
Automation of device and machine development for QEMU*

Vasiliy Efimov <real@ispras.ru> (corresponding)
Aleksandr Bezzubikov <abezzubikov@ispras.ru>

Danila Bogomolov <bda@ispras.ru>
Oleg Goremykin <goremykin@ispras.ru>
Vartan Padaryan <vartan@ispras.ru>

Ivannikov Institute for System Programming of the RAS

2017 Ivannikov ISPRAS Open Conference, Moscow, 1st December
*This work is supported by RFBR, grant No 16-29-09632

1 / 32

The problem

Development of either device or machine model for QEMU is a time-consuming task.
Therefore, an automation is required.

Emulator/ Machine Device development Debug
Simulator composing automation Tools

GUI API GUI API
Simics + C++, Python . DML → C++ .
AMD SimNow + C++ . . .
gem5 . C++, Python . . .
OVPSim . C, TCL → C . TCL → C +
QEMU + C, CLI . . .

2 / 32

The goal

The goal is to automate the development of both device and machine for QEMU
emulator.

Objectives
analyse QEMU internals
search the workflow for stages to automate
develop a toolset automation
evaluate the toolset

3 / 32

Automation concepts

Automation concepts

Classic development workflow
QEMU Object Model (QOM)
Device modelling API
Machine composition API
Proposed workflow

4 / 32

Automation concepts

Classic development workflow

5 / 32

Automation concepts

QEMU Object Model (QOM)
object

machine
device

sys-bus-device
device

pci-device
cpu, ...

bus
PCI

PCIE
System
usb-bus, ...

irq
qemu:memory-region

OOP in C (like Gnome library‘s
gobject)
Hierarchy node is called a type
type = class + instance
class/instance
= structure (struct, C)
+ constructor (a callback, C)
object is a type that supports
properties to both class and instance.
a property is an opaque value
identified by a string and accessed
through set and get function.

6 / 32

Automation concepts

Device modelling API

Interface code is composed using finite set of API elements. Each the element has finite
set of parameters. Given those parameters, a draft with interface code stubs can be
generated for a device.

7 / 32

Automation concepts

Machine composition API (example)
/∗ d e v i c e i n s t a n c e c r e a t i o n ∗/
dev = qdev_create (parent_bus , QOM_TYPE_NAME) ;

/∗ s p e c i f i c a t i o n o f p r o p e r t i e s ∗/
object_property_set_TYPE (dev , PROP_VALUE, PROP_NAME, . . .) ;

/∗ d e v i c e i n s t a n c e " r e a l i z a t i o n " ∗/
qd e v_ i n i t_no f a i l (dev) ;

/∗ mapping o f r e g i s t e r s ∗/
sysbus_mmio_map (dev , REG_INDEX, REG_ADDRESS) ;

/∗ i n t e r r u p t l i n e s b i n d i n g ∗/
my_incoming_irq = qdev_get_gpio_in (dev , IN_IRQ_INDEX) ;
sysbus_connect_i rq (dev , OUT_IRQ_INDEX, ne ighbour_incoming_i rq) ;

8 / 32

Automation concepts

Machine composition API specifics

Machine content is described in a declarative way.
An object model is used for content description.
A complicated device interconnection is difficult to sense in form of code.

Therefore, the graphical editor was implemented. It represent a machine in a schematic
form. The editor generates a code for the machine draft.

9 / 32

Automation concepts

Proposed workflow

10 / 32

Developed toolset

Developed toolset

Toolset infrastructure
Settings format
Generator capabilities
Examples
GUI
Existing QEMU code feedback

11 / 32

Developed toolset

12 / 32

Developed toolset

Device draft generation capabilities

Device class Capabilities
Any QOM registration

VM state and property declaration
timers

character and block devices
network interface

System MMIO
bus PMIO
device in/out IRQ
PCI(E) BAR
device out IRQ (INTx)
function MSI(X)

identification information

13 / 32

Developed toolset

Fast Ethernet adapter draft generation settings example

ob j55 = PC IExp r e s sDe v i c eDe s c r i p t i o n (
name = "AM79C971" , # model name
vendor = "0x1022" , d e v i c e = "0x2000" , p c i_ c l a s s = "0x0200" ,
r e v i s i o n = 0x1 ,

subs y s = None , subsys_vendor = None ,
d i r e c t o r y = " net " , # d i r e c t o r y name
irq_num = 0x1 ,
mem_bar_num = 0x1 ,
nic_num = 0x1 ,
timer_num = 0x1 ,

msi_messages_num = 0 ,
char_num = 0 ,
block_num = 0
)

14 / 32

Developed toolset

15 / 32

Developed toolset

Machine content description
Node

BusNode
SystemBusNode
PCIExpressBusNode
[ISA, IDE, I2C]BusNode

DeviceNode
SystemBusDeviceNode
PCIExpressDeviceNode

IRQLine
IRQHub
MemoryNode

MemoryLeafNode
MemoryAliasNode
MemoryRAMNode
MemoryROMNode

This type hierarchy is based on
QOM.

IRQHub allows to deliver one
IRQ to many devices.

Most part of memory address
space is defined by devices
internally. But several kinds
of memory (like a RAM or a
simple ROM) have to be defined
explicitly. MemoryNode ancestors
are used for it.

16 / 32

Developed toolset

17 / 32

Developed toolset

Bus interconnection example in GUI

18 / 32

Developed toolset

IRQ line interconnection example in GUI

19 / 32

Developed toolset

Existing QEMU code feedback

Automatic header analysis
Inclusion graph (used to generate header
inclusions)
Preprocessor macros (used by both GUI and
generator core)

Heuristic based support for different QEMU
version.

A new value is propagated towards future
commits.
An old value is propagated:

1 towards past commits,
2 towards future commits.

During merging new values are chosen.
Given SHA1, the actual value can be obtained.

20 / 32

The toolset usage examples

The toolset usage examples

Intel Q35 chipset based PC
СISCO 2600 series router (C2621XM)

21 / 32

The toolset usage examples

Intel Q35 chipset based PC

There is another implementation in QEMU already. It is one of most complicated
machines in the emulator.
The goal of this experiment is to prove the proposed workflow correctness.
All requred devices are already present in QEMU.
Several old devices were updated using the toolset.

22 / 32

The toolset usage examples

Q35 machine scheme

23 / 32

The toolset usage examples

Evaluation*

Stage Files Lines Lines
touched inserted deleted

Preparation** 4 42 31
Generation 8 599 0
Implementation 5 162 93***
Total 12 803 31

*The measurements were made using git diff.
**A refactoring mostly.
***Note that amount of deleted lines is a measure of piece of generated code to be
adjusted.

24 / 32

The toolset usage examples

С2600 series router (C2621XM)

Based on Dynamips.
CPU PowerPC MPC860 presents in QEMU except for full system emulation
support.
Both machine and devices were implemented using the toolset (except for CPU).

25 / 32

The toolset usage examples

C2621XM router scheme

26 / 32

The toolset usage examples

Evaluation

Stage Files Lines Lines
touched inserted deleted

Preparation* 8 128 35
Generation 37 2186 0
Implementation 31 4747 419
Total 45 6642 35

*Memory management unit, CPU’s special registers and interrupt support, PCI
identifiers.

27 / 32

The toolset usage examples

Evaluation*

Device Configuration size Draft size
MPC860_IC 6 125
C2600_PCI_HOST 6 133
C2600_PCI 7 82
NS16552 7 181
C2600_IO_FPGA 8 137
CISCO_REMOTE 7 152
AM79C971 12 175

*The size is measured in lines.

28 / 32

Conclusion

Conclusion

Results
Future work

29 / 32

Conclusion

Results

The first stage of device and machine model development was automated using
the code draft generation toolset.
A generation configuration is wrtten in Python.
The size of resulting device draft is 11-25 times bigger than size of corresponding
configuration.
The GUI was implemented including schematic machine editor.
The toolset supports complex machines like Intel Q35.
The piece of generated code is between 1/4 and 3/4 depending on amount of
available device models.
Existing QEMU code is accounted including QEMU version adaptation mechanism.

30 / 32

Conclusion

Future work
Runtime debug feedback form QEMU.

31 / 32

The End

The End

Thank you for your attention!

Questions?

32 / 32

	Automation concepts
	Automation concepts
	Developed toolset
	The toolset usage examples
	Conclusion
	The End

