Distributed Generation of Mobile Call Graphs with DPLN Degree Distribution

Kyrylo Chykhradze Ivan Malyshev Denis Turdakov Anton Korshunov

Ivannikov Institute for System Programming of the RAS

Ivannikov ISPRAS Open, Moscow, 2017

Chykhradze et al.

Moscow, 2017

イロト イポト イヨト イヨト

Outline

- Motivation
- Introduction
- Background
- 4 Method
- **5** Evaluation
- 6 Conclusions

э

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Why do we need random graphs?

- One needs to test network analysis algorithms on huge graphs
- Modern networks reach several hundred million nodes
- Real data gathering requires huge time and resource costs; lack of datasets

・ロト ・ 日 ・ ・ ヨ ・ ・ ・ 日 ・ ・

Mobile Call Graphs (MCG):

- **nodes** mobile cell users
- edges interaction between users (calls, SMS, etc)
- edge weight number of calls or its duration

지 미 에 지 않아 지 말 에 다 하는 것을 수 있다.

Properties of MCG:

• Degree distribution

- either Power Law distribution: $P(d) \sim d^{-eta}$
- or Double Pareto LogNormal distribution: P(d) ~ DPLN(d, α, β, ν, τ)
- Weights
 - Good correlation between call duration and its amount
 - Distributed according to DPLN
- Clusters and Clustering
 - Heavy-tailed membership and community size distribution
 - High clustering coefficient

• Pareto:
$$f(x) = \begin{cases} rac{eta x_m^{lpha}}{x^{eta+1}} & x \geq x_m \\ 0 & x < x_m \end{cases}$$

• LogNormal: $X \sim LogN(\mu, \sigma^2) \Leftrightarrow \ln X \sim N(\mu, \sigma^2)$

Double Pareto LogNormal:

$$f(x,\alpha,\beta,\nu,\tau) = \frac{\alpha\beta}{\alpha+\beta} \left[e^{\alpha\nu+\alpha^{2}\tau^{2}/2} x^{-\alpha-1} \times F\left(\frac{\log x-\nu-\alpha\tau^{2}}{\tau}\right) + x^{\beta-1} e^{-\beta\tau+\beta^{2}\tau^{2}/2} F^{c}\left(\frac{\log x-\nu+\beta\tau^{2}}{\tau}\right) \right],$$

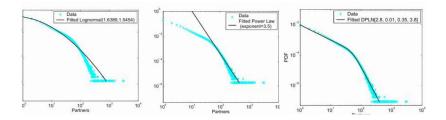
where F(x) - cdf of $\mathcal{N}(0,1)$, $F^{c}(x) = 1 - F(x)$

Chykhradze et al.

Moscow, 2017

イロト 不得下 イヨト イヨト 二日

DPLN-distribution in pictures¹:



¹M. Seshadr et al. "Mobile call graphs: beyond power-law and lognormal distribution"

Chykhradze et al.

Moscow, 2017

э

Devise a random graph generator which allows to generate:

- networks fulfilling main properties of the mobile networks (DPLN degree distribution, community structure, etc);
- large graphs in a reasonable time.

Background

Generators:

- GEDIS Studio Call Detail Record Generator²
- cdr-gen³
- Synthetic Call Detail Record generator using Spark⁴

Background

Random MCG models:

- Migration model⁵
- Treasure-Hunt⁶
- Lognormal multiplicative process⁷
- Real datasets:
 - Wu et al. dataset (SMS)⁸
 - VAST 2008 (cell interactions)⁹

7 Seshadri et al. "Mobile call graphs: beyond power-law and lognormal distributions"
8 http://www.pnas.org/content/107/44/18803.abstract
9 https://www.cs.umd.edu/hcil/VASTchallenge08
Chykhradze et al. Moscow, 2017

10 / 21

⁵Lambiotte et al. "Geographical dispersal of mobile communication networks"

 $^{^{6}\}mathrm{Nanavati}$ et al. "On the structural properties of massive telecom call graphs: findings and implications"

Proposed method

Main steps:

- Two heavy-tailed sequences generation (membership and community size distributions)
- Communities generation
- Edges generation

Proposed method

Phase 1: heavy-tailed sequences generation

Parameters:

- $\alpha, \beta, \gamma, \nu$
- X_{min}, X_{max}, Y_{min}, Y_{max}

• N

• Need to find C such that: $\int_{x_{min}}^{x_{max}} C \cdot f(x) dx = 1. \text{ In discrete}$ case: $C = \left(\sum_{x_{max}}^{x_{max}} f(x)\right)^{-1}$

•
$$\mathbb{E}(X) = \sum_{x} Cf(x) \cdot x$$

•
$$N_1 \cdot \mathbb{E}(X) = N_2 \cdot \mathbb{E}(Y)$$

 for each x ∈ [x_{min}, x_{max}] add to sequence list Cf(x) · N elements with value x:

イロト イロト イヨト イヨト

$$\bullet \underbrace{[10,9,9,\ldots,1,1,1]}_{N}$$

Chykhradze et al.

Moscow, 2017

3

Proposed method Phase 2: Communities generation

- d¹_i number of communities ith user belongs to. d²_j — size of jth community.
- from each sequence $[d_1, d_2, d_3, ...]$ we create $[d_1, d_1+d_2, d_1+d_2+d_3, ...]$

•
$$D_k^1 = \sum_{i=1}^k d_i^1$$
 $D_k^2 = \sum_{j=1}^k d_j^2$

•
$$M = N_1 \cdot D^1_{N_1}$$

- $x \sim u[1, D_{N_1}^1]$ $y \sim u[1, D_{N_2}^2]$
- $p: x \in (d_p^1, d_{p+1}^1]$ $q: y \in (d_q^2, d_{q+1}^2]$
- (*p*, *q*) user *p* belongs to community *q*

イロト 不得下 イヨト イヨト 二日

Proposed method

Phase 3: edges generation

Parameters:

- α, β, γ
- $\delta_{in}, \delta_{out}$

To choose node v according to $d + \delta$ ($v \sim d(v) + \delta$) in graph G(t) means: $P(v = v_i) = \frac{d(v_i) + \delta}{t + \delta \cdot n(t)}$, $d(v_i)$ is a degree of v_i and n(t) is a number of nodes at the time t.

- G_0 is a graph without edges with a single node; $t_0 = 0$
- At the time stemp *t* graph *G*(*t* + 1) is created:
 - 1 $P = \alpha$: $w \sim d_{in} + \delta_{in}$ new v; add $(v \rightarrow w)$
 - $\begin{array}{l} \textbf{2} \quad P = \beta: \ w \sim d_{in} + \delta_{in} \\ v \sim d_{out} + \delta_{out} \\ \text{add} \ (v \rightarrow w) \end{array}$
 - 3 $P = \gamma$: $v \sim d_{out} + \delta_{out}$ new w; add $(v \rightarrow w)$

Proposed method

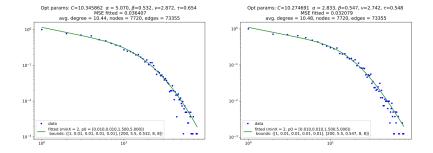
Phase 3: edges generation

Weights of generated edges could be:

- generated randomly from Power Law distribution;
- equal to number of common membership of two nodes;
- unspecified (unweighted case).

Accuracy Evaluation

Degree distribution



Chykhradze et al.

Moscow, 2017

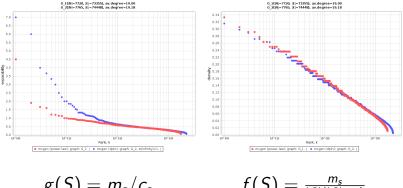
16 / 21

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Accuracy Evaluation

Density

Separability



$$g(S)=m_s/c_s$$

$$f(S) = \frac{m_s}{|S|(|S|-1)}$$

$$m_s = \sum_{i,j\in S} w_{ij}$$
 $c_S = \sum_{i\in S,j\in \overline{S}} w_{ij}$

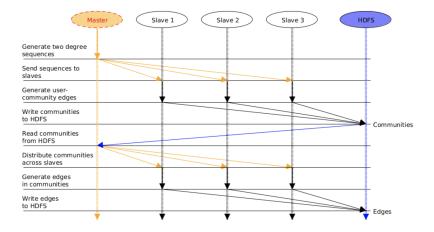
Chykhradze et al.

Moscow, 2017

17 / 21

æ

Performance Evaluation



Chykhradze et al.

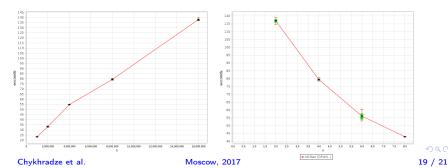
Moscow, 2017

18 / 21

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - の久⊘

Performance Evaluation

- For scalability by number of nodes (left) we used 4 Spark.2xlarge instances (64Gb, 8 CPUs) nodes.
- For scalability by number of slaves (right) we generated graph with $N = 8 \cdot 10^6$ on 4 Spark.xlarge instances (32Gb, 4 CPUS).



- Introduced new method for mobile call graph generation
- Method shows near-linear scalability both on the number of slaves and on the number of nodes
- Extended community statistics for weighted and directed case

(日) (同) (三) (三)

Questions? chykhradze@ispras.ru

Chykhradze et al.

Moscow, 2017

21 / 21

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - の久⊘