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Zusammenfassung:

Eine objekt-orientierte Architektur zur Entwicklung integrierter CAD-Systeme wird
beschrieben. Durch die Kombination des „Entity-Relationship“-Paradigmas mit
einem objekt-orientierten Ansatz für Entwurf, Modellierung und Visualisierung ist die
Architektur flexibel, erweiterbar und wiederverwendbar, so daß Komponenten mit
unterschiedlichen Funktionalitäten integriert werden können und komplette CAD-
Systeme für verschiedene Anwendungsgebiete auf der Basis derselben
konzeptionellen, methodischen, instrumentellen und programmtechnischen Basis
entwickelt werden können.

Die Architektur umfaßt einen objekt-orientierten Kernel, der invariant bezüglich
unterschiedlicher Anwendungsfelder und Probleme ist, eine einheitliche
Benutzerschnittstelle und erweiterte Klassenbibliotheken für spezielle
Anwendungsgebiete. Der objekt-orientierte Kernel ermöglicht die Repräsentation von
Ergebnissen von Entwurfs-, Modellierungs- und Visualisierungsprozessen als eine
Komposition zusammenhängender Datentypen und Algorithmen. Er bietet
einheitliche Mechanismen zur Komposition komplexer Objekte sowie zur
Spezifikation von Modellier- und Visualisierungsszenarien und ihrer Interpretation.
Mit Hilfe der  graphischen Benutzerschnittstelle, die  Menüs, Dialoge und Ansichten
beinhaltet, können Benutzer interaktiv sowohl einzelne Objekte als auch ganze
Szenarien in einheitlicher Weise manipulieren.

Im Rahmen des Aufsatzes werden mehrere Beispiele für die Benutzung der
beschriebenen Architektur vorgestellt, wodurch nachgewiesen wird, daß die
Architektur genutzt werden kann, um integrierte CAD-Systeme und komplexe,
interaktive  Applikationen für interdisziplinäre Untersuchungen zu entwickeln.



Abstract:

An object-oriented architecture for development of integrated CAD systems is
proposed and discussed. Combining “entity-relationship” paradigm and an original
object-oriented approach to design, modeling and visualization, the architecture offers
flexibility, extensibility and reusability enough to integrate different-purpose
components and to develop complete CAD systems in essentially different areas on
the same conceptual, methodological, instrumental and programming basis.

The architecture includes an object-oriented kernel being invariant with respect to
various applied areas and problems, unified graphic user interface and extended class
libraries specific for considered areas.

The object-oriented kernel supports representation of final results of design, modeling
and visualization processes as a composition of connected typed data and algorithms
and provides uniform mechanisms for composing complex designed objects,
specifying modeling and visualization scenarios and their interpretation. The user
graphic interface includes menus, dialogs and views that permit user to interactively
manipulate with separate objects and whole scenarios in uniform manner.

Discussion is illustrated by several examples of reusing the architecture for
development of special systems.

The architecture seems to be promising for development of integrated CAD systems
and complex interactive, graphic, computational applications intended for
interdisciplinary investigations.

1 Introduction

Currently computer aided design and modeling play a central role in both science and
industry technologies connected with studying complex phenomena and
manufacturing high-end products. Development of complex applications, such as
CAD/CAM/CAE systems, was always a difficult task connected with integrating
different-purpose components; providing a wide functionality, extensibility;
supporting interoperability, parallel and distributed computing; implementing
convenient user interface. The integration of tools and information is a key problem to
be resolved for building integrated CAD systems.

Recently product data exchange and infrastructure standards, such as STEP [1], EDA
[2] developed within industry initiatives Open CAD Architecture and Interoperability
(OCAI) [3], CAD Framework Initiative (CFI) [4] define interfaces that facilitate the
integration of design data and tools. In combination with Common Object Request
Broker Architecture (CORBA) [5] and The Reference Model for CAD-Systems
(CADRM) [6], they can be applied to create distributed environments for concurrent
multidisciplinary design.

The mentioned above architectures provide frameworks for the integration of
different CAD applications but cannot be effectively applied for building complete
multifunctional systems in view of necessity of integration of heterogeneous data and



tools within the same applications. This kind of integration has principal value for
building next generation CAD systems integrating different-purpose components and
providing powerful customization tools for their future evolution based on Plug&Play
capability. This capability should allow extending destination and functionality of the
created system directly by adding new graphic, computational, communicational, and
informational components. Such integration imposes strong requirements upon
uniform representation of different kinds of objects, general mechanisms for their
interaction, common rules of manipulation by them.

Indeed, using an open object-oriented system, we hope that it may be relatively easy
expanded by an appropriate set of specific components and, thus, may be customized
for considered application areas, particular problems and technical requirements. For
example, we expect that complete CAD/CAM/CAE applications integrating needed
components for design specification, geometry modeling, physical processes’
simulation, mathematical problem solving, visualization, rendering may be developed
by such way. Nevertheless, we foresee serious obstacles to use many widespread
systems for the creation of complex applications mainly because of not sufficient
generality of architectures and flexibility of mechanisms by means of objects may
interact with each other.

Customization toolkits such as CV DORS, PTC’s Pro/DEVELOP, Matra Datavision’s
CAS.CADE, ACIS, Parasolids [3, 7] are stiffly oriented on particular domain models
and do not permit direct expansion into other dissimilar engineering areas. For
example, being oriented on the boundary representation solid model, the ACIS kernel
provides expansion only in the scope of the predefined model-based core classes.

Another approach to building integrated systems has been implemented in general-
purpose visualization and animation systems [8, 9]. This approach exploits object-
oriented and data flow paradigms to develop reusable software components and to
apply them within different visual programs. Main drawbacks of this approach are
inter-connectivity mechanisms specifying rules for composition of separate objects
into a scene and ways by means of which objects interact with each other while the
scene is constructed. This paradigm predetermines serial composition of techniques
applied to intermediate data and excludes the other possible ways of object’s
interaction. Nevertheless, such capabilities may be useful enough for run-time
composing and interpreting complex working scenarios encountered in meaningful
particular applications and, thus, may provide necessary generality for customizing an
open system to specific problems. It is essential that semantics of objects and ways
they interact in developed applications may not be priory known and the system
architecture should provide uniform inter-connectivity and interaction mechanisms
without any concretizing types of supported data and techniques.

In our research we follow to the “entity-relationship” paradigm that seems to be more
natural and complete to suit generality and flexibility requirements imposed by
integrating goals. Extending traditional data flow paradigm, it permits more
sophisticated object’s interaction schemes to be important for some topics of digital
circuits design, modeling hydraulic network, simulation and visualization of
bistability in semiconductor crystals considered in the paper. In combination with the



object-oriented approach it can be applied as constructive basis for general domain
unified approach to development of open integrated CAD applications.

In section 2 we present an object analysis for design, modeling and visualization
applications and describe the underlying principles of the unified kernel. In section
3,4,5 possibilities for reuse of the kernel for several essentially different dissimilar
problems are investigated to illustrate its generality and flexibility. Section 6 is
devoted to formulating a general component-based approach to unified development
of complex integrated applications. In conclusions we address to more detailed
information about approbation and dissemination of the proposed architecture and
outdraw areas of potential applications.

2 An Unified Object-Oriented Kernel for CAD Applications

We consider the final graphic scene of a CAD application as a composition of
connected typed data taking part in all processes of application, such as design
specification, modeling, analysis and visualization, as well as used algorithms
realizing mentioned above processes by means of constructing, transforming, deleting
these data. Therefore, computer aided design can be considered as a multistep process
oriented towards construction of final scene in result of defining instances of data and
algorithm classes, setting relationships between them, composing working scenario
from separate data and algorithms and its interpretation. To achieve the needed
quality the composed scenario should be iteratively applied to the same design
problem with gradually corrected data and adjusted techniques. Once being composed
the scenario can be applied then to a wide range of similar problems.

We distinguish passive data-objects that control only own behavior and active
algorithm-objects that can govern behavior of other objects through message passing
in classic object-oriented style. An approach based on subdivision of active and
passive objects reproduces to some extent Bailin’s methodology known as object-
oriented requirement specification [10] and has been successively applied to
development of a wide range of mathematical software [16], general-purpose
scientific visualization system [17], integrated modeling and visualization
applications [18, 19].

In the following we consider in more details the unified object-oriented kernel for
CAD applications to be developed. The object-oriented kernel (framework) is a
system of abstract and concrete classes that express high-level semantics concepts of
computer aided design and provide a wide functionality for building various
applications on the same constructive instrumental basis.

The basic abstract class is Object that expresses arbitrary data and algorithms taking
part in design specification, modeling, analysis and visualization. Objects may be
saved in and restored from files, created, connected, transformed, viewed, copied,
distributed over processes and deleted as application runs. To manipulate uniformly
by different kinds of objects and to provide kernel functionality Object encapsulates
identification key, version number, logical displacement in the scene (will be
explained later) and the numbers of processes over which it has been distributed.



These attributes are shared by all scene objects, the classes which are derived from
Object.

Besides common attributes each concrete object obj ∈∈ Object has an own set of
attributes defining its internal state and behavior as well as a set of typed links. Links
are external ports of objects through which they may connect with other ones. Each
link corresponds to some unidirectional connection of its object with other object or
objects. A type of separate link Link ⊆⊆ Object predetermines potential capability of
the object obj to connect with any other ones lobj ∈∈ LinkObject, type of which
satisfies to link type or, by another words, is its subtype LinkObject ⊆⊆ Link.

Availability of connections in a scene means functional dependence of its objects and,
consequently, necessity of their simultaneous consideration and analysis. Being set
each connection defines usage relations between a main object having a link and
auxiliary objects involving to it. We consider single and multiple connections. A
single connection defines one usage relation between a pair of objects considered as
main and auxiliary ones. Multiple connections should be used when one main object
interacts with a subset of auxiliary objects of the same generic type through one link
lobj_i ∈∈ LinkObject_i ⊆⊆ Link, i = 1,...,n. The number of objects n involved into
multiple connection may be arbitrary and depends only on particular scenario realized
in an application.

To distinguish ways by which objects may interact, all links and connections
corresponding to them are classified as input, output and mixed (input/output).
Having links and participating in connections, a main object uses data and methods of
auxiliary objects and, therefore, may change states of connected objects. It is
suggested that the main object is capable to change states of auxiliary objects through
output and mixed links, and is not capable to influence on input objects. The main
object depends only on input objects and mixed objects and does not depend on
output objects. The main object and auxiliary objects involved in mixed connections
are mutually dependent. Thus, the described dependence relations based on
classification of links of interacting objects may be established.

To develop parallel applications we need to refine the concept of object from an
implementation viewpoint. We distinguish between objects that may be located only
at any of the processes initiated by the application and objects that may be distributed
over a set of the processes. Local objects are implemented by traditional methods of
sequential programming. An implementation of global objects is based essentially on
parallel programming. For brief we omit details connected with possible techniques
for data partition and consider that each global object may be scattered and gathered
in accordance with some generic rule specifying a subset of processes over which the
object to be distributed and a way of its geometric, physical, logic or any else
partition.

Encapsulating described behavior and properties of objects, the class Object specifies
the following groups of methods common for its concrete instances:



• creation (construct, destroy, copy; save, restore in/out file),

• identification (identify an object, its class, parent class, version; verify whether
the object belongs to given type),

• inter-connectivity (get number of links, their classes, types; connect objects),

• parallel processing (transmit (send, receive) a local object, distribute a global
object),

• scenario information (get parameters of a scene, logical arrangement of an object
in a scenario).

The basic concepts are also data-objects dat∈∈ Data ⊂⊂ Object and algorithm-objects
alg ∈∈ Algorithm ⊂⊂ Object. Abstract classes Data, Algorithm are derived from Object
and inherit its behavior and properties. The class Data expresses entity of various data
encountered in CAD applications. Its instances may control only the own behavior.
The class Algorithm represents various algorithms, transforms, operations, and
auxiliary utilities realizing all processes in computer aided design processes. The
algorithms are active objects that can control both own behavior and behavior of
auxiliary objects (not only data) connected through their links. The algorithms may
not have input links, but necessarily have output and/or mixed links. In addition the
algorithms have time attributes connected with discrete-event simulation discussed
below.

The essential distinction of algorithms consists in their activity that is realized when
appropriate events occur in an application. In these cases an appropriate method for
running algorithm is activated. It is suggested that all connections of algorithms have
been preliminary set to activation moment. In the opposite case the algorithm is
considered as passive data-object and is not activated to eliminate possible error
situations. While an algorithm is running, it sends messages to connected objects to
get states of input and mixed objects, to perform needed operations over them, to
update mixed objects and to construct output objects.

Figure 1 gives an example of an objects’ interaction. The example illustrates how
typed data and algorithms may be connected and interact through typed links. A
hierarchy of classes specifies inheritance relations between classes of data and
algorithms. A scenario diagram specifies a particular scheme of connected and
interacting objects. In the scenario diagram data and algorithm instances are shown as
ovals and rectangles correspondingly. Links of the objects are marked by points.
Connections between objects are shown as arrows. Such scheme can be represented in
terms of object-oriented methodology with usage of Booch’s notation [11]. Figure 2
gives Booch’s diagrams of classes and objects for the same example.



dat3 ∈∈ Data3

dat5 ∈∈ Data4

dat1 ∈∈ Data1 dat2 ∈∈ Data2

dat4 ∈∈ Data4alg ∈∈
Algorithm1

link1

link4

link2

link3

Input link1 ∈∈ Data1,
link2 ∈∈ Data3

Output link4 ∈∈ Data4
In/Out link3 ∈∈ Data4

• • Object

• •  Data

• •  Data1

• •  Data2

• •  Data3

• •  Data4

• •  Algorithm
• •  Algorithm1
• •  Algorithm2

Figure 1: Class hierarchy and interaction of typed objects

Note that the accepted way to direct arrows corresponds to data flows in the scenario.
This circumstance reveals similarity with traditional data flow diagram widely used in
visualization and animation systems. Nevertheless, the scenario diagram expresses
more general paradigm “entity—relationship” that, to our opinion, is more preferable
in view of capabilities to specify more sophisticated kinds of objects’ interaction. The
design problems discussed below give examples of objects’ interaction that could not
be represented and described by data flow diagram but they are naturally specified in
terms of our approach.
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Figure 2: Class and object diagrams in Booch’s notation for the considered
scenario

A concept of Scenario reproduces an idea of representation of structured processes
for solving complex design specification, modeling, analysis, and visualization tasks
as a composition of typed data and algorithms. Class Scenario is a container class that
supports ordered representation of inserted data and algorithm objects and implements
functionality needed for composing and interpreting complex working scenarios
without any refinement of types of particular objects.

As a rule integrated CAD systems include many different-purpose components that
should be applied in combination with each other to correctly specify design
requirements and features, to adequately reproduce simulated phenomenon and to
realistically visualize obtained results. The described above representation allows to



connect different-purpose algorithms within the whole working scenario and then to
apply it to a complex task. Since the designing process has usually iterative character,
a scenario once composed may be repeatedly applied to the same task with modified
data properties, adjusted techniques’ parameters, more convenient views. The
scenario can be refined by iterative way and be interpreted until desirable design
quality will be achieved.

Instances of the Scenario class may correspond to both separate parts of composite
designed object and sequences of algorithms (instructions, commands) to be
performed to accomplish an appropriate design process. In the first case the scenario
contains only passive data-objects, while the scenario containing active algorithm-
objects can be interpreted by appropriate way for solving appropriate complex task.
Indeed, as particular algorithms of the scenario are activating, its objects will interact
with each other resulting in the construction of new objects, destroying and updating
existing objects and generating final design object. In the following we will not
distinguish these cases using the same generic class implementation.

The functionality of the class Scenario is provided by abstracting types of data and
algorithms specific for particular developed applications. The class defines following
groups of methods:

• creation (registry class of an object, construct an object of given class, update
version of an object, copy, delete),

• identification (get an object by an identification key, select objects belonging to a
given type),

• inter-connectivity (connect an object with given auxiliary objects, connect objects
automatically),

• scenario interpretation (get physical and real time, iteration number; plan a
scenario (rank the scene, arrange its objects), analyze latent objects, manage
events; run a separate algorithm, active algorithms and whole scenario),

• processing application events.

Discuss some features in manipulating whole scenario and its interpretation.

To simplify the connecting procedure a special mechanism is provided to connect
objects automatically. The mechanism is based on type analysis performed for all
objects and inclusion of acceptable objects into connections marked as automatic. All
acceptable objects are included in multiple connections. Only the first selected objects
are included in single connections. This technique is very useful in cases when a type
of an object predetermines some semantic actions that should be performed
automatically. For example, it would be convenient to draw geometric objects
automatically just after their construction. In this case the procedure intended for
drawing the whole scene may be implemented as an algorithm having input multiple
link of the geometric object type GeometryData ⊂⊂ Data. Every time a new geometric
object should be constructed, it is automatically connected to the algorithm and drawn
without any additional efforts.



To perform a composed scenario different interpretation schemes can be applied. The
class Scenario implements two basic schemes corresponding to logical and physical
(event-based) simulation. Being used repeatedly both schemes can be applied for
static and dynamic analysis of behavior of the objects to be designed, simulated and
visualized. The only distinction lies in the order according to which separate
algorithms of the scenario should be activated.

2.1 Logical interpretation

Following to logical interpretation algorithms are activated in the order strictly
predefined by an user. Such scheme is often used in general-purpose scientific
visualization systems exploiting visual programming paradigm [8, 9]. Correct
interpretation of the scenario has to result in serial passing data through conveyor
consisted from processing modules and to generating final results. If logical order was
disturbed, there may occur errors connected with attempts to activate algorithms
without preliminary prepared data. To avoid such situations the user should arrange
algorithms in the right order corresponding to dependence relations arising between
the scenario objects owing to links having appropriate input, output or mixed status.
In sophisticated scenarios containing a lot of connected objects the arrangement may
be very difficult for the user. To simplify it the class Scenario provides methods for
automatic and semi-automatic arrangement of objects. The methods are based on
ranking scenario objects. Ranking aims to assign to each object an index (vertical
coordinate) locating its logical position in the scenario diagram similar to that
presented in Fig.1. It is essentially that objects placed on diagram may depend only on
states of objects located in upper positions and, conversely, do not depend on states of
objects having lower positions. The orientation of arrows connecting objects through
links corresponds to dependence relations between objects and to the succession of a
serial interpreting scenario from top algorithms to down ones. Ranking can be easily
formalized and implemented. For scenarios without cycles (feedback loops) ranking
results in unique arrangement. For scenarios containing cycles the result may be
ambiguous and the user should preliminary order algorithms belonging to detected
cycles.

Being composed and arranged the scenario can be then executed repeatedly for new
sets of data to be processed. Often significant part of the scenario is remaining
without any changes. To exclude redundant running algorithms in such situations and,
thus, to increase efficiency of the scenario execution a latency analysis should be
performed. The latency analysis aims to select latent object — objects whose states
can not be changed at current iteration. Indeed, if input data of an algorithm have not
been changed at current iteration of the scenario, activation of the algorithm cannot
result in changes in output objects and, therefore, has no meaning. The interpretation
methods of the class Scenario accomplish the latency analysis by comparing versions
of input objects with their versions stored at previous iterations. If versions of input
objects have not been changed, the object and its outputs are related to latent ones and
are omitted in interpreting whole scenario.



2.2 Physical interpretation

Using physical interpretation of the scenario both dependence and time relations
should be taken into account to reproduce dynamic behavior of designed system, to
perform time-domain analysis and to animate obtained results. Physical interpretation
scheme is based on discrete events modeling and processing widely used in different
applications such as digital design of logic circuits described in VHDL [12], modeling
virtual reality accepted in VRML [13]. Notice that considered discrete-event
simulation is applied at the level of whole scenario permitting continuous simulation
at the level of separate algorithms. Within the context of this scheme, an event is
considered as incident that causes the scenario to change states of its objects by means
of activation of an appropriate algorithm. Each event should be processed by the
appropriate algorithm in time order. A succession of events provides an effective
dynamic model of the designed system being simulated.

Let us discuss implementation of the interpretation scheme provided by the Scenario.
To manage the events and to activate the appropriate algorithms a global event queue
is supported by the class. Taking part in queue, the events are represented as pairs of
algorithm identifiers and activation times. Simulated events occur only in the result of
running some algorithms, generating output objects and changing mixed objects.
Running algorithms create events corresponding to changes in objects’ states and
resulting to activation of next algorithms and generation of additional events. Thus,
events are propagated along the scenario according to both dependence relations and
chronological order.

We distinguish between algorithms that can generate outputs in predetermined time
moments and algorithms that generate outputs only in some time interval after they
have received inputs. The first type algorithms, so named generators, create output
objects and corresponding events in fixed moments according to some user-assigned
rules. Moment of each next creation is suggested to be known and can be obtained
through appropriate method of Algorithm class. Algorithms of the second type are
related to processor group. The processors generate outputs and accompanying events
in some period from moment when input objects have been prepared, thus delaying
data processing. Time delay can be obtained through the same method. Values
returned by this method can be either deterministic or stochastic, thus, providing
implementation of different kinds of simulation, including multi-factor analysis,
Monte Carlo simulation, etc.

Finally, the class Scenario provides a general method for processing typical events
connected with user interaction and application functionality. User events are
reviewed and processed periodically combining with processing simulated events.
User events are directly dispatched to appropriate methods of the scenario.

3 Example A: Logical Design and Modeling Digital Circuits

In the following we discuss possibilities for reuse of the described above kernel to
design and to model digital circuits. Usually digital circuits are simulated taking into



account different design abstractions corresponding to switch-, gate-, functional- and
behavioral levels [12]. In this section we will primary focus on circuits described at
the gate level. At this level the functionality of circuits, such as NAND, XOR, adders
and flip-flop gates, and their interconnections should be studied. Each digital element
performs some elementary logic function and has fixed number of input and output
terminals via which it can be coupled with other elements. It is typical for digital
circuits that the connections between elements are unidirectional, which diminishes
their interaction and allows applying discrete-event simulation algorithms for both
DC and transient analysis.

Following to the considered above object interaction model, digital elements and
signal are defined as objects. Digital elements should refer to active algorithms
represented by abstract class DigitalElement ⊂⊂ Algorithm, and signals — to passive
data represented by concrete class DigitalSignal ⊂⊂ Data. The class DigitalElement
acts as building block for digital elements by means of specifying virtual method for
calculating logic function. Methods to get numbers of inputs and outputs have been
defined in superclass Object. To implement particular digital elements derived classes
should be developed as inherited from DigitalElement with the redefined methods
implementing their particular properties. Besides common attributes the memory
elements encapsulate logical variables determining their internal states. Values of the
variables should take part in implementation of logical function. Possible library of
digital elements is represented in Fig. 3, as a class hierarchy. Specific classes
Generator, Gauge should be also supplied to generate input signals for circuits and to
display output results. The library can be extended in a uniform way to implement
other types of used elements and signals enveloping other simulation problems for
digital circuits at different abstraction levels, including mixed mode simulation. In
this sense the data and algorithm class library may be considered as extended
component library.

Another basic class DigitalSignal corresponds to the concept of signal in digital
circuits. As an instance of this class each signal stores own digital value associated
with the state of corresponding connection of a circuit. Signals have neither inputs nor
outputs because elements can be coupled via own terminals having the same type
DigitalSignal. Signals are passive objects whose states can be changed by activating
appropriate digital elements. Being activated elements get states of input signals,
perform own logical functions and put calculated values into output signals.

It is obviously that any digital circuit can be represented as composition of the
enumerated basic types of objects (or scenario) that unambiguously specifies digital
elements of the circuit and its topology. Discrete-event simulation of the circuit can
be accomplished by means of physical interpretation of the scenario provided by the
kernel.
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Figure 3: Component library for logical modeling digital circuits
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Figure 4: Multiplexer and its scenario diagram

Figure 4 gives an example of a digital circuit intended for multiplexing four signals.
The circuit has been designed on logical elements And-Or-Not. Input control signal
"S0-S1" and data signals "A0-A3", intermediate signals as well as output signal "F"
are represented in the scenario by appropriate objects belonging to the class
DigitalSignal. Digital elements of the circuits are represented by objects of
appropriate algorithmic classes Not and And-Or-Not. All elements have terminals of
the type DigitalSignal so that they can refer to inputs, outputs and connect with each
other.



Thus, mechanisms of interconnection and interaction of objects supported by the
kernel allow to specify digital circuits as composition of elements and signals and to
apply physical interpretation for their discrete-event simulation.

4 Example B: Modeling Flows and Design of Hydraulic
Networks

The class of hydraulic networks’ modeling tasks is very wide and includes simulation
of different engineering systems providing distributed consumers with heat energy,
water, fuel or any other transported liquid or gas substances [14]. Examples of
hydraulic networks are turnpike gas and oil pipelines, canal and irrigation systems,
city gas, water, heat supply systems, heating and ventilating systems in buildings, etc.
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Figure 5: Component library for modeling hydraulic networks

The hydraulic system (circuit) is a composition of special devices and pipes or canals
connecting them and realizing transporting compressed and uncompressed liquids
(water, oil, gas, air, etc.). In any hydraulic system there are three groups of
components: pressure and substance sources (pumps, compressors, accumulating
capacities) providing flow of transported substance and introducing energy in the



system, pipelines delivering this substance and consumers. The source data for
mathematical modeling a hydraulic system are its technical parameters, such as
diameters and lengths of pipes, section sizes of canals, roughness, as well as boundary
conditions, such as varied input values of flows and loads. The state of a hydraulic
system is defined by the substance flows (expenses) in its components as well as
pressure and temperature in connecting nodes. In contrast to the previous problem of
modeling digital circuits the states of the hydraulic components are tightly connected
and should be taken into consideration simultaneously. Flow of liquid or gas in a
hydraulic network is described mathematically by a nonlinear system of algebraic or
differential equations which represent functional characteristics of separate network
components in the form of nonlinear algebraic or differential relations and
fundamental conservation laws for mass and energy of transported substance in the
form of linear relations similar to Kirchhoff rules for electrical circuits.

The library for modeling of hydraulic networks may include classes implementing
hydraulic circuit properly, its nodes, different hydraulic elements and devices,
algorithms for static and dynamic analysis of hydraulic networks, solvers of
mathematical problems, mathematical data used in them for representation of
intermediate data and results, algorithms for visualization of circuits and modeling
results in the form of inscriptions, graphs, tables. The possible hierarchy of the library
classes is presented in Figure 5.

The following example illustrates how a complex scenario intended for dynamic
analysis of two-thread oil pipeline (Figure 6) can be composed and interpreted within
a hydraulic networks’ simulation application based on the described above kernel
extended by the appropriate applied class library in accordance with general
methodology.
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Figure 6: An example of two-thread oil pipeline hydraulic circuit

The scenario diagram is presented in Figure 7. Note that the pipeline upper thread
only is shown in the diagram to simplify the figure. The hydraulic circuit has been
composed within special container object of the class HydraulicCircuit to represent
and to manipulate the circuit as separate unit. The simulation of the circuit will be
performed by applying composition of algorithms for solving standard mathematical
problems. Being composed in separate branches the algorithms accomplish serial
reduction of the initial differential problem to non-linear and linear algebraic



problems. Since the input links of the algorithms are not defined they interpreted as
data objects taking part in internal processes activated by the modeling algorithm. The
object of the class DynamicPipingModelingAlgorithm is used for forming the
mathematical model of the circuit as a system of ordinary differential equations. The
modeling state values for selected components are generated and visualized through
the special DrawHydraulicCircuit algorithm.
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Figure 7: An example of the scenario for dynamic analysis of the oil pipeline



5 Example C: Simulation and Visualization of Semiconductor
Crystals with Optical Bistability

The considered kernel can also be reused for specifying and interpreting different
scenarios for simulation and visualization of various computational mechanics
problems. To this end it should be extended by an applied library implementing
various scientific concepts as well as widespread methods and techniques intended for
visualization of these problems. The library can be organized as an integral hierarchy
of concrete and abstract classes as presented by Figure 8. The library includes classes
for manipulation with different kinds of data such as structured and unstructured
surface and volume meshes, polylines, point sets, physical fields, color palettes,
scales, glyph sets, orthogonal slices, views. The library includes classes for
interpolating fields, extracting isolines and isosurfaces, constructing streamlines and
streamtubes, tracing particle trajectories, orthogonal slicing, constructing glyphs,
calculating field norms.

• • Object

• • Data

• • ColorSet

• • DrawRule

• • ColorRule

• • PseudoColorRule

• • Field

• • FloatField

• • IntegerField

• • GeometryData

• • ArrowSet

• • Mesh

• • RegularMesh

• • DeformableMesh

• • NonUniformMesh

• • UniformMesh

• • SurfaceMesh

• • ParticleSet

• • PointSet

• • PolylineSet

• • View

• • Lighting

• • Pixmap

• • Scale

• • Object

• • Algorithm

• • ArrowAlgorithm

• • FieldNormAlgorithm

• • InterpolationAlgorithm

• • IsoLineAlgorithm

• • IsoSurfaceAlgorithm

• • OrthoSliceSection

• • ParticleTracingAlgorithm

• • ParticleGeneratorAlgorithm

• • PseudoColoringConverter

• • ReadingAlgorithm

• • FileReadingAlgorithm

• • RenderAlgorithm

• • StreamlineAlgorithm

• • StreamtubeAlgorithm

• • WritingAlgorithm

• • FileWritingAlgorithm

• • WritingImageAlgorithm

Figure 8: Component library for scientific visualization



This component repertoire corresponds to functionality of general-purpose
visualization systems such as AVS, Data Explorer, and IRIS Explorer [8]. The used
abstractions permit to manipulate uniformly different geometry and topology data
types and to draw them in an OpenGL context. Drawing rules specify how arbitrary
geometry data should be drawn by separate topology elements and colored in
accordance with assigned palette. The physical field class may support generic multi-
component representation corresponding to scalar, vector, and tensor fields given at
different kinds of multidimensional geometry data.

In the following we consider in detail an example of a scenario intended for
visualization of results of modeling switching processes in optical bistable
semiconductor crystals. This problem is important for the construction of new
semiconductor devices being a base for future optical computer and network systems.
Its strict mathematical statement and details of simulation technique can be found in
[15].
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Figure 9: Diagram of the scenario intended for studying the switching processes
in optical bistable semiconductor crystals



In the presented example the process of charge carrier distribution transition to steady
state in optical crystals is investigated in dependence on laser radiation and carrier
diffusion. An optical bistable element has two steady states. The first state (logic "0")
is characterized by full light transmission through a crystal and small charge carrier
concentration. The second state (logic "1") is characterized by decreasing greatly
output light intensity and increasing charge carrier concentration. The following
information is very important for developers of optical systems (in particular, memory
devices) based on such elements: guaranteed "up"-switching (it is problematical when
charge carrier mobility is high), time of this switching, profile of information light
beam intensity at the output from the crystal (symmetric profile improves quality of
switching registration and allows to decrease sizes of the element), spatial localization
of the second steady state.

The algorithm of the class ModelingAlgorithm performs the simulation process and
generates output data as regular mesh and charge carrier concentration field assigned
to it. To investigate the dynamic process of "up"-switching (transition of the crystal to
the second steady state), to determine switching time and spatial localization of the
second steady state it is effective to apply isosurface extraction technique to the
discussed problem. Three isosurfaces corresponding to low, medium and high level of
charge carrier concentration are extracted and colored by different colors of a rainbow
palette. It is also convenient to apply pseudo-coloring technique on orthogonal slice
sections of the crystal cube with planes parallel to the laser beam direction. To
pseudo-color the obtained orthogonal sections the source concentration field is
interpolated on them. Drawing rules are used as the input parameters of the rendering
algorithm that performs joint analysis and drawing geometry objects of the scene in
accordance with specified rules in the given view. The order of applying the
algorithms and obtaining the intermediate results is easily observed over the scenario
diagram presented in Figure 9. The obtained final images are given by Figure 10.

a) Image 1 b) Image 2

Figure 10: Final images for the problem of optical bistability in semiconductor
crystals



Note that most of the visualization techniques allow generic implementation, which
does not require strict concretizing input data types. For example, in the presented
diagram the isosurface extraction algorithm is implemented using regular mesh data
abstraction. In that case the algorithm can be applied in the same manner both to
uniform, non-uniform orthogonal meshes and to deform meshes. The attraction of the
abstract data type mechanism simplify significantly composing complex scenarios
using relatively small repertory of techniques and is significant for functional
extension of the applied library, because addition of new data types does not lead to
necessity of development of new algorithm classes.

6 Component-Based Approach to Building Integrated CAD
Systems

The considered object-oriented kernel is general and flexible enough to be used for
development of various CAD systems on the same conceptual, methodological,
instrumental and programming basis. Combining the “entity-relationship” paradigm
and an object-oriented approach the kernel reproduces a general object model suitable
for many applied problems, for example, assembling CSG models in machinery
CAGD systems, construction of visualization pipelines in general-purpose scientific
visualization systems, specification of combined computational strategies in
mathematical systems, composing geometric scenes in virtual reality modeling
browsers and animation systems, modeling network flows in CAD systems for piping
systems, electron devices. Being based on the same model various working scenarios
can be composed from separate instances of data and algorithm classes and can then
be applied for solving mixed design specification, modeling and visualization
problems.

Indeed, to apply the kernel one should not modify it any time to suit to a particular
problem, semantics of specific entities, their relationships, and possible details of
program implementation. Supported mechanisms of interconnection and interaction of
objects allow composing and interpreting sophisticated scenarios encountered in real
applications.

These circumstances allow us to consider the kernel as a framework for building
complex integrated applications and to formulate general component-based approach
to unified development of CAD systems and their families in essentially different
applied areas. Principal demands imposed upon design of such systems are the
following:

• the system should have an open architecture allowing functional extensions,
various working scenarios, parallel and distributed usage;

• the destination of the system should be completely determined by semantics of
registered components and their collection;

• the functionality of the system should be provided by capabilities for run-time
composing working scenarios and their concurrent interpretation.



The proposed component-based approach consists of reuse of the open software
architecture and of development of applications including the object-oriented kernel,
an unified graphics user interface and expanded problem-oriented class libraries. C++
language, the graphic library OpenGL and standard GUI libraries (such as Motif, Qt
or Gtk) may be used as standard implementation tools permitting to port developed
applications to different platforms with minimal efforts. The common open
architecture of an application is shown in Figure 11.

Application
Invar iant  Kernel

Des ign ,  Mode l ing
V isual izat ion
C lass L ibrary

Unif ied
G raph i cs  User

Interface

C ++, O p e n G L M o tif, G tk, Q t

Standard tools

Figure 11: Architecture of an application

To provide invariance of the kernel its implementation should be based on meta-
object information specifying in generic form properties and behavior of particular
objects that may be encountered in applications. The same information can be
effectively utilized for the construction of an unified graphics user interface including
different kinds of menus, dialogs, toolbars, toolboxes, status bars, 3D views. The
elements should permit to represent object repertoires, to compose and to interpret
scenarios in the scope of object-oriented and visual programming paradigms, to save
and to restore generated scenes and composed scenarios to/from files. For example,
completely unified elements may display the hierarchy of registered classes, the
current scenario diagram, the filtered list of scenario objects. Note that manipulation
with particular objects can be carried out also through an unified dialog that supplies
edition elements for public attributes, methods and references listed in accordance
with meta-object information for the object class. Through the dialog the user can set
desirable values of attributes, run public methods and connect objects via links. In this
sense the unified interface is adaptable to repertoire of components registered in the
application. For graphic applications the interface may include additionally 3D views
for rendering geometry scenes and toolbars for manipulating separate views and
geometry objects.

Following to the proposed component-based approach building an application should
be reduced to object analysis of interesting application area, to selection of specific
data and design, modeling, visualization techniques entities, to the development and



implementation of an component library and to its registration in application template.
This process can be accomplished following the iterative scheme:

• identify classes of scientific data and algorithms taking part in statement and
solving design, modeling and visualization problems by selecting key
abstractions of the applied area;

• define semantics of selected classes, reveal generality relations between them,
such as “general—particular”, “integral—part of”, develop object classifications
(hierarchies of inherited classes) for data and algorithms with tops in the classes
Data and Algorithm correspondingly;

• establish usage relations between instances of classes by analyzing semantic
dependencies and represent them as input, output and mixed links of objects,
subdivide single and multiple links;

• identify specific attributes, properties and behavior of particular objects,
implement their classes, for concrete algorithm classes implement the specific
running method;

• compose and test different scenarios for the considered application area with
chosen objects, reconsider the object system critically, expand functionality of
existing classes, try to select new entities, and, possibly, return to preceded
development steps.

Taking into account the benefits from object orientation, the implementation of the
library can be significantly simplified and improved through exploiting principles of
inheritance and polymorphism in development of component classes.

It is important that the described unification of the object-oriented kernel and the
interface of applications does not hinder their specialization for particular purposes.
For example, in equal degree they can be used for both development of simple
applications with built-in scenarios oriented on end-users and building complex
parallel applications with run-time altered scenarios intended for high-performance
computing. Some details connected with building parallel and distributed applications
in the scope of the same approach can be found in [17].

7 Conclusion

Thus, the open object-oriented architecture for building complex integrated
applications has been proposed. Generality and flexibility provided by the architecture
and the formulated component-based approach allow to build complex integrated
CAD systems and their families for essentially different dissimilar scientific and
industrial areas on the same conceptual, methodological, instrumental and
programming basis.

The class of potential applications is extremely wide and envelops numerous
CAD/CAM/CAE systems, GIS systems, mathematical systems, modeling applications



for multidisciplinary research, scientific visualization systems, virtual reality
modeling browsers, and animation systems.

Early, the architecture and the approach have been successively approbed in
development of systems for constructive solid geometry modeling, scientific
visualization, computational mechanics within OpenModeler&Visualizer (OpenMV)
programming environment [16-19].

Besides domain model unification, an important advantage is that the architecture
allows building concurrent CAD systems in parallel and distributed environments for
solution of large-scale engineering problems and collaboration between partners
involved in joint design projects. This capability is achieved by more wide
interpretation of basic concepts and by implementation of local and distributed data
and algorithms, scheduling methods, and communication facilities as specific
components. By such way both OpenMV-based and non-OpenMV-based systems can
be integrated.

The discussion of aspects concerning building parallel systems within
OpenModeler&Visualizer can be found in the paper [17] that presents parallel
implementation of the volume visualization system for high-performance computing.

Planned works will be directed on building collaborative design applications in
interdisciplinary areas.
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