
Delphi object �les decompiler
Delphi .NET object �les decompiler

Andrey Mikhailov∗

mikhailov@icc.ru
Alexey Hmelnov∗

hmelnov@icc.ru

∗Matrosov Institute for System Dynamics and Control Theory
Irkutsk

Ivannikov ISPRAS Open Conference 2017, Moscow
30 november, 2017

1/25

mailto:mikhailov@icc.ru
mailto:hmelnov@icc.ru

Decompilers

Tools

Partial decompilation

1 Executable �les (¾dcc¿, ¾REC¿, ¾Boomerang¿, ¾HexRays¿, ¾SmartDec¿)

2 Delphi (¾DeDe (Delphi Decompiler)¿, ¾IDR¿, ¾EMS Source Rescuer¿)

To parse the DCU, use the dcu32int tool

Full decompilation

1 Java (¾DJ Java Decompiler¿, ¾JD-GUI Java Decompiler¿, ¾AndroChef Java Decompiler¿)

2 .NET (¾ILSpy¿, ¾NETRe�ector¿)

2/25

Delphi object �les

¾An object �le is a �le containing object code, meaning relocatable format machine code
that is usually not directly executable. There are various formats for object �les, and the
same object code can be packaged in di�erent object �les. An object �le may also work like
a shared library. In addition to the object code itself, object �les may contain metadata used
for linking or debugging, including: information to resolve symbolic cross-references between
di�erent modules, relocation information, stack unwinding information, comments, program
symbols, debugging or pro�ling information.¿

DCU = Delphi Compiled Unit. That is compiled *.pas �le for x86

DCUIL � that is compiled *.pas �le for .NET

DCU32INT1 � Delphi unit parser

DCU ≥ OBJ ≥ EXE

1http://hmelnov.icc.ru/DCU/index.ru.html

3/25

The format of DCU �les

Delphi object �le unlike PE executable �le has a more structured program representation, e.g.
every procedure has its own memory block. It contains information about all the data types
de�ned in the unit and it may include debugging information. DCUIL has small header �le
containing common information such as size, compile time, etc. The header is followed by tagged
information. Tags are divided into the following groups:

The list of the used units and dynamic libraries, including information about their de�nitions
(of data types, procedures, etc) used in the unit.

Information about the data types, procedures, variables, etc de�ned in the unit.

The memory block, which contains the memory representation for procedures, constants, etc
de�ned in the unit.

The linking information for the memory block (where to place the addresses of some objects
used when linking).

Debugging information.

4/25

Reached DCU decompilation level

Platform Source Version � Level

Win 32 x86 2.0 � 7.0, 2005 � 2 � 7,9 � disassembler+data�ow

Win 64 x64 XE2 � 16 � disassembler+data�ow

OS X,32 x86 XE2 � 16 � disassembler

iOS,Simulator x86 XE4 � 18 � disassembler

iOS,Device ARM 32 XE4 � 18 � no

iOS,Device 64 ARM 64 XE8 � 22 � no

Android ARM 32 XE5 � 19 � no

.NET CIL 8.0 � 2006 8 � 10 decompiler

* Inline 2005 � 9 � decompiler

5/25

Decompilation phases

1. Syntax analysis � Main task is determine the beginning and end of the
¾opcode¿

2. Semantic analysis � We will assume that the object code is always seman-
tically correct

3. Generic intermediate
representation

� For machine-independent Optimization

4. Control �ow graph gen-
eration

� Basic blocks in a program can be represented by means
of control �ow graphs. A control �ow graph depicts
how the program control is being passed among the
blocks. It is a useful tool that helps in some optimiza-
tion.

5. Data �ow analysis � Data-�ow analysis is a technique for gathering infor-
mation about the possible set of values calculated at
various points in a computer program. The information
gathered is often used by decompilers when optimizing
a intermidiate representation.

6. Control �ow graph anal-
ysis

� Recovering high-level control constructs is essential for
decompilation in order to produce structured code that
is suitable for human analysts and sourcebased pro-
gram analysis techniques.

7. Code generation � Code generation can be considered as the �nal phase
of decompilation. Source code generating from inter-
mediate representation.

6/25

Delphi for .NET object code decompilation scheme

Delphi ob-
ject code

DCU32INT
tool

DCU
disassembler

Intermediate
representation
generation

Control
�ow graph
generation

Control �ow
graph analysis

IR
optimizations

Delphi source
code generation

Delphi
source code

7/25

Disassembler phase

The structure of the CIL command:

1 Ñan consist of one or two bytes

2 After the command, there may be metadata:

Operand Size Description
none 0 The operand is empty
int8 1 A signed 8-bit integer
int32 4 A signed 32-bit integer
int64 8 A signed 64-bit integer
unsigned int8 1 Unsigned 8-bit integer
unsigned int16 2 Unsigned 16-bit integer
�oat32 4 32-bit �oating-point number
�oat64 8 64-bit �oating-point number
token 4 FixUp (address binding)
switch variable Array of jump addresses

Table � CIL operands

8/25

DCU for .NET disassembler implementation

CIL −→ TCILInstr .CILOpCode

TMethodBody � contain the sequence of TCILInstr

TCILExpr - Abstract language representation

TCILOpCode = class
protected
Op1 : Byte;
Op2 : Byte;
Code : TCILCode;
FlowControl : TFlowControl;
OpCodeType : TOpCodeType;
OperandType : TOperandType;
StackBehaviorPop : TStackBehaviour;
StackBehaviorPush : TStackBehaviour;

public
...

end;

Mono � Mono is a software platform designed to allow developers to easily create cross platform
applications part of the .NET Foundation

ILSpy � ILSpy is the open-source .NET assembly browser and decompiler

9/25

Disassembly algorithm

Data: Procedure memory block containing the CIL bytecode
Result: CIL sequence
while end of code do

B ← ReadByte()
if b 6= $FE then

ByteCode ← OneByteOpCodeTbl(B)
end
else

B ← ReadByte()
ByteCode ← TwoByteOpCodeTbl(B)

end
ByteCode.ReadOperand()

end

10/25

Intermediate representation 1. Pseudo register

ldloc a

ldloc b

mul
ldloc c

add
stloc x

MOV r1, &a

MOV r2, &b

MUL r1, r1, r2

MOV r2, &c

ADD r1, r1, r2

STORE r1, &x

st x

add

ld cmul

ld ald b

11/25

Intermediate representation 2. Expressions

TCILInst.Expr ←− TCILExpr

Expressions

TCILExpr
TCILBinOp
TCILUnOp
TCILSemOp

All conditional or unconditional branches replace with

TCILCondGoTo

TCILUncondGoTo

Algorithm 1 Example. Callvirt method

1 An object reference obj is pushed onto the stack

2 Method arguments arg1 through argN are pushed onto the stack

3 Method arguments arg1 through argN and the object reference obj are popped from the
stack; the method call is performed with these arguments and control is transferred to the
method in obj referred to by the method metadata token. When complete, a return value is
generated by the callee method and sent to the caller

4 The return value is pushed onto the stack

12/25

Control �ow generation

Basic block is a straight-line code sequence with no branches in except to the entry and no branches out
except at the exit. The code in a basic block has:

1 One entry point, meaning no code within it is the destination of a jump instruction anywhere in the
program

2 One exit point, meaning only the last instruction can cause the program to begin executing code in a
di�erent basic block

Data: A sequence of instructions
Result: A list of basic blocks with each three-address statement in exactly one block

1 The �rst instruction is a leader

2 The target of a conditional or an unconditional goto/jump instruction is a leader

3 The instruction that immediately follows a conditional goto/jump instruction is a leader

4 The �rst instruction of the exception block is the leader

Starting from a leader, the set of all following instructions until and not including the next leader
is the basic block corresponding to the starting leader.

Creating edges

1 Calculate jump addresses

2 Create edges for

1 nodes with branch instructions
2 exceptions

13/25

Control �ow analysis 1

Structuring Decompiled Graphs 2:

Edges are marked as direct, back, oblique

Structuring Loops

Structuring 2-way conditions (+ compound conditions)

2Cifuentes C. Structuring decompiled graphs //International Conference on Compiler Construction. � Springer
Berlin Heidelberg, 1996. � Ñ. 91-105. MLA

14/25

Control �ow analysis 2

Data: G, D, P
Result: n abstract node containing a hierarchy of folded subgraphs
foreach v ∈ D in a backward breadth-�rst order do

foreach p ∈ Children(v) do
if p pidom v then

S ← Children(v) \ p
if Classify_Region(S) 6= undeterminated then

Apply_Template(S)
end
else

Recognize_Undeterminanted_Region(S)
end
Modify(G ,D,P)

end

end

end

Fig. � TT-region

15/25

Templates

Fig. � line Fig. � loop Fig. � self-loop

Fig. � if-then Fig. � if-then-else

...

Fig. � switch

16/25

IR for regions

Regions

TCILExpr

1 TCILIfThenBlock

2 TCILIfThenElseBlock

3 TCILRepeatSt

4 TCILWhileSt

5 TCILCaseSt

TCILIfThenElseBlock = class (TCILExpr)
protected
FTrue, FFalse: TCtrlFlowNode;
FCond: TCILCondition;

public
constructor Create(ACond: TCILCondition; ATrue, AFalse: TCtrlFlowNode);
destructor Destroy;
function AsString(BrRq: boolean): String; override;
procedure Show(BrRq: boolean); override;
property Cond: TCILCondition read FCond;

end;

17/25

Generation of expressions

Result := a + b + c + D;

...

ldarg.0 Pop: Pop0 Push: Push1 Type: InlineNone
ldarg.1 Pop: Pop0 Push: Push1 Type: InlineNone
add Pop: Pop1_pop1 Push: Push1 Type: InlineNone
ldarg.2 Pop: Pop0 Push: Push1 Type: InlineNone
add Pop: Pop1_pop1 Push: Push1 Type: InlineNone
ldloc .0 Pop: Pop0 Push: Push1 Type: InlineNone
add Pop: Pop1_pop1 Push: Push1 Type: InlineNone
stloc .1 Pop: Pop1 Push: Push0 Type: InlineNone

CILCtx

Locals � local variables

Args � procedure arguments

Stack � stack state

18/25

Features of data �ow analysis

st x

...

ld ald b

Fig. � The value is determined by one branch, used
in di�erent

st x st y

...

ld a

Fig. � The value is de�ned in di�erent branches, used
in one

st � push value on to the stack

ld � load values from the stack

19/25

IR optimizations

Merging variables. Elimination of intermediate calculations

Delete unused code. Removing unreachable code, because it is impossible to determine the
state of the stack

Copies propagation
1 Any instruction loading the address is copied to the "opcode" of its use

2 Parameters propagation

Removing unused variables

Simplify the instruction set for the jump instructions. Jump commands are given to the
general view (TCILCondGoTo, TCILUncondGoTo)

Combining complex logical expressions

20/25

Test. Decompilation quality3

TS � set of test programs
prog � source program
KLOC(prog) � number of thousands of signi�cant lines of the prog
K � amount of penalties for the original program

K
′
� amount of penalties for the decompiled program

Cdecom =
∑

prog∈TS

max(0,K
′ − K)

KLOC(prog)

(1)

Table � Penalties

Name Penalty
non-recovery of variable name 1
goto operator 3
break operator 1
continue operator 1
non-recovery of for operator 1

3
Troshina, ¾Issledovanie i razrabotka metodov dekompilyatsii programm¿, 2009 ã.

21/25

Test. Decompilation quality.

Table � Decompilation quality

Name DCUIL2PAS ILSpy
BitWise 62,5 133,3
Compression 18,6 146
LZRW1KHCompressor 75 140
GetMatch 0 166,6

Table � Performance

Name �les count Size (mb) Time (s)
Delphi 8 VCL 325 39 396

Table � Quality

Name procedures count without goto with goto %
Delphi 8 VCL 9003 8879 124 1,3

22/25

Example 1

23/25

Example 2

procedure TWinForm.btnCompress_Click(sender: System.Object; e: System.EventArgs);
var
�nfo : FileInfo; �nput :FileStream; bwriter : BinaryWriter; ms : MemoryStream; fs : FileStream;

begin
�nfo := FileInfo.Create(textInput.Text);
if (�nfo.Exists) then begin
�nput := �nfo.OpenRead();
ms := MemoryStream.Create;
bwriter := BinaryWriter.Create(ms);
LZRWCompressFileToStream(�nput, bwriter);
if (bwriter <> nil) then begin
fs := FileStream.Create(textOutput.Text,FileMode.Create);
bwriter.BaseStream.Seek(0,SeekOrigin(0));
(MemoryStream (bwriter.BaseStream)).WriteTo(fs);
fs.Close();
bwriter.Close();

end;
�nput.Close();
end;

end;

procedure TWinForm.btnCompress_Click (sender: Object; e: EventArgs);
var
�nfo: FileInfo; �nput: FileStream; bwriter: BinaryWriter; ms: MemoryStream; fs: FileStream;
begin [Flags:3013,MaxStack:3,CodeSz:80,LocalVarSigTok:0]
�nfo := FileInfo.Create(Control.get_Text(TWinForm.textInput));
if (FileSystemInfo.get_Exists(�nfo) <> 0) then begin
�nput := FileInfo.OpenRead(�nfo);
ms := MemoryStream.Create();
bwriter := BinaryWriter.Create(ms);
TWinForm.LZRWCompressFileToStream(Self, �nput, bwriter);
if (bwriter <> 0) then begin
fs := FileStream.Create(Control.get_Text(TWinForm.textOutput), 2);
MemoryStream.WriteTo(MemoryStream(BinaryWriter.get_BaseStream(bwriter)), fs);
FileStream.Close(fs);
BinaryWriter.Close(bwriter);

end;
FileStream.Close(�nput);

end;
end ; 24/25

Delphi object �les decompiler
Delphi .NET object �les decompiler

Andrey Mikhailov∗

mikhailov@icc.ru
Alexey Hmelnov∗

hmelnov@icc.ru

∗Matrosov Institute for System Dynamics and Control Theory
Irkutsk

Ivannikov ISPRAS Open Conference 2017, Moscow
30 november, 2017

25/25

mailto:mikhailov@icc.ru
mailto:hmelnov@icc.ru

