
1

About formal interpretation of architecture models

Denis Buzdalov, Alexey Khoroshilov
Institute for System Programming of Russian Academy of Sciences; email: {buzdalov, khoroshilov}@ispras.ru

Abstract

It is essential for nowadays architecture models to be
able to be analyzed by automatic tools. This paper
discusses what is needed for this and how robust in-
terpretability can be achieved.

1 Introduction

This paper discusses issues of floating between abilities to
express something complex in architecture models and abili-
ties to formally interpret these models.

Generally, modelling languages are needed for both follow-
ing usages:

• to express some ideas by some author (usually, a hu-
man) and

• to perceive these ideas by some particular interpreter

(which can be a human or a machine).

These two usages of modelling languages contradict with
each other. The more powerful a modelling language is, the
easier to write models for author and the harder they are per-
ceived by interpreters (in particular, the harder to implement
a machine interpreter). Vice versa, the less powerful the mod-
elling language, the easier to interpret it and the harder to use
it by a model author.

If the intended interpreter of a modelling language is a ma-
chine, the language have to have formal semantics.

Sometimes modelling languages are used to solve a lot of
tasks some of which are not automated yet. In such cases
those parts that are intended to be used only by human may
be left not so formalized. Generally this situation is normal
but since models are tending to become more and more com-
plicated, covering of analysis tasks by automation becomes
more and more essential.

2 Formal interpretation

Every modelling language has bounds for set of domains
where it is applicable. Domain defines aims and ways how
such language would be used.

In particular, domain defines which characteristics are
needed to be estimated by an architecture model. It defines
precise enough semantics for each characteristic.

Characteristics example For instance, we can consider

such characteristics of architecture models like:

• latencies of data going though the system;

• power consumption of the whole system and its

parts;

• what is the reaction of a system on particular stim-

ulus end etc.

Notice that some of such characteristics may be defined
in some normative documents like international standards.
Some other characteristics may be induced by particular not-
standardized user definition. They can be set in user docu-
ments too.

AFDX in AADL We can consider a document named ‘Rec-
ommendations of modelling AFDX nets in AADL mod-
els’. This document is not a part of the AADL standard.

But it definitely can define different domain-specific

characteristics of AADL models: e.g. we can consider

a formal interpretation with semantics of maximal and

minimal AFDX switch buffers loading.

This interpretation is not meaningful considering only

AADL standard as a source of formal interpretations.

But addition of user normative document widens set of

interesting interpretations.

Talking about machine interpreters, those characteristics of
architecture models need to be formalized. Formalization
of getting machine-interpretable (i.e. formal) result with se-
mantics of some particular characteristic (of an architecture
model) is called formal interpretation of the architecture
model.

There is a common issue for formalizations: formal interpre-
tation may be or may be not adequate to the original (infor-
mal) semantics. Determination of adequacy of particular for-
mal interpretation to its intended semantics (induced e.g. by
domain of usage) is a task that have to be solved by human.

3 Underlying formal models

Lots of formal interpretations of some particular architecture
modelling language need to perform a lot of more or less
same actions for rearranging syntactic representation of mod-
els according to theirs semantics.

We would call formal objects that turn out after these actions
underlying formal models. We can consider formal objects

of a model (possibly, with some properties) and relations be-
tween them.

To make a machine to work with underlying models, all ob-
jects and relations have to have precise semantics. It means
that set of operations and actions that can be done with such
objects have to be formally defined.

Ada User Journal Volume ?, Number ?, June 2015



2 Formal interpretation of arhiteture models

Figure 1: General view of formal interpretations

3.1 Different models

Notice, that single language may have different underlying
models (which require different ways to get those underlying
models for a single architecture model).

We can consider different relations between underlying mod-
els of a single modelling language. As an example, we will
consider whether such models contradict with each other or
not in some cases.

Let us consider two important different underlying model
types.

Domain models We can call domain model an underlying
model of a language which contains info for formal in-
terpretation which have results that are meaningful in
some particular domain.

Type models Domain model objects can have types. It
means that some relation (which can be called ‘is type

of’) exists between objects of domain model and some
particular set of types.
Actually, we can notice that types also can have rela-
tions between each other. Since types can also be con-
sidered as formal objects, types with theirs relations can
be organized into formal types model.

So, we can consider some joint formal model containing all
objects and relations of both domain and types model and
mentioned above ‘is type of’ relation. This model is also an
underlying model of the same language.

AADL instance model If the AADL instance model was for-

malized enough, it could be considered as the typed do-

main model for AADL.

3.2 Formal translation

Both modelling language grammar and underlying model are
formal. Underlying model is built upon statements of the
modelling language.

This allows us to define formal translation of original mod-
elling language to underlying formal model. Semantics of
the language constructs have to be used during such transla-
tion.

AADL component instances For example, AADL contains

rules of filling properties of ‘component instances’ ob-

jects.

We can consider this process as a part of formal trans-

lation of AADL text to the instance model (if it was for-

mal).

AADL connections Consider an example what objects

could be in some underlying model.

AADL grammar defines connection constructs.

They mean data and control transmission between

model components. They can be contained in different

components (which in their order can lay in different

places in the containment hierarchy).

The language standard defines semantically meaningful

notion of ‘semantic connections’. They are built upon

a set of linked connection instances with respect of

components structure.

The standard defines how to get semantic connections

by the model definition. If this translation is formalized,

it can be used as a part of formal translation to underly-

ing model containing objects of type SEMANTIC CON-

NECTION.

Such objects are useful for machine interpreters that are

working with semantics connections. If such objects ex-

ist in an underlying model, they do not have to perform

the same job of building of similar formal objects upon

simpler ones (e.g. connection instances).

3.3 Semantic functions

To interpret formally translated underlying model, we need
to define first a formal result which we want to reach. We
need to define the type and semantics of this result.

Functions that map an underlying model (with, probably,
some additional information) to semantically meaningful for-
mal result are called semantic functions.

Semantic functions finish formal interpretation process. It is
one of the most important part of the formal interpretation
because underlying models are intended to be used by lots of
semantic functions and are meant to be adequate. It means

Volume ?, Number ?, June 2015 Ada User Journal



D. Buzdalov, A. Khoroshilov 3

that semantic functions determine adequacy of formal inter-
pretation it participates in.

Now let us consider several important examples of semantic
functions.

3.3.1 Internal consistency

One particular and important case of semantic functions are
functions of internal model consistency. They are needed
because not all relations in the same underlying model are
independent.

Internal consistency rules are functions that map a single un-
derlying model into a boolean result.

AADL consistency rules Legality rules and semantics sec-

tions (though the prism of instance model building

rules) give consistency rules for instance models.

For example, legality rule saying that process com-

ponents cannot contain other process components

would transform to the consistency checking function

defined on a formalized instance model in some way like

∀ PROC1 : PROCESS, PROC2 : PROCESS •

¬(PROC1 ‘contains’ PROC2)

Also, we can consider a rule induced by the se-

mantics of properties: e.g. no object can have

Compute_Deadline property greater than

Deadline because the first property means a

period of time that is a part of period of time deter-

mined by the second one.

3.3.2 Latency analysis

Latency of data and control passing though the system is a
one of most important characteristics of real-time systems.

Semantic connection latency We can consider a semantic

function for formalized AADL instance model returning

bounds of latency for each semantics connection using

information of latencies in execution platform (consid-

ering speed of buses, execution schedules and etc.).

3.3.3 Execution traces

If we are modelling systems that have some particular be-

haviour, we definitely can think of semantic functions aware
of traces of execution of such systems.

One useful and not very complicated kind of such functions
is a execution trace checker function. Besides the model,
it requires additionally an execution trace (with outer world
stimuluses, if needed). Formal result of such kind of func-
tions is a boolean value with semantics of whether given
trace can appear during the execution of the model.

This kind of semantic functions can be used both for deter-
ministic and non-deterministic models. Other kinds of sim-
ilar functions can be considered, e.g. those which generate
model execution trace. They can require additional informa-
tion.

4 Expressiveness and interpretability

4.1 Underexpressiveness

We can consider some particular (informal) interpretation se-
mantics that is, for example, induced by the domain.

Consider the case when no formal interpretation that con-
forms this interpretation semantics, exists. In this case we
say that the language is underexpressive.

Consider another situation when some particular underlying
formal model is considered and no formal interpretation us-
ing this formal model exists for the informal interpretations
semantics. In this case this underlying model is called under-

expressive.

In other words, we cannot express something that we need
to express using underexpressive language or its underlying
model.

Processor component example AADL legality rules set

that processor components cannot contain other

processor components. Considering ‘can contain’ re-

lation of types, this rule can be formalized in way that

PROCESSOR does not have relation ‘can contain’ with

itself.

Considering rules of components instantiation and sub-

components containment, the formalized rule above

means that no AADL model with nested processor

components can satisfy instance models consistency

rules.

Since only processor components can contain prop-

erties of hardware processors, we are not able to rep-

resent nested structure of hardware processors. Thus

we are unable to represent multicore systems using

processor components.

Finally it means that no formal interpretations that are

defined for multicore systems exists for AADL. This ex-

ample reflects the situation of the AADL standard of ver-

sion 2.1.

4.2 Overexpressiveness

We can consider another case, somewhat inverse to the previ-
ous one.

We call language or model overexpressive if it does not have
a single adequate formal interpretation for some particular
semantics.

Two reasons can lead to it:

1. no adequate formal interpretation exists for this seman-
tics;

2. more than one contradicting and adequate formal inter-
pretations exist for the semantics.

In other words, overexpressiveness is a situation when it is
possible to express more than it can be formally interpreted.

Ada User Journal Volume ?, Number ?, June 2015



4 Formal interpretation of arhiteture models

Processors misinterpretation Consider that we decided to

solve the mentioned above underexpressiveness prob-

lem in a pretty simple way: we allowed objects of type

PROCESSOR to contain other objects of type PROCES-

SOR. This decision influences at least on underlying

model and formal translation rules.

Consider a semantic function which maps an underlying

model to count of operating systems in it. We can think

of interpretation that is lying on the current semantics

of instance type PROCESSOR which incorporates both

hardware chip and operating system model.

When we look at formal interpretation that uses this se-

mantic function we will find that this interpretation is

not adequate to what we want to understand by several

nested processor components because three operat-

ing systems in a model with two-core CPU is not a thing

meant to be expressed.

We can imagine another semantic function that seems

to be more adequate: for example, it defines that if

we have a couple of objects CONTAINING PROC and

NESTED PROC of type PROCESSOR that have ‘con-

tains’ relation between them, it means that NESTED

PROC is considered to not to represent an operating sys-

tem.

Alas, this semantic function contradict with the current

(both formal and informal) standard interpretations.

Sometimes the reason of second variant of overexpressive-
ness is the lack of semantics in normative documents, which
allows to imagine lots of pairwise contradicting formal in-
terpretations that conform to the original semantics require-
ments.

Connection binding We can consider lack of se-

mantics at the example AADL property called

Actual_Connection_Binding.

This property is a list of references to different execution

platform components.

First of all, formal interpretations can differ on at-

titude to the order of items of this property associ-

ation. Situation can become spicy when we remem-

ber that different ports and connections (that can have

Actual_Connection_Binding relation) can be

bidirectional.

But even if we would stop on the interpretation of this

property as a set of references, we can have lots of dif-

ferent interpretations of a single semantic property.

For example, one interpretation can assume that all ref-

erenced execution platform components have to be used

for transmission of each message through bound port or

connection. Another interpretation can think that only
those components that are in the binding list can be

used for transmission. Also, interpretation assuming no
strict obligations can exist.

Also, another point where interpretations can differ is

how branching routes are managed. The same issues

(whether all or only some branches have to be covered

for each sent message) can be considered.

4.3 Underlying model refinement

To manage overexpressiveness not running into underexpres-
siveness, we need to refine the objects set and to change rela-
tions appropriately. Obviously, such changes lead to appro-
priate changes of formal translations.

In particular, we can consider a type SUBJ having a relation
‘rel’ with some other type OBJ. If this relation is overexpres-
sive, i.e. we cannot interpret all such relations but only some
of them, we can try to split the type SUBJ to two: SUBJ+

and SUBJ-, where SUBJ+ has the relation ‘rel’ with OBJ and
SUBJ- has not.

This allows to have more granulated relations between ob-
jects in a corresponding typed domain model.

Overexpressiveness problems management Now we can

think of how we can manage overexpressiveness by the

underlying model refinement, in particular by model ob-

jects separation.

The problem is that there are too many operating sys-

tems in the formal model, more than we want to express.

We need to refine the formal model to allow to express

only what we can interpret leaving ability to express

enough.

To do so, we can distinguish the following three types

in the instance level: HW PROCESSOR, HW CORE and

OS. Only HW PROCESSOR has relation ‘can contain’

with HW CORE. To express that operating systems run

on a processor and manages its cores, we need a rela-

tion ‘can run on’ between OS and HW PROCESSOR

instance types. We should not allow an operating sys-

tem to run on a single core of a processor. It is done by

absence of ‘can run on’ relation between OS and HW

CORE.

We need the formal translation rules to be refined. For

example, all upper-level processor components can

be translated to pair of objects of type HW PROCESSOR

and OS and all nested processor components can be

translated to HW CORE objects.

5 Related works

There are several works related to the problem of formal se-
mantics of modelling languages like AADL. Great classifica-
tion of such works is given in [1].

Generally, it points to different kinds of behavioural seman-
tics definitions. Some of them do not rely on additional spec-
ification of components behaviour [2,3,4]. Some approaches
rely on non-standard behaviour specifications [5,6,7]. Other
approaches define formal semantics for standardized be-
haviour specification [1, 8].

This work is mpre general and differs from those works
mainly in two points:

Volume ?, Number ?, June 2015 Ada User Journal



D. Buzdalov, A. Khoroshilov 5

1. this work does not offer a concrete semantics for partic-
ular language standard parts; we propose a discipline of
language standards writing which consequence is a for-
mal semantics definition in the language standard; this
frees the language users and instruments writers from a
need to reinvent (possibly, contradictory) formal seman-
tics for parts of the standard;

2. this work touches formal semantics not only of be-
havioural part of modelling languages; in the paper we
try to offer a uniform way of working with different se-
mantic aspects of a modelling language.

6 Conclusion

To analyse architecture models by a machine, domain-
induced formal interpretations have to be defined. Under-
lying models can be used to reduce effort of formalization
and implementation of such interpretations.

All transformations used in such interpretations are formal.
These formal transformations should be checked for ade-

quacy to informal semantics which is defined by normative
documents.

AADL standard contains a lot of information needed for for-
mal interpretation of AADL models. But a lot of things are
left not formalized enough or even missing. Some examples
were discussed above.

Way of thinking a language standard as a place of definition
of formal interpretations seems to be the way for language
to become formally interpretable that is easily and robustly
analyzable by a machine.

The future work should focus on formalization of user inter-
pretations, in particular, usage of multiple underlying mod-
els induced by multiple normative documents. This allows
to build analyzers for user-defined characteristics which are
formalized and can be implemented in different instruments
with the same precise semantics.

Generally, such approach makes architecture models analy-
sis robust and trustful.

References

[1] P. Ölveczky, A. Boronat, and J. Meseguer, “Formal se-
mantics and analysis of behavioral aadl models in real-
time maude,” in Formal Techniques for Distributed Sys-

tems (J. Hatcliff and E. Zucca, eds.), vol. 6117 of Lecture

Notes in Computer Science, pp. 47–62, Springer Berlin
Heidelberg, 2010.

[2] O. Sokolsky, I. Lee, and D. Clarke, “Process-algebraic
interpretation of aadl models,” in Reliable Software Tech-

nologies – Ada-Europe 2009 (F. Kordon and Y. Kermar-
rec, eds.), vol. 5570 of Lecture Notes in Computer Sci-

ence, pp. 222–236, Springer Berlin Heidelberg, 2009.

[3] S. Gui, L. Luo, Y. Li, and L. Wang, “Formal schedu-
lability analysis and simulation for aadl,” in Embedded

Software and Systems, 2008. ICESS ’08. International

Conference on, pp. 429–435, July 2008.
[4] P. Dissaux and O. Marc, “Executable AADL: Real-time

simulation of AADL models,” in ACVI 2014 – Architec-

ture Centric Virtual Integration Workshop Proceedings,
pp. 59–68, 2014.

[5] E. Jahier, N. Halbwachs, P. Raymond, X. Nicollin, and
D. Lesens, “Virtual execution of aadl models via a trans-
lation into synchronous programs,” in Proceedings of the

7th ACM &Amp; IEEE International Conference on Em-

bedded Software, EMSOFT ’07, (New York, NY, USA),
pp. 134–143, ACM, 2007.

[6] T. Abdoul, J. Champeau, P. Dhaussy, P.-Y. Pillain, and
J. Roger, “Aadl execution semantics transformation for
formal verification,” in Engineering of Complex Com-

puter Systems, 2008. ICECCS 2008. 13th IEEE Interna-

tional Conference on, pp. 263–268, March 2008.

[7] D. Buzdalov and A. Khoroshilov, “A discrete-event sim-
ulator for early validation of avionics systems,” in ACVI

2014 – Architecture Centric Virtual Integration Work-

shop Proceedings, pp. 28–38, 2014.

[8] Z. Yang, K. Hu, D. Ma, and L. Pi, “Towards a formal se-
mantics for the aadl behavior annex,” in Design, Automa-

tion Test in Europe Conference Exhibition, 2009. DATE

’09., pp. 1166–1171, April 2009.

Ada User Journal Volume ?, Number ?, June 2015


