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The general problem: 

AGN is the driver of ram-pressure? 

Poggianti B., Jaffé Y., Moretti A. et al. Ram-pressure feeding of supermassive 

black holes // Nature. – 2017. – V. 548. – P. 304-309 
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The motivation and challenges for me are: 

1. The model of galaxy 

2. The numerical solver 

3. The parallel implementation 

«The movement of galaxies in 

dense clusters turns the 

collisions of galaxies into an 

important evolutionary factor»  

 

Professor    

Alexander Tutukov 

The motivation – (i) physics 

Tutukov, Lazareva, Kulikov, Astron Rep., 2011 
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The hybrid supercomputers 

The motivation – (ii) supercomputers 
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The motivation – (iii) design concept 

 The physical model 
 

 The mathematical formalization  
 

 The numerical solver 
 

 The structures of data   
 

 The architecture of supercomputer 
 

 The tools of parallel programming  
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 The physical model 
 

 The mathematical formalization  
 

 The numerical solver 
 

 The structures of data   
 

 The architecture of supercomputer 
 

 The tools of parallel programming  

 

The motivation – (iii) co-design concept 
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In hydrodynamic model with 

analytical stellar component was 

shown four scenarios of central 

collision of two galaxies: 

1. The coalescence 

2. The dissipation of the gas 

components of the galaxies 

3. The free expansion 

4. The expansion with the 

formation of a new galaxy with 

no stellar component 

1. Vshivkov, Lazareva, Snytnikov, Kulikov, 

Tutukov, ApJS, 2011 

2. Tutukov, Lazareva, Kulikov, Astron Rep., 2011 

The hydrodynamics of interacting galaxies (2011) 
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The model of collisionless component 

The disadvantages of N-body model 

 a spurious generation of entropy 

 a problem of choice of the kernel function in cell 

 a necessary minimal number of particles in cell 

 increased communication overhead  

 poor load balancing 

 a thermodynamically unconsistent of star formation 
 

The hydrodynamic alternative 

 The pressureless  hydrodynamic 

 The collisionless hydrodynamic* 

 
* Mitchell, Vorobyov, Hensler, MNRAS, 2013 
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 It is important to movement of the 

cluster and not single particle 

 No thermal transfer effects (the 

property of almost all the 

astrophysical problems) 

 The velocity dispersion is much 

less than the velocity squared 

The model of collisionless component 
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The advantages of collisionless hydrodynamic 

 a thermodynamically consistent of star formation 

 one numerical method for gaseous and stellar components 

The disadvantages of collisionless hydrodynamic 

 The applicability of approach in each a specific problem 

 

The model of collisionless component 

Kulikov, ApJS, 2014 
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SPH approach 

Robustness of the algorithm 

Galilean-invariant solution 

Simplicity of implementation  

Flexible geometries of problems 

High accurate gravity solvers 

 

 

Artificial viscosity is parameterized 

Variations of the smoothing length 

The problem of shock wave and 

discontinuous solutions 

Instabilities suppressed 

The method is not scalable 

 

AMR approach 

Approved numerical methods 

No artificial viscosity 

Higher order shock waves 

Resolution of discontinuities  

No suppression of instabilities 

Correct turbulence solution 

 

The complexity of implementation 

The effects of mesh 

Problem of the minimal mesh resolution 

Not Galilean-invariant solution 

The method is not scalable 

The numerical methods 
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The numerical methods 

 The moving mesh approach (AREPO, Springel, 2010) 

 The classic ALE-approach (BETHE-Hydro, Murphy & Burrows, 2008) 

 The hybrid method on regular mesh (Kulikov, 2004, from bachelor thesis) 

The main features of original methods 

 The over definition hydrodynamic equations 

 The operator-splitting approach  

 The combination Godunov – Roe – PPML methods 

 Using a regular mesh 
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(*) Kulikov, et al., LNCS, 2009; APJS, 2011, 2014; AAABS, 2013; CPC 2015; JCP 2016 

The numerical methods 
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The numerical methods – PPML approach 
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The piecewise-parabolic functions 

(*) Ustyugov et al., Comp. Math. & Math. Phys., 2007, 2008, Comp. Phys., 2009 

The Riemann problem 
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The Roe solver 
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The reason – accurate 

approximation of 

boundary gas-vacuum  

The numerical methods. The Roe solver 
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The numerical methods. The advection transport 
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The numerical methods. The advection transport 
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The over definition hydrodynamic equation 

 2V E  

1. The renormalization of the velocity vector length, it’s direction 

remaining the same (on boundary gas-vacuum)*.  

2. The entropy (or internal energy) correction (on regular density)** 

Such a modification of the method keeps the detailed energy balance 

and entropy nondecrease guarantee 

2

2

v
E


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*) Vshivkov V., Lazareva G., Snytnikov A., Kulikov I., Tutukov A. Computational methods for ill-posed 

problems of gravitational gasodynamics // J. Inv. Ill-Posed Problems, 19. 2011, 151-166 

 

**) Godunov S., Kulikov I. Computation of Discontinuous Solutions of Fluid Dynamics Equations with 

Entropy Nondecrease Guarantee // J. Comp. Math & Math. Phys., 54, 2014, 1012-1024 
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The verification of numerical method 

 One dimensional test for shock tube (discontinuous analytical solution) 

 Test of Aksenov (continuous analytical solution) 

 The Kelvin-Helmholtz instability 

 The Releigh-Taylor instability 

 The Sedov blast wave 

 The control of angular moment impulse test 

 The expansion of gas into a vacuum 

 The Evrard collapse 

 The collapse of molecular cloud 

 The fall of G2 onto Sgr A* 

 … 
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The parallel implementation 

1. The speed-up factors of 134 on 

260 logical cores 
 

2. The efficiency of 92% on 64 

MICs (or on 15 360 cores) 
 

3. The 29 GFLOPS of scalar 

performance (or 40% from peak)  

MICs    64 x Intel Xeon Phi 

Logical cores 15 360 (64 x 240) 

Topology  one dimensional 

RSC PetaStream (JSCC RAS) 

The simulation of behavior of 

parallel implementation on  

983 040 cores  

by means AGNES* system the  

80% efficiency  

was shown 
*Podkorytov et al., LNCS 2010 
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The numerical method. The summary 

 The high-order (low-dissipation) numerical solution 

 Not using of artificial viscosity or limiters 

 The Galilean-invariant of numerical solution 

 Entropy non-decrease guarantee 

 Regular procedure for extension on other numerical 

models (by example Boltzmann and MHD equations) 

 Simplicity of parallel implementation on hybrid and 

classic supercomputers 

 Potential infinity scalability 
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The interacting galaxies 

The model:   two-phase model (hydrodynamic + Boltzmann) 

The profiles:  self-gravitating rotational equilibrium* 

The mass of galaxy: 1013 Mʘ    

The subgrid physics: star formation  

   supernovae feedback 

   H2 formation  

   cooling / heating 

*   Vorobyov, Recchi, Hensler, A&A, 2012 

Molecular hydrogen Star formation 
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The Jellyfish galaxy 
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Where is TFLOPS+ on Intel Xeon Phi??? 
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SIMD technology (SSE, AVX 512, …) + HLL solver 
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The intrinsic of AVX 512 

_mm512_set1_pd - set value for a vector 

_mm512_load_pd - load a vector from main memory 

_mm512_mul_pd - vector multiply 

_mm512_add_pd - vector summation 

_mm512_sub_pd - vector substitution 

_mm512_store_pd - store a vector to main memory 

mpiicc -xMIC-AVX512 -qopenmp -O3 -o astrophi.mic astrophi.cpp -lm 

 

Main advantages is 302 GFLOPS on Intel Xeon Phi 
 

Main disadvantages – formation of the 8-double 

elements vector for computing 
 
 

Pitfalls: associative of cache memory, align of 

memory, schedule distribution, data dependency 
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HLL? Where is high order and low dissipation? 
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The publications 
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