Reproducing Network Structure: a Comparative Study of Random Graph Generators

Mikhail Drobyshevskiy, Denis Turdakov and Sergey Kuznetsov

Ivannikov Institute for System Programming of the RAS, Moscow, Russia

November 30, 2017

ISPRAS

・ロト ・同ト ・ヨト ・ヨ

Agenda

Method and models

Experiments

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のQC

Agenda

Method and models

Experiments

Motivation for Random Graph Generators (RGG)

Network science:

- various graph domains: biological, social, citations, lexical, mobile calls, infrastructure, autonomous systems, etc
- many network mining tasks and network mining tools (e.g. community detection)

Problems solved with help of RGGs:

- significance testing
- scalability testing
- data anonymization

イロト イポト イヨト イヨト

- (古)

Classical RGG approach: extract graph properties, develop mathematical model which guarantees them

Problems of RGGs:

- although graph domains share some graph properties, each domain has its own specific ones
- no exhaustive list of all graph properties, some may be unknown

Our goal

Of our interest: universal generators of directed graphs similar to a given one

Good universal RGG follow 2 requirements on generated graphs:

- 1. Similarity to the original one in terms of manifold graph metrics
- 2. *Variability* wide enough to mimic natural diversity across a graph domain

Comparative study plan:

- select state-of-the-art universal RGGs
- compare them over various domains in terms of graph properties capturing capabilities

イロト イポト イヨト イヨト

Agenda

Method and models

Experiments

▲ロト▲聞ト▲臣ト▲臣ト 臣 のへの

Method

Similarity and variability estimation

- no universal graph similarity metric
- compare over several graph metrics (numeric and distributional)

Metrics:

- 1. Degree: degree distribution, assortativity
- 2. Triads: clustering coefficient, subgraph distribution
- 3. Distance: diameter, hop-plot

Dataset: 8 different domains, 1 graph per domain, moderate size (1K-100K nodes)

(日) (同) (三) (三)

Models selection

Criteria:

- 1. Model can be applied to an arbitrary directed graph without fitting its parameters
- 2. Availability of the algorithm implementation

Selected models:

- 1. (2010) Stochastic Kronecker Graphs (SKG)¹
- 2. (2016) GScaler²
- 3. (2017) Embedding based Random Graph Generator (ERGG)³

 $^{^1} J.$ Leskovec et al. "Kronecker graphs: An approach to modeling networks," Journal of Machine Learning Research, 11(Feb):985–1042, 2010

 $^{^2} J.$ Zhang and Y. Tay, "Gscaler: Synthetically scaling a given graph," in EDBT, 2016, pp. 53–64

 $^{^{3}}$ M. Drobyshevskiy, A. Korshunov, and D. Turdakov, "Learning and scaling directed networks via graph embedding," in Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Springer International Publishing, 2017 \approx

Agenda

Method and models

Experiments

▲ロト▲聞ト▲臣ト▲臣ト 臣 ののの

Degree distribution

Gscaler repeats DD almost perfectly, while ERGG reproduces form of DD not exactly but much closer to the original than SKG $\,$

SKG fails to capture high clustering, while Gscaler's and ERGG's results diverge much across domains

3-subgraphs are captured by ERGG and Gscaler in almost all domains

4 A

Distance

Similarity of hop-plots of generated graphs to the originals also varies for different domains Closest hop-plot reproduction corresponds to the closest CC

reproductions

Variability

top original variability

middle ERGG: similar variability in in-, out-DD, hop-plot, CC distribution and lower variance in 3-subgraph distribution

bottom GScaler: close to zero variability in DDs, 3-subgraph, and hop-plot

Conclusions

Work done

- Analysed the capability of RGGs (ERGG, Gscaler and SKG) to imitate a given graph from an *arbitrary* domain
- Compared *similarity* and *variability* of generated graphs in terms of various graph metrics

Resume

- SKG graphs are more similar to each other than to original rgaphs
- ► ERGG and Gscaler capture most of tested graph properties, although their accuracy varies at different domains

Practical recommendations

- Apply Gscaler for very close graph imitating, especially when degree correlations matter
- Apply ERGG for domain emulation and synthetic dataset representativity

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

Thanks for attention!

Drobyshevskiy, Turdakov, Kuznetsov ISPRAS OPEN 2017 **ISPRAS**

Dataset for similarity tests

domain, subdomain	graph	nodes	edges
bio, protein-protein in-	PPI ⁴	2239	6452
teractions			
social, trust network	Epinion ⁴	49288	487183
citations	CitHepTh ⁴	27770	352807
lexical, word adjacency	Words ⁵	7381	46281
mobile calls	WU ⁶	72146	100974
infrastructure	Airport ⁴	1574	28236
autonomous system,	JDK ⁴	6434	53892
software dependency			
social collaboration,	Enron ⁴	87273	321918
emails			

⁴http://konect.uni-koblenz.de/networks

⁵http://www.weizmann.ac.il/mcb/UriAlon/sites/mcb.UriAlon/files/ uploads/CollectionsOfComplexNetwroks/darwinbookinter_st.txt

⁶http://www.pnas.org/content/suppl/2010/10/15/1013140107.

DCSupplemental/SD02.txt

< □ > < □ > < □ > < □ >

Dataset for variability tests

Collection of twitter-ego networks⁷.

Selected were 15 graphs close in number of nodes ($|N| \in [170; 180]$) and number of edges ($|E| \in [2000; 3000]$).

⁷http://snap.stanford.edu/data/egonets-Twitter.html 🗇 > < 🗄 > < 🗄 > 🛬 🖉 🛇 ९. ९

Drobyshevskiy, Turdakov, Kuznetsov ISPRAS OPEN 2017