
isp ras

System-Wide Elimination of Dynamic Symbols

Vladislav Ivanishin Evgeny Kudryashov Alexander Monakov
Dmitry Melnik Jehyung Lee

ISP RAS

November 30, 2017

1 / 20

isp ras
Background

Lots of “dead weight” in shared libraries:
▶ Obsolete interfaces (gets())
▶ Very rarely used APIs (<complex.h>)
▶ Backwards compatibility

No need for most of that on special-purpose hardware
▶ Special-purpose distros (Android, Tizen)
▶ Small-devices (IoT) Tizen profile

2 / 20

isp ras
Background

Lots of “dead weight” in shared libraries:
▶ Obsolete interfaces (gets())
▶ Very rarely used APIs (<complex.h>)
▶ Backwards compatibility

No need for most of that on special-purpose hardware
▶ Special-purpose distros (Android, Tizen)
▶ Small-devices (IoT) Tizen profile

3 / 20

isp ras
Problem Statement

Slim down by eliminating unused code/data from shared libraries
Possible? Not in general:
▶ Future applications may use any public API
▶ Binaries may use any backward-compat API

Assume “closed world” full-distro rebuilds
▶ Can see what APIs get used
▶ No “potential future uses”

4 / 20

isp ras
Aside: Elimination in Static Linking

For static linking, already available in practice:
1. Compile with gcc -ffunction-sections
-fdata-sections:

Per-function sections
.section .text.foo,"ax",@progbits
.globl foo
.type foo, @function

foo:
movl $42, %eax
ret

2. Link with -gc-sections
Linker omits sections not reachable by relocations from the entry
point

5 / 20

isp ras
-gc-sections for Dynamic Modules

Can we use -gc-sections for shared libraries?
For dynamic linking, entrypoint is not the only GC root
▶ The .dynamic section is another root

Points to dynamic symbols and global library
constructors/destructors

▶ Most code is reachable from dynamic symbols (the library’s
interface)

▶ Reducing the API surface (changing symbol’s visibility to
“hidden”) allows GC

6 / 20

isp ras
Dynamic Dependencies

Want to compute reachability on dynamic symbol set
▶ Explicit dependencies

Direct Call
int main()
{
puts("Hello World");
}

▶ Implicit, via dlsym()
▶ Non-standard runtime lookups

Must be conservative
▶ Missed explicit deps — build-time link error
▶ Missed runtime deps — run-time fallback or error

7 / 20

isp ras
Dynamic Dependencies

Want to compute reachability on dynamic symbol set
▶ Explicit dependencies
▶ Implicit, via dlsym()

Dynamic Lookup via
dlsym

#include <dlfcn.h>

void *dlsym(void *handle,
const char *name);

void malloc(size_t n)
{
void *real_malloc =
dlsym(RTLD_NEXT, "malloc");

...
}

▶ Non-standard runtime lookups
Must be conservative
▶ Missed explicit deps — build-time link error
▶ Missed runtime deps — run-time fallback or error

8 / 20

isp ras
Dynamic Dependencies

Want to compute reachability on dynamic symbol set
▶ Explicit dependencies
▶ Implicit, via dlsym()
▶ Non-standard runtime lookups

Dynamic Lookup via direct inspection

#include <elf.h>
extern Elf64_Dyn _DYNAMIC[];

...
Elf64_Dyn *dyn = ...;
for (int i = 0; dyn[i] != DT_NULL; i++)
if (dyn[i].d_tag == DT_SYMTAB) {
...
}

...

Must be conservative
▶ Missed explicit deps — build-time link error
▶ Missed runtime deps — run-time fallback or error

9 / 20

isp ras
Dynamic Dependencies

Want to compute reachability on dynamic symbol set
▶ Explicit dependencies
▶ Implicit, via dlsym()
▶ Non-standard runtime lookups

Must be conservative
▶ Missed explicit deps — build-time link error
▶ Missed runtime deps — run-time fallback or error

10 / 20

isp ras
Handling Runtime Dependencies

Targets of runtime lookups impossible to compute exactly:
▶ Custom, non-dlsym lookups impossible to analyze
▶ Issues with dlsym lookups:

▶ dlsym wrappers
▶ Non-constant name argument
▶ Interpreters may expose dlsym to scripts (Lua, Python)

However, calls to dlsym are statically visible

▶ Discover wrappers for dlsym
▶ Best-effort analysis of dlsym-like functions
▶ Allow manual annotation where static analysis fails
▶ Completely punt on low-level lookups

11 / 20

isp ras
High-level Approach

1. Discover dlsym wrappers
2. Try to compute dlsym lookup targets
3. Record static dependencies
4. Analyze distro-wide symbol dependency graph
5. Eliminate unused symbols

Three distro-wide rebuilds required in total
Implementation goals:
▶ GCC plugins for dlsym analysis
▶ Linker plugins for explicit deps and elimination

12 / 20

isp ras
Annotating dlsym Wrappers

Constraints/assumptions:
▶ Wrappers may be used across translation units
▶ Link-time analysis not sufficient
▶ Symbol name argument passed unchanged

Solution: two-stage algorithm:
1. Dump all jump functions distro-wide

Definition (Jump functions)
GCC IPA term for function call argument transfer
If we have
void *next(const char *name) {return dlsym(RTLD_NEXT, name);}
then we have a graph edge dlsym/1 → next/0

2. Compute transitive closure on jump function graph from root
dlsym/1

13 / 20

isp ras
Annotating dlsym Wrappers

Constraints/assumptions:
▶ Wrappers may be used across translation units
▶ Link-time analysis not sufficient
▶ Symbol name argument passed unchanged

Solution: two-stage algorithm:
1. Dump all jump functions distro-wide
2. Compute transitive closure on jump function graph from root
dlsym/1

14 / 20

isp ras
Computing dlsym Targets

Multiple targets per one dlsym call site

const char *ICU_API[] = {"ucol_open", "ucol_close", ...};
...
for (i = 0; i < ICU_FUNC_CNT; i++) {
handle = dlsym(g_dl_icu_handle, ICU_API[i]);
...
icu_handle[i] = handle;
}

In the compiler plugin:
▶ Iteration over callsites of dlsym-like functions
▶ Simple GIMPLE analysis for array/struct references

15 / 20

isp ras
Recording Static Dependencies

Use LTO plugin interface for introspection
▶ Avoid patching the linker
▶ Avoid duplicated work (search in static archives)

The claim_file_handler API hook allows to inspect object files
▶ Find symbol tables
▶ Find relocation tables
▶ Resolved relocations give intra-DSO dependencies
▶ Cross-DSO deps are given by dynamic relocations

16 / 20

isp ras
Eliminating Unused Symbols

Two opportunities: compile time (in GCC) and link time
1. At compile time: optional, for optimization

▶ Compiler doesn’t process asm inputs
▶ More constrained

2. At link time: required
▶ Can eliminate more than the compiler

Implementation:
1. Force-enable -gc-sections
2. Set hidden visibility on eliminated symbols

Linker plugin makes copies of .o files with adjusted visibility info

17 / 20

isp ras
Identifying Matching Object Files

Need to robustly identify translation units
▶ Names can be too common: conftest.c
▶ . . . or unstable: /tmp/cc123abc.o

Generate a stable, unique srcid for each object file
▶ Strong hash of blinded IR dump before optimizations
▶ “Blinding” removes string contents: stabilize against __DATE__

substitutions
▶ Emit an empty .comment.privplugid.srcid section

18 / 20

isp ras
Pitfalls

Global transformation proved to be problematic
▶ Must ensure all dependencies seen in analysis
▶ Must be able to rebuild all packages with elimination

Issues with driving elimination from linker plugin
▶ Some projects only build with ld.bfd (Glibc)
▶ Linker plugin API underspecified
▶ Not interoperable with LTO
▶ Versioned symbols poorly supported
▶ BFD linker incorrectly orders shared libraries with plugin

19 / 20

isp ras
Results: Aggregate Section Sizes before/after Optimization

section name
original size,

KB
optimized size,

KB
delta,

KB
delta,

%
.text 30211 24176 6035 19
.data 310 293 17 5
.data.rel.ro 262 233 29 11
.rodata 5831 4701 1130 19
.dynstr 1885 859 1025 54
.dynsym 1347 860 486 36
.got 248 192 56 22
.plt 610 452 158 25
.rel.dyn 415 356 59 14
.rel.plt 397 292 105 26
.hash 594 383 211 35

Thank you!

20 / 20

