
Combined approach to solving problems in binary code
analysis

Alexander Getman, Vartan Padaryan, and Mikhail Solovyev
Institute for System Programming of the Russian Academy of Sciences (ISP RAS)

Moscow, Russia
e-mail: {thorin, vartan, eyescream}@ispras.ru

ABSTRACT
This paper proposes a decomposition of generic software
security problems, mapping them to smaller problems of
static and dynamic binary code analysis.

Keywords
Software security, binary code, dynamic and static analysis.

1. INTRODUCTION
Among the problems of current importance a major one is
the problem of security of information systems that
serve various needs of the society. There is essential
need to ensure fundamental requirements of information
security – integrity, availability and confidentiality – for
systems that control critical industry infrastructure and
communication channels, and run on servers,
workstations and mobile devices.
Kaspersky Lab analytic reports in 2012 [1, 2] note raising
cybercrime interest towards new platforms such as Mac OS,
Android, and SCADA systems. A significant increase in
malware code size is also observed: after
complete deployment of the Flame malware the size of
executable modules it is comprised of sums up to over
20 MB [1]. Analysis of binary code of such systems
proves to be quite challenging and requires a high extent of
automation. Resorting to only classic methods of ensuring
information security is not feasible: perimeter
protection, audit, encryption and other mechanisms are
prone to defects in implementations that, in part, could be
exploited.
A full-featured solution to such information
security problems as control of undocumented feature
absence or prevention of unauthorized access require
analysis of executed binary code. Source code can be
unavailable or unreliable and it is necessary to take the
build system and configuration files into account.
Moreover, the compilation process can introduce artifacts
that break the model of high-level information security in
use [3].
Analysis of software implementation is usually carried out
in order to evaluate its compliance to the specifications
(or recovery of such specifications), and to identify
exploitable code defects. In the course of such work
analyst performs standard actions: recovers descriptions of
algorithms and/or protocols, searches for errors and
evaluates their exploitation possibility. Software tools are
available to automate these actions but the degree of their
efficiency varies greatly, also depending on the analysis
object.
We continue with a list of requirements for analysis methods
and tools. These requirements arise from study of code of
complex enough programs and from cases when program

 The paper was supported by a President of Russia grant
МК-1281.2012.9

code contains counter-analysis mechanisms. An approach is
proposed that satisfies these requirements, together with
its decomposition into smaller tightly connected binary
code analysis problems. Sequentially solving these
problems allows obtaining a practical result.

2. ANALYSIS REQUIREMENS
We now consider the main, de-facto standard,
production quality tools in use. A fundamentally used tool
is the IDA Pro disassembler that provides an extensible
environment for static analysis of binary code. It is aimed
towards static code analysis and is generally capable of
distinguishing between code and data fragments,
partially recovering a graph representation of programs,
and recovering some high-level constructs. There are
situations that impede the analysis, including: presence
of indirect addressing in machine instructions leads to
non-guaranteed recovery of control flow and does not
allow evaluating memory accesses correctly; run-time
code modification, code distribution between several
processes (code can reside in different virtual address
spaces) and others result in analysis complications. In
part such difficulties can be compensated through use
of a debugger. In difficult cases, such as when analysis of
system code is required, a whole-system simulator is used
instead of a debugger by means of a debugging
interface. Such simulators include QEMU, Bochs and
VMware Workstation. Analysis of network-using software
assumes use of network traffic analyzer software such as
Wireshark.
We now consider some of the properties of the evaluated
programs and how these properties influence the choice
of analysis tools and how well a typical toolset copes with
such analysis problems.
The first property is whether the program being
evaluated uses only user-level machine instructions or
also utilizes privileged ones. In a nutshell, programs can
be subdivided into (1) applications; (2) system programs
(OS, drivers); and (3) applications that are tightly
connected with one or more OS components, DBMS
being an example. Extreme cases are analysis of modified
OS code or analysis of a completely unknown OS. For
efficient analysis even of application level programs base
features of IDA Pro are insufficient. This, in part, is
compensated by a significant amount of third-party
extensions and scripts for IDA. In cases (2) and (3) it is a
necessity to evaluate not only the code belonging to the
current process but also kernel code and code executing in
other processes simultaneously. This has no backing in static
disassembly ideology. A debugging-capable whole-
system simulator allows analyzing one distinct state of
the whole system in question but when there are many
enough states that must be evaluated (which is the
case in practice), manual analysis lasts for indefinitely
long.

The second property is whether the program can function
in an isolated virtual machine or requires communication
over a network with other distributed components. This
property subdivides programs into (1) programs that work
locally; (2) distributed programs that require
communication and all of the other components are
available; (3) distributed programs that require
communication and some of its components are
unavailable. For programs that work locally
analysis complexity is determined by size and type of the
code being analyzed (see above). In other cases, when the
program is comprised of multiple components, analyst has
to work with several instances of IDA Pro, one for
each executable component. Complimentary dynamic
analysis has to be carried out on a separate specially
configured machine where the problem of simultaneous
halting of all components must be solved: a debug break in
only one process inevitably leads to connection timeout and,
therefore, the natural work flow of the system will be
broken.
Use of Wireshark can improve understanding of
algorithms but requires solving the problem of
correlating network packets to functions in the binary
code. There is no assistance for this problem in
neither IDA Pro nor Wireshark.
Thus, principal requirements for binary analysis method and
respective tools are as follows.
• The only sources of data are the machine code being

executed and the hardware state during the execution.
Therefore, the method must work without any additional
information such as debug records, interception of OS
services, etc.

• All programs deployed on a computation system are taken
into evaluation.

• There is support for run-time code modification, including
code decompression, JIT compilation, dynamic libraries,
etc.

• In cases when code in only a given process must be
evaluated, the analysis complexity and convenience must
not be worse than in state-of-the-art approaches.

• Analysis has to be non-invasive, i.e. not alter the behavior
of the system under evaluation.

Apart from this list, the following nonfunctional requirement
is also important: automation of components and of the
whole method must be available because the time spent on
algorithm recovery, search for errors and other
practical tasks are critical measure – if it takes too long
the results will no longer be relevant.

3. COMBINED APPROACH
ISP RAS has developed a method for binary code analysis
that satisfies the above requirements [4]. The basic scheme is
presented on Fig. 1.

Fig. 1 – Suggested analysis scheme
The program is executed on a simulator with a set of correct
input data that trigger the functionality being evaluated. The
simulator contains a single virtual core that executes all
code, and allows communication with other
components through a network interface or by means of
peripheral device forwarding from the host machine to the

virtual machine. The input data for the analysis
environment are the initial virtual machine state and a
set of traces that have been collected starting from this
initial state. Each trace is a continuous sequence
instructions being executed and snapshots of CPU
state before each executed instruction. This, a trace
contains all information required to describe various
aspects of functioning of program and its
environment, both application- and system-level.
Results from tracing are represented in a target
architecture independent way and are successively fed
to a stack of analysis algorithms that raise representation
level. OS- and ABI-level events are identified in traces
which results in a trace markup. For fragments of traces
that are of interest a static presentation is recovered partly
representing the static structure of the evaluated code. It is
impossible to guarantee a complete recovery in all cases
because traces only contain a part of the code that
contributes to the functionality being researched. The
static presentation provides means to level the analysis
further by partially recovering CFGs and high-level control
constructs.
The main task of the analysis platform infrastructure is
to control various analysis algorithms, provide a unified
means of storing and later accessing the results
from these algorithms, and make sure that data is up-
to-date. Main functional units in the platform are
implemented as plug-in extension modules, their
number constantly increasing. Apart from that, the
analysis platform also provides support for interoperation
with third-party tools such as IDA Pro and Wireshark.
As a result of the performed analysis analyst is provided
with high-level descriptions of algorithms in the
program, specification of data formats used in protocols,
and code for model examples. This provides for evaluating
correctness of the extracted algorithms, errors in
implementation and corresponding input data.
4. RELATIONS BETWEEN PROBLEMS
Whether the general idea outlined in the previous section
works in practice greatly depends on solving a number of
problems that arise in the course of detailed method
development and its implementation in software tools. Fig. 2
shows a scheme of these problems and their relations. The
starting point is the overall analysis task, the bottom row is
comprised of subproblems directly related to obtaining
practically important results; their number can easily be
extended but the most important goals are the three ones
covered in the scheme.
It is easily observed that the trace collection process is
relatively independent while other subproblems are tightly
bound to one another and form a number of layers.
The trace being collected has to contain at least instruction
codes and values of basic registers. This register set has to
include the program counter, machine state word and
registers used in indirect addressing. It’s easy to see that
even for smaller CPU state snapshots traces are quite huge.
Usage of specialized trace compression methods allows to
reduce the size by up to 2-3 orders of 10 [5] but is incapable
of improving performance of tracing. This often leads to the
program being traced working incorrectly, e.g. network
connections are likely to time out. This problem is solved by
means of so-called two-phase tracing [6] when only a log of
“external” events is collected during program execution.
This log allows replaying the virtual machine work later. A
complete trace can then be safely recorded and tracing will
not influence the flow of time inside the virtual machine.
The second problem arising during tracing of a virtual
machine is the simulator accuracy. Interpretation of complex
privileged instruction often differs marginally from how

such instructions work on a real processor. Some
system software stops working under such circumstances.
Moreover, counter-analysis mechanisms often monitor
execution of some instructions to detect execution
inside a virtual environment. In presence of a debugger
or when run in a virtual machine, such programs alter
their behavior to hide some properties. The principal
solution of this program is to use an open-source program
simulator so as not to depend on simulator developers and
be able to independently fix interpretation of sensitive
instructions.
Further detailed discussion of tracing-related questions is
beyond the limits of this paper.

Fig. 2 – The relationship between the solved problems

The virtual machine contains only a single core and all
code that is executed during tracing will therefore be
contained in the trace sequentially (because all programs
and OS use this one core in time-sharing mode). Thus, the
collected trace is a sequence of instructions in which code
belonging to different processes, threads and to the OS
is intermixed. Such a representation is inconvenient for
navigation and further analysis. It is, thus, necessary to
identify fragments in trace that correspond to interrupts,
context switching code for processes and threads, locate
function calls and returns. The latter is a particularly
nontrivial problem because due to different techniques
used in binary code there are fragments in which the
natural stacking of calls and returns does not hold (this
includes trampolines, table calls, late and “lazy” binding).
This and many other problems must be solved taking into
account the fact that multiple target architectures have to
be supported. The analysis method makes no assumptions
about the hardware the evaluated code works on; the
method can be applied to a wide range of general
purpose processor architectures that are close enough to
the von Neumann principles, at least on the ISA level.
Such architectures at Intel 64, ARM and many others fall
into this class. However, in order to provide unified
access to trace contents and results of instruction
decoding, a model hiding hardware specifics is required.
For example, an algorithm solving the aforementioned
problems needs to know current privilege level,
calculate effective addresses, classify instructions,
identifying control transfer instructions, and
classify registers based on their roles. For instance, in
order to check stack balancing during function
identification, one needs to know which register in the
target architecture is the stack pointer, what value it
contains, what is the effective address of a control transfer
instruction and so on.
The next two problems are tightly connected. A principal
shortcoming of dynamic analysis is that only that code that
has actually been executed is “visible”. Other
code fragments are not evaluated. This problem is noted

in many papers. Approaches towards increasing code
coverage are known, e.g. by means of static disassembly
started from an unrealized jump [7]. However, code
triggered by means of indirect addressing, interrupt and
exception handlers can’t be identified this way.
Thus, static representation recovery of code belonging to
a given process, thread or an OS fragment calls for
solutions of the following problems.
• A generic mechanism of improving coverage is required,

capable of extending the representation with a new code
of arbitrary nature.

• The representation must cope with situations when
executed code changes over time: because of self-
modification, dynamic library loads and unloads or
because of any other reason.

• The representation must provide unified specifications of
semantics of machine instructions. Our solution of this
problem is detailed in [8].

5. CONCLUSION
We have presented a decomposition of problems related to
software security, mapping them to smaller problems of
static and dynamic binary code analysis. In practice the
method is implemented as a combine analysis platform,
developed in ISP RAS. Use of the platform in practice to
analyze malware has shown method justifiability. Further
development will augment static and dynamic analysis with
results obtained by means of symbolic execution of binary
code inside a whole-system simulator.

REFERENCES
[1] Kaspersky Security Bulletin 2012, “Evolution of threats
in 2012”.
http://www.securelist.com/ru/analysis/208050777/Kaspersky
_Security_Bulletin_2012_Razvitie_ugroz_v_2012_godu
[2] Kaspersky Security Bulletin 2012, “Fundamental
statistics in 2012”.
http://www.securelist.com/ru/analysis/208050778/Kaspersky
_Security_Bulletin_2012_Osnovnaya_statistika_za_2012_go
d
[3] G. Balakrishnan and T. Reps, “WYSINWYX: What you
see is not what you eXecute”, ACM Transactions on
Programming Languages and Systems, vol. 32 (6), p. 84,
2010.
[4] A.Y. Tikhonov, A.I. Avetisyan, “Combined (static and
dynamic) analysis of binary code”, Proceedings of the
Institute for System Programming of RAS, vol. 22, pp. 131-
152, 2012.
[5] A.O. Kudryavtsev, “Compression of traces used in
dynamic analysis of binary code”, Proceedings of the
RusCrypto’2009 conference, 2009.
[6] K. Batuzov, P. Dovgalyuk, V. Koshelev, V. Padaryan,
“Two approaches to full-system deterministic replay in
QEMU”, Proceedings of the Institute for System
Programming of RAS, vol.22, pp. 77-94, 2012.
[7] D. Babić, L. Martignoni, S. McCamant, and D. Song,
“Statically-directed dynamic automated test generation”,
Proceedings of the 2011 International Symposium on
Software Testing and Analysis (ISSTA '11), pp. 12-22, 2011.
[8] V.A. Padaryan, M.A. Solov’ev, and A.I. Kononov,
“Simulation of operational semantics of machine
instructions”, Programming and computer software, vol. 37
(3), pp. 161-170, 2011.

