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ABSTRACT 
This paper proposes a decomposition of generic software 
security problems, mapping them to smaller problems of 
static and dynamic binary code analysis. 
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1. INTRODUCTION
Among the problems of current importance a major one is 
the problem of security of information systems that 
serve various needs of the society. There is essential 
need to ensure fundamental requirements of information 
security – integrity, availability and confidentiality – for 
systems that control critical industry infrastructure and 
communication channels, and run on servers, 
workstations and mobile devices. 
Kaspersky Lab analytic reports in 2012 [1, 2] note raising 
cybercrime interest towards new platforms such as Mac OS, 
Android, and SCADA systems. A significant increase in 
malware code size is also observed: after 
complete deployment of the Flame malware the size of 
executable modules it is comprised of sums up to over 
20 MB [1]. Analysis of binary code of such systems 
proves to be quite challenging and requires a high extent of 
automation. Resorting to only classic methods of ensuring 
information security is not feasible: perimeter 
protection, audit, encryption and other mechanisms are 
prone to defects in implementations that, in part, could be 
exploited. 
A full-featured solution to such information 
security problems as control of undocumented feature 
absence or prevention of unauthorized access require 
analysis of executed binary code. Source code can be 
unavailable or unreliable and it is necessary to take the 
build system and configuration files into account. 
Moreover, the compilation process can introduce artifacts 
that break the model of high-level information security in 
use [3]. 
Analysis of software implementation is usually carried out 
in order to evaluate its compliance to the specifications 
(or recovery of such specifications), and to identify 
exploitable code defects. In the course of such work 
analyst performs standard actions: recovers descriptions of 
algorithms and/or protocols, searches for errors and 
evaluates their exploitation possibility. Software tools are 
available to automate these actions but the degree of their 
efficiency varies greatly, also depending on the analysis 
object. 
We continue with a list of requirements for analysis methods 
and tools. These requirements arise from study of code of 
complex enough programs and from cases when program 
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code contains counter-analysis mechanisms. An approach is 
proposed that satisfies these requirements, together with 
its decomposition into smaller tightly connected binary 
code analysis problems. Sequentially solving these 
problems allows obtaining a practical result.  

2. ANALYSIS REQUIREMENS
We now consider the main, de-facto standard, 
production quality tools in use. A fundamentally used tool 
is the IDA Pro disassembler that provides an extensible 
environment for static analysis of binary code. It is aimed 
towards static code analysis and is generally capable of 
distinguishing between code and data fragments, 
partially recovering a graph representation of programs, 
and recovering some high-level constructs. There are 
situations that impede the analysis, including: presence 
of indirect addressing in machine instructions leads to 
non-guaranteed recovery of control flow and does not 
allow evaluating memory accesses correctly; run-time 
code modification, code distribution between several 
processes (code can reside in different virtual address 
spaces) and others result in analysis complications. In 
part such difficulties can be compensated through use 
of a debugger. In difficult cases, such as when analysis of 
system code is required, a whole-system simulator is used 
instead of a debugger by means of a debugging 
interface. Such simulators include QEMU, Bochs and 
VMware Workstation. Analysis of network-using software 
assumes use of network traffic analyzer software such as 
Wireshark. 
We now consider some of the properties of the evaluated 
programs and how these properties influence the choice 
of analysis tools and how well a typical toolset copes with 
such analysis problems. 
The first property is whether the program being 
evaluated uses only user-level machine instructions or 
also utilizes privileged ones. In a nutshell, programs can 
be subdivided into (1) applications; (2) system programs 
(OS, drivers); and (3) applications that are tightly 
connected with one or more OS components, DBMS 
being an example. Extreme cases are analysis of modified 
OS code or analysis of a completely unknown OS. For 
efficient analysis even of application level programs base 
features of IDA Pro are insufficient. This, in part, is 
compensated by a significant amount of third-party 
extensions and scripts for IDA. In cases (2) and (3) it is a 
necessity to evaluate not only the code belonging to the 
current process but also kernel code and code executing in 
other processes simultaneously. This has no backing in static 
disassembly ideology. A debugging-capable whole-
system simulator allows analyzing one distinct state of 
the whole system in question but when there are many 
enough states that must be evaluated (which is the 
case in practice), manual analysis lasts for indefinitely 
long. 



The second property is whether the program can function 
in an isolated virtual machine or requires communication 
over a network with other distributed components. This 
property subdivides programs into (1) programs that work 
locally; (2) distributed programs that require 
communication and all of the other components are 
available; (3) distributed programs that require 
communication and some of its components are 
unavailable. For programs that work locally 
analysis complexity is determined by size and type of the 
code being analyzed (see above). In other cases, when the 
program is comprised of multiple components, analyst has 
to work with several instances of IDA Pro, one for 
each executable component. Complimentary dynamic 
analysis has to be carried out on a separate specially 
configured machine where the problem of simultaneous 
halting of all components must be solved: a debug break in 
only one process inevitably leads to connection timeout and, 
therefore, the natural work flow of the system will be 
broken. 
Use of Wireshark can improve understanding of 
algorithms but requires solving the problem of 
correlating network packets to functions in the binary 
code. There is no assistance for this problem in 
neither IDA Pro nor Wireshark.
Thus, principal requirements for binary analysis method and 
respective tools are as follows. 
• The only sources of data are the machine code being

executed and the hardware state during the execution.
Therefore, the method must work without any additional
information such as debug records, interception of OS
services, etc.

• All programs deployed on a computation system are taken
into evaluation.

• There is support for run-time code modification, including
code decompression, JIT compilation, dynamic libraries,
etc.

• In cases when code in only a given process must be
evaluated, the analysis complexity and convenience must
not be worse than in state-of-the-art approaches.

• Analysis has to be non-invasive, i.e. not alter the behavior
of the system under evaluation.

Apart from this list, the following nonfunctional requirement 
is also important: automation of components and of the 
whole method must be available because the time spent on 
algorithm recovery, search for errors and other 
practical tasks are critical measure – if it takes too long 
the results will no longer be relevant. 

3. COMBINED APPROACH
ISP RAS has developed a method for binary code analysis 
that satisfies the above requirements [4]. The basic scheme is 
presented on Fig. 1. 

Fig. 1 – Suggested analysis scheme 
The program is executed on a simulator with a set of correct 
input data that trigger the functionality being evaluated. The 
simulator contains a single virtual core that executes all 
code, and allows communication with other 
components through a network interface or by means of 
peripheral device forwarding from the host machine to the 

virtual machine. The input data for the analysis 
environment are the initial virtual machine state and a 
set of traces that have been collected starting from this 
initial state. Each trace is a continuous sequence 
instructions being executed and snapshots of CPU 
state before each executed instruction. This, a trace 
contains all information required to describe various 
aspects of functioning of program and its 
environment, both application- and system-level. 
Results from tracing are represented in a target 
architecture independent way and are successively fed 
to a stack of analysis algorithms that raise representation 
level. OS- and ABI-level events are identified in traces 
which results in a trace markup. For fragments of traces 
that are of interest a static presentation is recovered partly 
representing the static structure of the evaluated code. It is 
impossible to guarantee a complete recovery in all cases 
because traces only contain a part of the code that 
contributes to the functionality being researched. The 
static presentation provides means to level the analysis 
further by partially recovering CFGs and high-level control 
constructs. 
The main task of the analysis platform infrastructure is 
to control various analysis algorithms, provide a unified 
means of storing and later accessing the results 
from these algorithms, and make sure that data is up-
to-date. Main functional units in the platform are 
implemented as plug-in extension modules, their 
number constantly increasing. Apart from that, the 
analysis platform also provides support for interoperation 
with third-party tools such as IDA Pro and Wireshark. 
As a result of the performed analysis analyst is provided 
with high-level descriptions of algorithms in the 
program, specification of data formats used in protocols, 
and code for model examples. This provides for evaluating 
correctness of the extracted algorithms, errors in 
implementation and corresponding input data. 
4. RELATIONS BETWEEN PROBLEMS
Whether the general idea outlined in the previous section 
works in practice greatly depends on solving a number of 
problems that arise in the course of detailed method 
development and its implementation in software tools. Fig. 2 
shows a scheme of these problems and their relations. The 
starting point is the overall analysis task, the bottom row is 
comprised of subproblems directly related to obtaining 
practically important results; their number can easily be 
extended but the most important goals are the three ones 
covered in the scheme. 
It is easily observed that the trace collection process is 
relatively independent while other subproblems are tightly 
bound to one another and form a number of layers. 
The trace being collected has to contain at least instruction 
codes and values of basic registers. This register set has to 
include the program counter, machine state word and 
registers used in indirect addressing. It’s easy to see that 
even for smaller CPU state snapshots traces are quite huge. 
Usage of specialized trace compression methods allows to 
reduce the size by up to 2-3 orders of 10 [5] but is incapable 
of improving performance of tracing. This often leads to the 
program being traced working incorrectly, e.g. network 
connections are likely to time out. This problem is solved by 
means of so-called two-phase tracing [6] when only a log of 
“external” events is collected during program execution. 
This log allows replaying the virtual machine work later. A 
complete trace can then be safely recorded and tracing will 
not influence the flow of time inside the virtual machine. 
The second problem arising during tracing of a virtual 
machine is the simulator accuracy. Interpretation of complex 
privileged instruction often differs marginally from how 



such instructions work on a real processor. Some 
system software stops working under such circumstances. 
Moreover, counter-analysis mechanisms often monitor 
execution of some instructions to detect execution 
inside a virtual environment. In presence of a debugger 
or when run in a virtual machine, such programs alter 
their behavior to hide some properties. The principal 
solution of this program is to use an open-source program 
simulator so as not to depend on simulator developers and 
be able to independently fix interpretation of sensitive 
instructions. 
Further detailed discussion of tracing-related questions is 
beyond the limits of this paper. 

Fig. 2 – The relationship between the solved problems 

The virtual machine contains only a single core and all 
code that is executed during tracing will therefore be 
contained in the trace sequentially (because all programs 
and OS use this one core in time-sharing mode). Thus, the 
collected trace is a sequence of instructions in which code 
belonging to different processes, threads and to the OS 
is intermixed. Such a representation is inconvenient for 
navigation and further analysis. It is, thus, necessary to 
identify fragments in trace that correspond to interrupts, 
context switching code for processes and threads, locate 
function calls and returns. The latter is a particularly 
nontrivial problem because due to different techniques 
used in binary code there are fragments in which the 
natural stacking of calls and returns does not hold (this 
includes trampolines, table calls, late and “lazy” binding). 
This and many other problems must be solved taking into 
account the fact that multiple target architectures have to 
be supported. The analysis method makes no assumptions 
about the hardware the evaluated code works on; the 
method can be applied to a wide range of general 
purpose processor architectures that are close enough to 
the von Neumann principles, at least on the ISA level. 
Such architectures at Intel 64, ARM and many others fall 
into this class. However, in order to provide unified 
access to trace contents and results of instruction 
decoding, a model hiding hardware specifics is required. 
For example, an algorithm solving the aforementioned 
problems needs to know current privilege level, 
calculate effective addresses, classify instructions, 
identifying control transfer instructions, and 
classify registers based on their roles. For instance, in 
order to check stack balancing during function 
identification, one needs to know which register in the 
target architecture is the stack pointer, what value it 
contains, what is the effective address of a control transfer 
instruction and so on.
The next two problems are tightly connected. A principal 
shortcoming of dynamic analysis is that only that code that 
has actually been executed is “visible”. Other 
code fragments are not evaluated. This problem is noted 

in many papers. Approaches towards increasing code 
coverage are known, e.g. by means of static disassembly 
started from an unrealized jump [7]. However, code 
triggered by means of indirect addressing, interrupt and 
exception handlers can’t be identified this way. 
Thus, static representation recovery of code belonging to 
a given process, thread or an OS fragment calls for 
solutions of the following problems. 
• A generic mechanism of improving coverage is required, 

capable of extending the representation with a new code 
of arbitrary nature.

• The representation must cope with situations when
executed code changes over time: because of self-
modification, dynamic library loads and unloads or
because of any other reason.

• The representation must provide unified specifications of
semantics of machine instructions. Our solution of this
problem is detailed in [8].

5. CONCLUSION
We have presented a decomposition of problems related to 
software security, mapping them to smaller problems of 
static and dynamic binary code analysis. In practice the 
method is implemented as a combine analysis platform, 
developed in ISP RAS. Use of the platform in practice to 
analyze malware has shown method justifiability. Further 
development will augment static and dynamic analysis with 
results obtained by means of symbolic execution of binary 
code inside a whole-system simulator. 
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