Application of a Preconditioned Density Based Solver to Transonic Nozzle Flows

Jens Trümner*, Christian Mundt

*mail: jens.truemner@unibw.de
*phone: +49 (0)89 6004 2104

Universität der Bundeswehr München
Department of Aerospace Engineering
Institute for Thermodynamics

December 1, 2017
Outline

- Introduction
- Solver
- Turbulence Models
- Concluding remarks
Supersonic Jets

Importance for jet engines

- Engine performance
- Noise emission
- Infrared signature
Seiner Nozzle (Mach-2-Jet) [4]

Challenges

- Compressible jet and low Mach-number region
- Turbulence
- Temperature gradients
Perfectly Expanded and Subsonic Jets

\[Ma_\infty; \ T_\infty = T_{amb} \]

\[Ma_j; \ T_t \]

\[Ma_{CL} \]

Potential core

Mixing region

(similarity profiles)

Shear layer growth \(\frac{\partial \Delta}{\partial x} \)

- Decreases with increasing compressibility
- Increases with increasing jet temperature
Density Based Solver (Shock Tube)

dbnsTurbFoam (foam-extend 3.1)

- Explicit density based solver
- Roe flux-difference splitting scheme [2]
- Venkatakrishnan limiter [6]
Preconditioner of Weiss and Smith [7]

\[\frac{Ma}{Ma_j} : 0.95 \quad 1 \quad 1.05 \]

\[T_t = 314K, \text{ no prec} \]

\[x/D \]

\[r/D \]

\[r/D \]

\[T_t = 314K \]

\[\frac{Ma}{Ma_j} \]

"exp"
"k-\varepsilon"
"k-\varepsilon, no prec"

very coarse
coarse
medium
fine

\[x/D \]

\[x/D \]
Production Limiter for Two-Equation-Models

Unphysical TKE-production with the k-ε-model

- Problem known from stagnation points
- Solved by limitation of the production term to $10\rho\varepsilon$ [1]
Compressibility Correction

Overpredicted TKE in compressible shear flows

- Dilatation dissipation becomes important
- Compressibility correction of Sarkar et al. [3] improves results

Graphs:

1. **Left Graph:**
 - Legend:
 - exp
 - \(k-\varepsilon \)
 - uncorr. \(k-\varepsilon \)
 - Axes:
 - \(x/D \) on the x-axis
 - \(Ma/Ma_j \) on the y-axis
 - Graph shows data comparison of experimental (exp) and theoretical (\(k-\varepsilon \)) models with and without compressibility correction.

2. **Right Graph:**
 - Legend:
 - exp
 - RSM
 - uncorr. RSM
 - Axes:
 - \(x/D \) on the x-axis
 - \(Ma/Ma_j \) on the y-axis
 - Graph shows data comparison of experimental (exp) and theoretical (RSM) models with and without compressibility correction.

Equation:

\[T_t = 314K \]

\[x/D \]

\[Ma/Ma_j \]

\[\text{exp} \]

\[k-\varepsilon \]

\[\text{uncorr.} \ k-\varepsilon \]

\[\text{exp} \]

\[\text{RSM} \]

\[\text{uncorr.} \ \text{RSM} \]
Temperature Correction for Heated Jets (\(T_t=1118\text{K}\))

Stronger mixing with increasing temperature

▶ Stronger fluctuations in (initial) shear layers with density gradients
▶ Generalized temperature correction improves results for RSM (ASME GT2017-63084) [5]
Concluding remarks

Solutions for transonic nozzle flows

- Low convergence rates in flows with low Mach-number region ⇒ preconditioner
- Shock patterns at the beginning of the potential core ⇒ ?
- Unphysical production with k-ε-model ⇒ production limiter
- Overpredicted TKE in compressible flows ⇒ compressibility correction
- Underestimated mixing in heated jets ⇒ temperature correction
Thank you for your attention!

