
307

ISSN 0361-7688, Programming and Computer Software, 2015, Vol. 41, No. 6, pp. 307–310. © Pleiades Publishing, Ltd., 2015.
Original Russian Text © I.B. Bourdonov, A.S. Kossatchev, V.V. Kulyamin, 2015, published in Programmirovanie, 2015, Vol. 41, No. 5.

Analysis of a Graph by a Set of Automata
I. B. Bourdonov, A. S. Kossatchev, and V.V. Kulyamin

Institute for System Programming, Russian Academy of Sciences, ul. Solzhenitsyna 25, Moscow, 109004 Russia
e-mail: igor@ispras.ru, kos@ispras.ru, kuliamin@ispras.ru

Received May 12, 2015

Abstract—An algorithm of traversal (retrieval of full information on the structure) of an a priori unknown
directed graph by an unbounded set of finite automata that interact through the exchange of messages and
can move along the arcs of the graph according to their direction is described. Under the assumption that the
execution time of basic operations and the transmission time of individual messages are bounded, the total
operating time of the algorithm is bounded, at worst, by O(m + nd), where n is the number of vertices of the
graph, m is the number of its arcs, and d is the diameter of the graph; moreover, this estimate is unimprovable.
The full proofs of the propositions formulated in this paper have been published in [6].

DOI: 10.1134/S0361768815060031

1. INTRODUCTION
The problem of retrieving the structure of an

unknown graph by successive traversals along its
edges, starting from a certain vertex, arises in various
fields. Examples are given by the analysis of the struc-
ture of computer networks, the interface of Web appli-
cations, f lows of control and data in a code, as well as
by the construction of other automaton models of sys-
tems. In the present study, we consider a similar prob-
lem for the case of a directed graph analyzed by a set of
agents none of which can contain full information on
the graph, but all together they can do it.

Each agent can be represented as a finite automa-
ton with bounded memory and a finite set of possible
actions. These actions include the retrieval of the
identifier of a current vertex, iteration of the arcs of the
graph emanating from the current vertex, motion
along the next arc of the graph, as well as exchange of
messages with other agents, for example, to find out if
some of them was at the current vertex of this agent
and whether the arc emanating from this vertex was
used. Since the graph is not bounded initially, there is
a possibility of creation of new agents, which are situ-
ated at some initial vertex of the graph. A graph is con-
sidered to be analyzed if, according to the information
available to agents, one can establish that each arc has
been traversed at least once, and, thus, all its vertices
and arcs are known to the current set of agents. In this
case it is not assumed that information on the structure
of the graph is provided explicitly; it suffices that it can
be retrieved without execution traversals long arcs.

A similar statement of the problem has practical
applications in testing complex systems modeled by
automata with a large number of states. In [1], the
authors consider the testing of models of microproces-

sors in which there are millions of states and tens of
millions of junctions. In [1, 2], the testing is performed
by a limited set of agents each of which has access to
full information on the structure of the already studied
part of the graph. In the present work, we propose an
algorithm for the analysis of a graph by a set of agents
each of which works only with information locally avail-
able to it. Earlier, in [3–5], algorithms were proposed for
the analysis of an a priori unknown graph by a single
agent that has either unlimited or limited memory.
In these papers, it is also proved that, for graphs on n ver-
tices and m arcs, the operating time of such an agent is, at
worst, O(nm). In the present work, we show that, by
involving many agents, this estimate can be reduced to
O(m + nd), where d is the diameter of the graph.

The further structure of the article is as follows: in
the second section, we give a formal statement of the
problem of analyzing a graph by a set of agents; then
we present the algorithm of operation of such a set of
agents and prove an estimate for the operating time of
this algorithm in the worst case. In the Conclusions,
we summarize the content of the work and list possible
directions of development of the algorithm.

2. FORMAL STATEMENT OF THE PROBLEM
Next, we assume that the operational environment

of agents supports the operations of creation and
destruction of an agent. At any moment of time, each
agent is at some vertex of the graph (a few agents can
be situated simultaneously at the same vertex) and has
a unique identifier (the identifier of the agent is
returned by the operation of its creation). There are
two possibilities for creating an agent: in one case, the
agent is at the distinguished initial vertex after cre-
ation; in the second, the agent is created by another

RUBRIKA

308

PROGRAMMING AND COMPUTER SOFTWARE Vol. 41 No. 6 2015

BOURDONOV et al.

agent, as an agent situated at the same vertex where the
second agent was situated; after that, the agent creator
loses the capability to interact with the graph. The ver-
tices of the graph also have unique identifiers.
An agent may receive a command to pass along a cer-
tain arc emanating from a vertex at which it is situated.
The arc in this case is defined by its number: all arcs
emanating from the same vertex are numbered. The
operation of traversal along an arc returns the identi-
fier of the vertex at which the agent finds itself and the
number of arcs emanating from this vertex. Moreover,
agents can exchange messages: an agent can send a
message either to all agents or to some specific one,
having specified its identifier, and also can receive a
message from any sender. The messages are not lost or
distorted during transmission and do not overtake
each other when transmitted between two agents.
In addition to the type of a message (there is a finite
number of types of messages), they can also carry a
finite number of slots storing the identifiers of states or
of agents.

To be able to work with graphs of arbitrary size, we
do not impose restrictions on the number of agents
involved. To be able to operate with unbounded iden-
tifiers of agents or states, we assume that an agent has
a finite number of memory cells capable of storing the
identifier of a state or of an agent. Only operations of
copying between these cells and between a memory
cell and a message slot are executed over identifiers;
one can also compare the identifiers of states to check
if they are equal or unequal. Thus, agents represent
expanded finite automata that operate with variable
identifiers. Another possible obstacle to the finiteness
of agents is the necessity to operate with the numbers
of an unbounded amount of arcs emanating from the
same vertex. To avoid this, an arbitrary graph is recon-
structed into a graph in which the number of the arcs
emanating from vertices is bounded by a certain con-
stant R; to this end, it suffices to split each vertex into
several vertices. From each new vertex, at most R – 1
arcs will emanate, plus one more arc that connects
each vertex from the bundle obtained with the next
vertex. All vertices in this bundle, except for the first,
may have an empty identifier because only one arc
enters them, and it is not necessary to look for them
among known vertices after passing along this arc;
therefore, one can avoid the extension of the set of
identifiers.

Thus, suppose given a graph with unknown structure
with a fixed initial vertex, and suppose that it is possible
to execute the operations described above. It is required
to define a program of operations of agents and of the
environment so that the set of agents finally obtains full
information on the structure of the graph.

The notations used below in this paper are as fol-
lows: n is the number of vertices of the graph, m is the
number of arcs in it, and d is the length of the longest

path from the initial vertex to another vertex (the
diameter of the graph).

3. THE ALGORITHM
We propose the following algorithm of operation of

agents to solve the problem posed.
• Each agent can operate in two modes: as a vertex

manager and as a slider. The slider is created at some
vertex, passes a certain path, and finally either
becomes a vertex manager or is destroyed. The vertex
manager is responsible for storing data about the arcs
emanating from the vertex, including yet not passed
arcs, and determines where the next slider, which
arrived at this vertex, will move. If the number of arcs
emanating from a vertex of the graph is not bounded,
several vertex managers are created, each of which
stores information only on a limited number of outgo-
ing arcs and the address of the next manager. Only the
first manager is the manager associated with the iden-
tifier of the vertex.

• For each emanating arc, the vertex manager
stores its status and the identifier of the manager of the
terminal vertex, provided it is known. The status of an
arc can be either active, passive, or complete. A yet not
passed arc, or an arc along which a slider should be
sent because the manager of its terminal vertex sent a
request for such a transmission, is considered to be
active. An arc along which one should not yet send
sliders (in response to the request for a slider, one
slider has already been sent) is considered to be pas-
sive. A complete arc is that along which one should not
send a slider any longer, because a message has been
received from the manager of its terminal vertex that
all the paths leading from this vertex bring to the
already passed vertices. Immediately after the creation
of a manager, all the outgoing arcs are active.

The manager of a vertex with nonempty identifier
also stores a reference to a next similar manager. Such
references are used for processing requests for search-
ing for the manager of a vertex by the identifier of the
vertex by browsing the list formed by these references.

The vertex manager stores the number of the arc
along which a slider was sent last time. Immediately
after the creation of the manager, this number is equal
to 0, which means that there is no such arc.

In addition, the vertex manager stores the number
of the arc, entering its vertex, when passing along
which this vertex was detected for the first time. Such
arcs, together with the vertices known at the moment,
form a tree—the skeleton of a part of the graph that has
already been traversed by all the agents.

• The set of messages that agents exchange and the
operations that they can execute is as follows.

∘ Creation of an agent at the initial vertex. It is cre-
ated as a slider.

∘ Creation of a slider by another agent at the vertex
at which this agent is situated. In this case, the second

PROGRAMMING AND COMPUTER SOFTWARE Vol. 41 No. 6 2015

ANALYSIS OF A GRAPH 309

agent loses the capability to interact with the graph.
Despite the seeming artificiality, such an operation is
easily executed if the agents represent processes: this
operation corresponds to the creation of a clone of the
process in the current state and to the transfer of rights
for operation with the graph to this clone.

∘ Transition along the arc with number i at the cur-
rent vertex of the graph; as a result, the slider appears
at the terminal vertex of this arc and gets its identifier
and the number of arcs emanating from it.

∘ Request for the number of the arc for further
motion from the slider to the manager of the current
vertex containing the sender’s identifier. The answer to
this request contains the number of the arc for execut-
ing the transition and the identifier of the manager of
the terminal vertex of the arc (which may be empty if
the terminal vertex has no manager).

∘ A message on a search for the manager of a vertex
with given identifier contains this identifier and the
identifier of the agent that sent it. In response to this
message, a message can arrive about the available
manager with the identifier of this manager.

∘ Request for a new slider for further traversal along
the graph. Such a request contains the number of the
arc along which the slider and the identifier of the
manager of its terminal vertex should be sent.

∘ A message on the completeness of an arc, which
means that it does not make sense to go along it any
longer, because either it ends at a vertex without ema-
nating arcs or all the emanating arcs lead to already
known vertices a transition to which can be organized
through other routes.

1. At the beginning of the work, the first created agent
becomes the manager of the initial vertex. He gets infor-
mation on the number of arcs emanating from this vertex.
As a vertex manager that just appeared at the vertex, he
creates a slider located at the same vertex, delegates the
capability of traversing along the arcs of the graph to it,
and reports its identifier for exchanging messages.

2. The slider, just created or just learned the identi-
fier of the manager of the current vertex, sends to this
manager a request for the number of the arc along
which it should move further.

3. Having received a request for the number of an
arc for the motion, the vertex manager looks for an
active arc following the employed one. This is either
an active arc with the minimum number greater than
the number of the employed arc, or, if there is no such
an arc, simply an active arc with the minimum num-
ber. Its number is recorded as the number of the
employed arc. If there are no active arcs at all at the
current moment, then the number of the employed arc
becomes equal to 0.

If the number obtained of the employed arc is not
0, then the slider that sent the request gets in response
this number and the identifier of the end of the
employed arc if it is known. The employed arc in this

case is transferred to the status “passive.” Moreover,
after that the manager of the initial vertex creates a new
slider, and the manager of the other vertex sends to the
manager of the initial vertex of the entering arc a
request for a new slider.

If the number of the employed arc is 0, the vertex
manager stores the slider that sent the request as a
waiting slider.

4. The slider that received the number of the arc to
pass along it stores the identifier of the manager of the
current vertex and performs a transition along this arc.
As a result, it receives the identifier of the terminal ver-
tex and the number of arcs that emanate from it.

If the slider also receives a nonempty identifier of
the manager of the terminal vertex in the message with
the number of arc, then it passes along the already
known arc. After that it executes item 2.

If the identifier of the manager of the terminal ver-
tex is empty, then it should be defined.

When a vertex has no outgoing arcs, the vertex is
terminal and should not have a manager. In this case,
a slider sends to the manager of the initial vertex of the
arc along which it just passed a message on the com-
pleteness of the arc (it does not make sense to go along
it any longer) and is destroyed.

If a vertex has outgoing arcs but its identifier is
empty, this is a vertex with the only entering arc.
In this case, the slider becomes a manager of this ver-
tex, initializes the data of the manager, and creates a
new slider at the current vertex, delegating interaction
with the graph to it.

If a vertex has outgoing arcs and the identifier is not
empty, the slider starts a search for a vertex manager,
sending to the manager of the initial vertex a message
on the search for the manager with the identifier of the
vertex and with its own identifier as data.

5. Having received the message on the search for a
vertex, the manager compares the identifier of the ver-
tex with the identifier of its own vertex.

If the identifiers do not coincide, the manager
checks whether there is a next manager in the list for
search. If there is no such a manager, then there is no
sought-for manager, and the manager sets a reference
to the agent with the identifier contained in the mes-
sage (the slider that sent the identifier) as to a next
agent and forwards the message to this agent. If the
message on the search for a vertex is received by the
slider, then the manager of this vertex is not found,
and it itself should become the manager of this vertex.
In this case, it initializes the manager’s data, creates a
new slider at this vertex, and delegates interaction with
the graph to this slider.

If the identifiers do not coincide and there is a next
manager in the search list, the message on the search
is forwarded to this manager.

If the identifiers coincide, then a message on the
found manager with the identifier of this manager is

310

PROGRAMMING AND COMPUTER SOFTWARE Vol. 41 No. 6 2015

BOURDONOV et al.

sent to the agent with the identifier contained in the
message. If the slider receives a message on the found
vertex manager with its identifier, it executes item 2.

6. The vertex manager may receive a request for a new
slider with the number of one of the arcs emanating from
its vertex. In this case, the arc is declared active.

If the manager has a waiting slider at that, then a
message with the instruction to go along this arc (with
its number and the identifier of the manager of the ter-
minal vertex) is sent to this slider. The arc remains pas-
sive, and the reference to the waiting slider is zeroed.
If this manager is connected with the initial vertex, it
creates a new slider; otherwise a request for a new
slider with indication of the number of the entering arc
is sent to the manager of the initial vertex of the arc
entering the vertex of the given manager. If there is no
waiting slider, nothing is done anymore.

7. The vertex manager may receive a message on the
completeness of one of the arcs emanating from this ver-
tex from the manager of the terminal vertex of this arc. In
this case the arc is marked as a complete one.

If the vertex manager has a waiting slider and has
no other incomplete arcs, this slider is destroyed.
If this manager is connected with the initial vertex,
then the operation of the whole algorithm is com-
pleted: the graph is completely traversed; otherwise a
message on the completeness of the entering arc is sent
to the manager of the initial vertex of the arc entering
the vertex of this manager.

If the manager has no waiting slider, or if there are
incomplete outgoing arcs, then nothing is done any-
more.

In [6], the authors proved that the operating time of
the algorithm described, which consists of the execu-
tion time of all the operations of agents listed above,
including a transition along an arc, as well as the time
of transmission of messages between agents bounded
by some constant, is limited, at worst, to O(m + nd).
The authors also presented an example of a graph on
which this estimate is satisfied; i.e., it takes a time of
Ω(m + nd) for the algorithm to traverse the graph.

4. CONCLUSIONS
In this paper, we have presented an algorithm for

the traversal (or retrieval of full information on the
structure) of an a priori unknown graph by means of
an unbounded set of parallel agents that represent
finite automata and interact with each other through
the exchange of messages. The operating time of this
algorithm is O(m + nd) in the worst case, where n is the
number of vertices of the graph, m is the number of its
arcs, and d is the diameter of the graph, under the
assumption that the execution time of some basic
operations and the transmission time of individual
messages between agents are bounded. A family of
graphs is obtained on which this estimate is satisfied.
In this work, to facilitate the understanding, the algo-

rithm is represented not in a completely formal form:
the proof of the efficiency estimates is omitted. The
reader can find a formal account with full proofs in [6].

A further development of the result is the design of
a version of the algorithm that is adapted for operation
in a multiprocessor system when one (or a few) slider
agents and one process–manager that has a function
of storing information on some part of the graph oper-
ate on each processor (or core). In this case, within a
process–manager, it is worth storing information not
about a single vertex, but about several vertices; other-
wise the costs of maintenance of the operation of
many managers will significantly reduce the overall
efficiency. Moreover, in this case the exchange of mes-
sages between processes should be optimized so that this
process occurs largely on a single processor. The details
of such an algorithm have not yet been worked out.

Another possible direction in the development of
the algorithm is its modification in order to be able to
operate with nondeterministic graphs and with exter-
nal memory. In nondeterministic graphs, one number
of an arc emanating from a vertex may correspond to
several real arcs, and the transition along the arc with
such a number may bring to different vertices at differ-
ent times. Such graphs are often met during modeling
complex software or hardware systems at a high level of
abstraction. The use of external memory can remove
the requirement that all information on the graph
should be located in the memory of the whole set of
agents employed.

REFERENCES

1. Demakov, A., Kamkin, A., and Sortov, A., High-Per-
formance Testing: Parallelizing Functional Tests for
Computer Systems Using Distributed Graph Explora-
tion, Open Cirrus Summit 2011, Moscow, 2011.

2. Bourdonov, I.B., Groshev, S.G., Demakov, A.V.,
Kamkin. A.S., Kossatchev, A.S., and Sortov, A.A., Par-
allel testing of large automata models, Vestn. Nizhni
Novgorod Gos. Univ., 2001, no. 3, pp. 187–193.

3. Burdonov, I.B., and Kossatchev, A.S., and Kulyamin,
V.V., Irredundant algorithms for traversing directed
graphs: The deterministic case, Program. Comput. Soft-
ware, 2003, vol. 29, no. 5, pp. 245–258.

4. Burdonov, I.B., and Kossatchev, A.S., and Kulyamin,
V.V., Nonredundant algorithms for traversing directed
graphs: Nondeterministic case, Program. Comput. Soft-
ware, 2004, vol. 30, no. 1, pp. 2–17.

5. I.B. Burdonov, Traversal of an unknown directed graph
by a finite robot, Program. Comput. Software, 2004,
vol. 30, no. 4, pp. 188–203.

6. Bourdonov, I.B., and Kossatchev, A.S., Traversal of an
unknown directed graph by a group of automata, Tr.
Inst. Syst. Program., Ross. Akad. Nauk, 2014, vol. 30,
no. 2, pp. 43–86.

Translated by I. Nikitin

SPELL: OK

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 /RUS ()
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

