
Relational 
Interpretation of 

Concurrency
Evgenii Moiseenko Anton Podkopaev



● Relational Programming

● Relational Interpreter

● Relational Interpreter for Concurrency

Plan







Functional Programming

[3; 2; 1] [1; 2; 3]
sort



Relational Programming

[1; 2; 3]

[1; 2; 3]
sort[2; 1; 3]

[2; 3; 1]
[3; 2; 1]
[3; 1; 2]

[1; 3; 2]



OCanren

● OCaml DSL for Relational Programming

○ Declarative specification of relations

○ Complete backtracking search



Relational Interpreter



Relational Interpreter

● Execution



Relational Interpreter

● Execution

● Test generation



Relational Interpreter

● Execution

● Test generation

● Verification



Relational Interpreter

● Execution

● Test generation

● Synthesis

● Verification



Results

● Relational Interpreter for Concurrency

○ Compact and declarative (~1.5K lines of code)

● Extension of OCanren

○ Tabling – memoization for relational programs

■ Efficient state space exploration

○ Constructive negation

■ Allows to express negative examples



Transition Labeled System

[x] := 1;

[y] := 1;
[z] := [x];



Memoization

[x] := 42;

[f] := 1;

repeat [f];

[y] := [x];



Memoization

[x] := 42;

[f] := 1;

repeat [f];

[y] := [x];



Angelic Execution

Exists output s.t. z=0 ?

Input: x=0; y=0; z=0



Angelic Execution

Exists output s.t. z=0 ?

Input: x=0; y=0; z=0



Verification

Input: x=0; y=0; z=0

Forall outputs z=0 ?

Not Exists output s.t. z!=0 ?



Verification

Input: x=0; y=0; z=0

Forall outputs z=0 ?

Not Exists output s.t. z!=0 ?



Verification

Input: x=0; y=0; z=0

Forall outputs z=0 ?

Not Exists output s.t. z!=0 ?



Constructive Negation

● Checks that some state is unreachable

● Otherwise provides counterexample or constraints on program

● Allows to express negative examples



Programming By Examples

● Space of candidate programs

○ usually defined by the grammar

● Set of positive examples

● Set of negative examples



Programming By Examples: Message Passing

[m] := [x];

{??};

{??};

[y] := [m];

[m] := [x];

[f] := 1

repeat [f];

[y] := [m];



Synthesis Time

Name #instructions Time (s)

message passing
2 threads 4 0.39

consensus
2 threads 10 1.10

Dekker’s like
2 threads 10 15.88



Limitations and Future Work
● State space explosion

○ Abstract interpretation and Abstraction refinement

● Synthesis does not scale to big programs

○ More sophisticated algorithms

■ Counterexample guided inductive synthesis



Relational Interpretation of Concurrency
● Relational Programming

○ Declarative non-deterministic computations

● Relational Interpreter

○ Framework for verification and synthesis prototyping

https://github.com/eucpp/relcppmem

https://github.com/dboulytchev/OCanren

https://github.com/eucpp/relcppmem
https://github.com/dboulytchev/OCanren

