Proceedings of ISP RAS


Comparison of partial orders clustering techniques.

A. Raskin.

Abstract

In this paper, we compare three approaches of clustering partial ordered subsets of a set of items. First approach was k-medoids clustering algorithm with distance function based on Levenshtein distance. The second approach was k-means algorithm with cosine distance as distance function after vectorization of partial orders. And the third one was k-medoids algorithm with Kendall's tau as a distance function. We use Adjusted Rand Index as a measure of quality of clustering and find out that clustering with all three methods get stable results when variance of number of items ranked is high. Vectorization of partial orders get best results if number of items ranked is low.

Keywords

Levenshtein distance; partial orders; clustering; distance measure: Kendall's tau distance

Edition

Proceedings of the Institute for System Programming, vol. 26, issue 4, 2014, Стр. 91-98.

ISSN 2220-6426 (Online), ISSN 2079-8156 (Print).

DOI: 10.15514/ISPRAS-2014-26(4)-7

Full text of the paper in pdf (in Russian) Back to the contents of the volume