«УТВЕРЖДАЮ»

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего профессионального образования «Московский физико-технический институт (государственный университет)» МФТИ (ГУ)

Кафедра «Системное программирование "

• •
Проректор по учебной работ Ю.Н. Волко 2012
РАБОЧАЯ УЧЕБНАЯ ПРОГРАММА
по дисциплине: Научная визуализация
по направлению: 230100 «Информатика и вычислительная техника»
магистерская программа: 230100 «Информатика и вычислительная техника»
факультет: ФУПМ
кафедра Системное программирование
курс: 5 (магистратура)
семестры: весенний Экзамен: 10 семестр
Трудоёмкость в зач. ед.: вариативная – 2 зач. ед
в т.ч.:
лекции: вариативная часть – 32 час.
практические (семинарские) занятия: нет
мастер классы, индивид. и групповые консультации: нет
лабораторные занятия: вариативная часть — 32 час.
самостоятельная работа: вариативная часть – (44 час) 1,0 зач. ед.
ВСЕГО АУДИТОРНЫХ ЧАСОВ 66
Программу составил профессор, д.ф м.н. Семенов Виталий Адольфович
Программа обсуждена на заседании кафедры «Системное программирование» «»2012 г.
Заведующий кафедрой академик, д.фм.н., профессор Иванников В.П.

ОБЪЁМ УЧЕБНОЙ НАГРУЗКИ И ВИДЫ ОТЧЁТНОСТИ.

Вариативная часть, в т.ч.:	2 зач. ед.
Лекции	32 часов
Практические занятия	часов
Лабораторные работы	32 часов
Индивидуальные занятия с преподавателем	часов
Самостоятельные занятия	44 часов
ВСЕГО	2,0 зач. ед.
Итоговая аттестация	Экзамен 10 семестр,

1. ЦЕЛИ И ЗАДАЧИ

Цель курса — освоение студентами фундаментальных знаний в области визуализации и связанных с ней разделах компьютерной графики и вычислительной геометрии. Особое внимание в курсе уделяется базовым принципам визуализации, особенностям постановок задач, возникающих в разных предметных областях, а также важнейшим вычислительным методам и алгоритмам, применяемым при их решении. Лабораторные работы имеют своей целью закрепление приобретенных теоретических знаний в результате применения современных средств визуализации для решения ряда актуальных прикладных задач.

Задачами данного курса являются:

- формирование базовых знаний в области визуализации, как единого научного направления, адресуемого к проблемам визуального представления, анализа и интерпретации информации, и имеющего важное методологическое значение как для подготовки специалистов в области современных информационных технологий, так и для поддержки разнообразных инновационных сфер деятельности;
- обучение студентов основам компьютерной графики и вычислительной геометрии;
- обучение студентов методам визуализации, применяемым в разных предметных областях, в том числе, в математическом моделировании, программной инженерии, управлении проектами;
- формирование теоретических подходов к визуализации и практических навыков использования современных средств и технологий визуализации для проведения исследований в рамках выпускных работ на степень магистра.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП МАГИСТРАТУРЫ

Дисциплина Научная визуализация включает в себя разделы, которые могут быть отнесены к вариативным части цикла __M.2__ (шифр цикла).

Дисциплина «**Научная визуализация**» базируется на материалах курсов бакалавриата: базовая и вариативная часть кода УЦ ООП Б.2 (математический естественнонаучный блок) по дисциплинам «Высшая математика» (математический анализ, высшая алгебра, дифференциальные уравнения и методы математической физики), «Дискретная математика», «Математическое моделирование», «Вычислительная математика», «Программирование».

КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОС-ВОЕНИЯ ДИСЦИПЛИНЫ

Освоение дисциплины «Научная визуализация» направлено на формирование следующих общекультурных и профессиональных компетенций магистра:

а) общекультурные (ОК):

- способность использовать на практике методы и средства визуального анализа для понимания сущностных явлений окружающего мира (ОК 1);
- способность активно и целенаправленно применять полученные знания, навыки и умения для определения тематики и выполнения индивидуальной научно-исследовательской работы (ОК-2);
- готовность работать с информацией в области современных технологий компьютерной графики и визуализации, используя отечественную и зарубежную научную периодическую литературу, монографии и учебники, электронные ресурсы Интернет (ОК-3).

б) профессиональные (ПК):

- готовность использовать методы и средства визуализации в последующей профессиональной деятельности в качестве научных сотрудников, преподавателей вузов, инженеров, технологов (ПК-1);
- готовность к решению практических задач по визуализации научных и инженерных расчетов, математических и информационных моделей, программного обеспечения (ПК-2);
- готовность выявить естественнонаучную сущность проблем, возникающих в ходе профессиональной деятельности, с использованием развитого арсенала методов и средств визуализации (ПК-3);
- готовность к творческому подходу в решении научно-технических задач, основанному на систематическом обновлении полученных знаний, навыков и умений и использовании последних достижений в областях компьютерной графики и визуализации (ПК-4);
- способность применять на практике умения и навыки в организации исследовательских работ и проводить научные исследования, готовность к участию в инновационной деятельности (ПК-5).

3. КОНКРЕТНЫЕ ЗНАНИЯ, УМЕНИЯ И НАВЫКИ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ

В результате освоения дисциплины «Научная визуализация» обучающийся должен:

1. Знать:

- место и роль средств визуализации в научных исследованиях, технике, образовании, медицине, бизнесе;
- связь курса визуализации со смежными дисциплинами компьютерной графики, вычислительной геометрии, распознавания образов, машинного зрения, анимации, промышленного дизайна, математического и информационного моделирования, визуального программирования;
- методы визуализации и связанные с ними базовые алгоритмы компьютерной графики и вычислительной геометрии;
- современные средства и технологии визуализации.

2. Уметь:

- эффективно использовать на практике теоретические знания в области визуализации;
- представить панораму универсальных и специальных методов визуализации;
- выбрать методы и сценарии визуализации, адекватные предметной области и исследуемой проблеме;
- эффективно применять средства визуализации для решения прикладных задач.

3. Влалеть:

- современными средствами и технологиями визуализации;

- навыками использования систем визуализации общего назначения в научных и инженерных расчетах;
- навыками использования систем визуализации информации;
- навыками применения систем визуального программирования;
- навыками применения систем 4D-моделирования в управлении проектами.

4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

Структура преподавания дисциплины

Перечень разделов дисциплины и распределение времени по темам

№ темы и название	Количество часов
1. Основы и история визуализации	4
2. Моделирование визуальных сцен	4
3. Методы компьютерной графики	4
4. Методы вычислительной геометрии	8
5. Визуализация научных и инженерных расчетов	8
6. Визуализация информации	4
7. Современные технологии и системы визуализации	32
ВСЕГО(зач. ед.(часов))	64 час. (3 зач.ед.)

вид занятий

ЛЕКЦИИ

№	Темы	Трудоёмкость в зач. ед.
п.п.		(количество часов)
1	Основы и история визуализации	4
2	Моделирование визуальных сцен	4
3	Методы компьютерной графики	4
4	Методы вычислительной геометрии	8
5	Визуализация научных и инженерных расчетов	8
6	Визуализация информации	4
7	Современные технологии и системы визуализации	
ВС	ЕГО (зач. ед.(часов))	32

ЛАБОРАТОРНЫЕ РАБОТЫ

№	Темы	Трудоёмкость в зач. ед.
П.П.		(количество часов)
1	Разработка приложений и сценариев научной визуализации	8
2	Разработка приложений моделирования виртуальной реальности	8
3	Управление проектами с использованием технологий	8

	пространственно-временного моделирования и планиро-	
	вания	
4	Подготовка презентаций с использованием различных	8
	визуальных элементов	
ВС	ЕГО (зач. ед.(часов))	32

ВИДЫ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

No	Темы	Трудоёмкость в зач. ед. (количество часов)
П.П.		,
1.	- изучение теоретического курса - выполняется самостоятельно каждым студентом по итогам каждой из лекций, результаты контролируются преподавате-	22
	лем на лекционных занятиях, используются конспект (электронный) лекций, учебники, рекомендуемые данной программой;	
2.	- решение задач по заданию (индивидуальному где требуется) преподавателя— решаются задачи, выданные преподавателем по итогам лекционных занятий и проведенных лабораторных работ сдаются в конце семестра, используются конспект (электронный) лекций, учебники, рекомендуемые данной программой.	14
3.	Подготовка к экзамену	8
ВС	ЕГО (зач. ед.(часов))	44 часа (1 зач.ед.)

Содержание дисциплины

Развёрнутые темы и вопросы по разделам

	т азвернутые темы и вопросы по разделам					
$N_{\underline{0}}$	Назва-	Разделы и темы	Содержание	O	бъем	
Π/	ние мо-	лекционных заня-		Аудитор-	Самостоя-	
П	дулей	тий		ная работа	тельная рабо-	
				(зачетные	та	
				едини-	(зачетные	
				цы/часы)	едини-	
					цы/часы)	
1		Основы и прило-	Базовые понятия, принципы и	4	2	
		жения визуализа-	цели визуализации. Визуали-			
		ции	зация информации, научных и			
			инженерных расчетов, про-			
			граммного обеспечения как			
			основные направления.			
			Метафоры и критерии содер-			
			жательной визуализации. По-			
			нятие конвейера визуализации			
			как композиции трансформа-			
			ций прикладных данных.			
			Связь со смежными дисцип-			
			линами (компьютерной графи-			

		кой, вычислительной геометрией, дизайном, распознаванием образов, машинным зрением, анимацией, промышленным дизайном, визуальным программированием, информационным моделированием). Обзор истории развития визуализации, как прикладной научной дисциплины, и современные тенденции применения в научных исследованиях, технике, образовании, медицине, бизнесе. Примеры приложений.		
2	Моделирование визуальных сцен	Понятия цвета, формы, ориентации, текстуры, глубины, перспективы, движения. Введение в теорию цвета. Диаграмма хроматичности. Модели цвета RGB, CMY, HSV. Гамма коррекция. Граничное и конструктивное твердотельное представление геометрических объектов. Кривые и поверхности, заданные аналитически и аппроксимациями. Регулярные и нерегулярные сетки. Скалярные, векторные, тензорные поля. Маркеры, палитры, шкалы. Форматы изображений JPEG, TIFF, GIF, PNG, AVI, MPEG.	4	2
3	Методы компью- терной графики	Алгоритмы ЦДА и Берзенхема для вычерчивания отрезка и окружности. Алгоритм отсечения Цируса-Бека для множества отрезков. Алгоритм отсечения Сазерленда-Кохена для многоугольников. Заполнение сплошных областей методами сканирования и распространения. Удаление невидимых граней	4	2

			методами Робертса, Аппеля, упорядочивания, Z-буффера.		
4		Методы вычисли- гельной геометрии	Классификация многоугольников. Методы определения ядра многоугольника.	8	8
			Задачи о взаимном расположении объектов. Пересечение отрезков. Методы лучей и углов принадлежности точки многоугольнику. Задача о ближайших соседях.		
			Построение выпуклой оболочки множества точек методом "заворачивания подарка" и обхода Грэхема.		
			Триангуляция монотонных и немонотонных многоугольников. Прямой "жадный" метод, Фронтальный метод. Триангуляция Делоне, диаграммы Вороного.		
			Алгоритм заметающей прямой, его применение для пересечения отрезков и объединения прямоугольников.		
			Методы пространственного поиска. Октальные структуры, K-d деревья, R-деревья, BSP-деревья, метрические структуры.		
			Методы определения пространственных коллизий в сценах. Иерархии ограничивающих объемов. Задачи и методы планирования путей.		
5)	Визуализация на- учных и инженер- ных расчетов	Предобработка данных. Методы интерполяции, фильтрации, сглаживания, сжатия данных.	8	6
			Методы визуализации скалярных полей. Визуализация функций, заданных неявно. Линии уровня и области превышения уровня. Методы		

		маркированных квадратов, кубов, тетраэдров. Непосредственное отображение объемных данных. Управление цветом и прозрачностью. Трассировка лучей в скалярном поле. Визуализация векторных и тензорных полей. Метод маркеров. Метод линий и трубок потока для стационарных течений. Метод треков частиц для нестационарных полей.		
6	Визуализация информации	Психофизические и эмоциональные аспекты восприятия изображений и сцен. Выразительность техник визуализации. Ориентация на категории пользователей и их задачи. Логическая компоновка визуальных элементов и зонирование. Приемы акцентирования. Принятые правила и особенности использования различных типов визуальных элементов: таблиц, линейных графиков, столбчатых гистограмм, круговых диаграмм, точечных графиков, карт. Использование инструментальных панелей: спидометров, семафоров, строк уведомлений. Графическое оформление с использованием цвета, шрифтов, линий. Методы автоматической компоновки графов и диаграмм по спецификациям.	4	2

	T ~	T		1
7	Современные технологии и системы визуализации	Программные интерфейсы и библиотеки для разработки графических приложений ОрепGL, DirectX, ACIS, WebGL, HTML5. Системы научной визуализации общего назначения AVS, IRIS Explorer, IBM Data Explorer, OpenMV. Основные принципы и архитектуры систем. Примеры приложений и сценариев визуализации. Технологии виртуальной реальности. Языки моделирования сцен виртуальной реальности VRML97/X3D. Дерево трансформаций. Репертуар геометрических примитивов, материалов, источников света,	32	14
		трансформаций. Репертуар геометрических примитивов, материалов, источников света, сенсоров, интерполяторов. Механизм маршрутизации событий. Примеры интерактивной динамической пространственно-трехмерной визуализации. Современные системы управ-		
		ления проектами MS Project, Primavera, Synchro. Диаграмма Ганта. Технологии пространственно-временного моделирования и планирования проектов. Современные системы визуального программирования. Языки информационного мо-		
		Языки информационного моделирования UML, EXPRESS-G, IDEF и их роль в программной инженерии на основе моделей.		

5. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

В учебном процессе используются следующие образовательные технологии:

№ п/п	Вид занятия	Форма проведения занятий	Цель		
1	лекция	Изложение теоретического ма- териала	Получение теоретических знаний по дисциплине		

2	Лекция	Изложение теоретического ма-	Повышение степени понимания		
		териала с помощью презентаций	материала		
3	Лекция	Разбор конкретных задачи при-	Осознание связей между теорией		
		ложений визуализации	и практикой, а также взаимоза-		
			висимостей разных дисциплин		
4	Лабораторные	Разбор конкретных задач и спо-	Знакомство с современными		
	занятия	собов их решения с использова-	технологиями и приобретение		
		нием современных технологий	практического опыта решения		
		визуализации	задач в разных предметных об-		
			ластях		
5	Самостоятельная	Решение задач	Повышение степени понимания		
	работа студента		материала		

6. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ, ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ И УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБО-ТЫ СТУДЕНТОВ

Контрольно-измерительные материалы

Перечень контрольных вопросов для сдачи экзамена в 10-ом семестре;

- 1) Базовые понятия, принципы и цели визуализации
- 2) Конвейер визуализации
- 3) Связь визуализации со смежными дисциплинами
- 4) Модели цвета. Понятия формы, ориентации, текстуры, глубины, перспективы, движения
- 5) Граничное и конструктивное твердотельное представление геометрических объектов.
- 6) Кривые и поверхности. Регулярные и нерегулярные сетки. Скалярные, векторные, тензорные поля. Маркеры, палитры, шкалы
- 7) Форматы изображений JPEG, TIFF, GIF, PNG, AVI, MPEG
- 8) Алгоритмы ЦДА и Берзенхема для вычерчивания отрезка и окружности
- 9) Заполнение сплошных областей методами сканирования и распространения
- 10) Алгоритм отсечения Цируса-Бека для множества отрезков
- 11) Алгоритм отсечения Сазерленда-Кохена для многоугольников
- 12) Удаление невидимых граней методами Робертса, Аппеля, упорядочивания, Z-буффера
- 13) Применение BSP-деревьев для удаления невидимых граней
- 14) Классификация многоугольников. Методы определения ядра многоугольника
- 15) Построение выпуклой оболочки методом "заворачивания подарка" и обхода Грэхема
- 16) Задачи о взаимном расположении объектов. Пересечение отрезков
- 17) Методы лучей и углов принадлежности точки многоугольнику
- 18) Задача о ближайших соседях
- 19) Триангуляция многоугольников. Прямой и фронтальный методы
- 20) Триангуляция монотонных многоугольников
- 21) Триангуляция Делоне
- 22) Двойственность задач триангуляции Делоне и построения диаграммы Вороного
- 23) Алгоритм заметающей прямой для пересечения отрезков и объединения прямоугольников
- 24) Методы пространственного поиска. Октальные структуры, К-d деревья, R-деревья
- 25) Поиск соседей с использованием метрических структур
- 26) Методы определения пространственных коллизий в сценах. Иерархии ограничивающих объемов
- 27) Задачи и методы планирования путей
- 28) Методы предобработки научных данных

- 29) Методы визуализации скалярных полей. Визуализация функций, заданных неявно. Линии уровня
- 30) Методы маркированных квадратов, кубов, тетраэдров
- 31) Непосредственное отображение объемных данных. Управление цветом и прозрачностью. Трассировка лучей в скалярном поле.
- 32) Визуализация векторных и тензорных полей. Методы маркеров, линий и трубок потока, треков частиц
- 33) Выразительность техник визуализации
- 34) Основные визуальные элементы для отображения информации и особенности их использования
- 35) Применение инструментальных панелей
- 36) Методы автоматической компоновки графов и диаграмм по спецификациям.
- 37) Программные средства для разработки графических приложений
- 38) Системы научной визуализации общего назначения
- 39) Сценарии визуализации
- 40) Технологии виртуальной реальности. Языки моделирования сцен виртуальной реальности
- 41) Язык VRML97 и его основные конструкции
- 42) Особенности разработки интерактивных динамических пространственно-трехмерных приложений на языке VRML97
- 43) Современные системы управления проектами. Диаграмма Ганта
- 44) Технологии пространственно-временного моделирования и планирования проектов
- 45) Системы визуального программирования
- 46) Языки информационного моделирования
- 47) Язык UML/OCL и его роль в технологиях программной инженерии

7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Необходимое оборудование для лекций и практических занятий: компьютер и мультимедийное оборудование (проектор, звуковая система)

Необходимое программное обеспечение: система визуализации общего назначения (OpenMV, AVS), VRML браузер (Cortona3D, FreeWRL), система 4D моделирования проектов (Synchro, NavisWorks), Microsoft Office.

- 8. НАИМЕНОВАНИЕ ВОЗМОЖНЫХ ТЕМ КУРСОВЫХ РАБОТ учебным планом не предусмотрено
- 9. ТЕМАТИКА И ФОРМЫ ИНДИВИДУАЛЬНОЙ РАБОТЫ учебным планом не предусмотрено
- 10. ТЕМАТИКА ИТОГОВЫХ РАБОТ учебным планом не предусмотрено
- 11. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИС-ЦИПЛИНЫ

Основная литература.

- 1. Д.Роджерс. Алгоритмические основы машинной графики. М.:Мир, 1989.
- 2. Е.В. Шикин, А.В. Боресков. Компьютерная графика. М.: "Диалог МИФИ", 1997.
- 3. Ю. Тихомиров, Программирование трехмерной графики, Спб.: BHV, 1998.
- 4. М. Ласло, Вычислительная геометрия и компьютерная графика на C++. Москва. "БИНОМ", 1997.
- 5. Ф.Препарата, М.Шеймос. Вычислительная геометрия. Введение. М.:Мир, 1989.
- 6. Hanan Samet, Foundations of Multidimentional and Metric Data Structures. Morgan Kaufmann publishers, 2011.
- 7. Семенов В.А. Открытая система для математического моделирования и научной визуализации. Учебно-методическое пособие. М.: МФТИ, 2005.

- 8. Е. Ю. Ечкина, С. Б. Базаров, И. Н. Иновенков «Визуализация в научных исследованиях. Учебное пособие». М.: МАКС ПРЕСС, 2006.
- 9. H. Senay, E. Ignatus, Rules and Principles of Scientific Data Visualization, Tech. Report, George Washington University, Department of Electrical Engineering and Computer Science, February 1999.
- 10. В.Н. Касьянов, ВА. Евстигнеев. Графы в программировании: обработка, визуализация и применение. СПб.: БХВ-Петербург, 2003.

Дополнительная литература.

- 11. Э. Эйнджел. Интерактивная компьютерная графика. Вводный курс на базе OpenGL, 2 изд.: Пер. с англ. М.: Изд. "Вильямс", 2001.
- 12. W. Brodlie, J. R. Gallop, A. J. Grant, J. Haswell, W. T. Hewitt, S. Larkin, C. C. Lilley, H. Morphet, A. Townend, J. Wood, H. Wright, Review of Visualization Systems Advisory Group on Computer Graphics. Technical Report 1999, www.agocg.org/cd/reports/visual/vissyst/DOGBOO_2.HTMK
- 13. О. Авраамова. Язык VRML. Практическое руководство. М.: Диалог-МИФИ, 2000.
- 14. Дж. Шмуллер. Освой самостоятельно UML. М.: Вильямс, 2005.
- 15. У. Боггс, M. Боггс. UML и Rational Rose M.: ЛОРИ, 2001.

Электронные ресурсы, включая доступ к базам данных и . т.д.

<u>Информационные ресурсы:</u> Доступные через Internet научные и научно-технические журналы по компьютерной графике "Computer Graphics", труды конференций (GRAPHICON, ACM SIGGRAPH), материалы, публикации и приложения на web-странице группы визуализации в ИСП РАН, www.ispras.ru/~3D.

Программу составил			
Семенов В.А. профессор, д.фм.н.			
	‹	>>	2012 г.