1/article/viewFile/231/184.

[3] GCC Maillist. sanitizer/77631 - support separate debug info in libbacktrace, 2017. URL
https://gcc.gnu.org/ml/gcc-patches/2017-07/msg01958.htmlhttps://gcc.gnu.org/ml/gcc-patches/2017-07/msg01958.html.

[4] GNU Bison Maillist. grammar: fix memory access bug, 2017. URL
http://lists.gnu.org/archive/html/bison-patches/2017-07/msg00001.htmlhttp://lists.gnu.org/archive/html/bison-patches/2017-07/msg00001.html.

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=81697#add_comment
http://injoit.org/index.php/j1/article/viewFile/231/184
https://gcc.gnu.org/ml/gcc-patches/2017-07/msg01958.html
http://lists.gnu.org/archive/html/bison-patches/2017-07/msg00001.html

	Introduction
	Address Sanitizer
	Tizen
	Problem

	Building sanitized Tizen
	Integration approach
	Compiler
	Build system
	Build acceleration

	Running sanitized Tizen
	Running on device
	Binary size
	RAM usage
	UX improvements

	Other issues
	Results
	Appendix

