
ISSN 0361�7688, Programming and Computer Software, 2015, Vol. 41, No. 1, pp. 49–64. © Pleiades Publishing, Ltd., 2015.
Original Russian Text © I.S. Zakharov, M.U. Mandrykin, V.S. Mutilin, E.M. Novikov, A.K. Petrenko, A.V. Khoroshilov, 2015, published in Proceedings of the Institute for System
Programming of RAS, 2014, Vol. 26, No. 2.

49

1. INTRODUCTION

Reliability and efficiency of an operating system
(OS) kernel are important characteristics of its quality,
since a kernel is a heart of an OS and all user applica�
tions rely on it. In most modern OSs, kernels imple�
ment only primary functionality, like, for example,
processor scheduling, memory management, and
interprocess communication. Therefore, kernels, on
the one hand, have a relatively small size and, on the
other hand, their high quality has been formed over a
long period of time in various use cases.

In most OSs, kernel functionality can be extended
by dynamic loading of modules. A common example
of a kernel module is a device driver that is required
when a particular device is connected. Moreover, file
systems, network protocols, audio codecs, etc. are
often implemented as kernel modules. Amount of
source code for modules delivered with an OS kernel
may considerably exceed that of the kernel (for
instance, by a factor of eight for the Linux kernel).
Furthermore, due to various reasons many developers
grant no access to source code of their modules, dis�
tributing them in the form of binary code. This consid�
erably complicates application of certain quality
assurance approaches. Not all kernel modules can be

used intensively (for example, drivers of specific
devices). All this lead us to the fact that kernel modules
of various OSs have a considerably lower level of qual�
ity than kernels themselves. This fact is confirmed by
investigations showing that just open source modules
contain seven times more bugs than an OS kernel does
[1–3].

High performance of OS kernel modules is due to
the fact that most of them operate in the same address
space and with the same privileges as a kernel.
Thereby, bugs in modules may result in unstable oper�
ation of a kernel or an entire OS. Analysis of commits
to Linux kernel modules showed that violations of
rules for correct usage of the kernel API in modules are
the source of about half of all bugs that are unrelated to
violations of specifications for hardware, network pro�
tocols, audio codecs, etc. [4]. Similar statistic data for
other OSs is unavailable to us; however, this type of
bugs is of rather high interest for ongoing investiga�
tions [5].

1.1. Approaches to Finding Violations of Rules
for Correct Usage of a Kernel API in Modules

There are different ways to find violations of rules
for correct usage of a kernel API in modules. In prac�

Configurable Toolset for Static Verification
of Operating Systems Kernel Modules

I. S. Zakharov, M. U. Mandrykin, V. S. Mutilin, E. M. Novikov,
A. K. Petrenko, and A. V. Khoroshilov

Institute for System Programming, Russian Academy of Sciences, ul. Solzhenitsyna 25, Moscow, 109004 Russia
E�mail: ilja.zakharov@ispras.ru, mandrykin@ispras.ru, mutilin@ispras.ru, novikov@ispras.ru,

petrenko@ispras.ru, khoroshilov@ispras.ru
Received September 29, 2014

Abstract—An operating system (OS) kernel is a critical software regarding to reliability and efficiency. Qual�
ity of modern OS kernels is already high enough. However, this is not the case for kernel modules, like, for
example, device drivers that, due to various reasons, have a significantly lower level of quality. One of the most
critical and widespread bugs in kernel modules are violations of rules for correct usage of a kernel API. One
can find all such violations in modules or can prove their correctness using static verification tools that need
contract specifications describing obligations of a kernel and modules relative to each other. This paper con�
siders present methods and toolsets for static verification of kernel modules for different OSs. A new method
for static verification of Linux kernel modules is proposed. This method allows one to configure the verifica�
tion process at all its stages. It is shown how it can be adapted for checking kernel components of other OSs.
An architecture of a configurable toolset for static verification of Linux kernel modules that implements the
proposed method is described, and results of its practical application are presented. Directions for further
development of the proposed method are discussed in conclusion.

Keywords: operating system kernel, kernel module, software quality, static verification, contract specification,
environment model, specification of rule for correct usage of API.

DOI: 10.1134/S0361768815010065

50

PROGRAMMING AND COMPUTER SOFTWARE Vol. 41 No. 1 2015

ZAKHAROV et al.

tice, code review and testing are used most often.
These approaches help to find and fix a reasonably
large number of bugs in modules. They, however, fail to
find all possible bugs [6]. Thorough code review
requires great manual efforts; therefore, it is per�
formed in full only for an OS kernel but not for kernel
modules that are large, complex, and dynamically
evolving programs. Testing is usually performed auto�
matically to reduce efforts as compared to code review.
This approach, however, requires preparation of a test
environment, which is quite complicated in the case of
device drivers. Moreover, only small programs can be
carefully checked by testing.

Recently, application of methods and tools for
static code analysis, i.e., analysis without actual exe�
cution (usually source code is analyzed), became a
main trend in checking software. In practice, the so�
called lightweight approaches are widely used. They
use a lot of heuristics to check large programs in a time
comparable to the compilation time. A drawback of
heuristic�based tools for static code analysis is that
they, on the one hand, miss certain bugs and, on the
other hand, generate a great number of false alarms.
These tools are mainly used to find violations of gen�
eral safe programming rules, like, for example, null
pointer dereference and buffer overflow [7, 8]. Certain
tools are used to check rules for correct usage of the
Linux kernel API in modules [9].

Static verification (thorough static code analysis)
allows one to find all bugs of a given type in programs
or to prove their correctness. Modern static verifica�
tion tools (which implement, for example, the coun�
terexample�guided abstraction refinement method
[10]) already can prove feasibility of specified proper�
ties for medium�scale programs in a reasonable time.
In particular, these tools can be used to verify OS ker�
nel components, like, for example, kernel modules
(for the Linux kernel, the size of most modules is sev�
eral thousand lines of code).

Static verification tools themselves cannot find vio�
lations of rules for correct usage of a kernel API in
modules, but they can solve the reachability problem.
These tools determine reachability of a certain opera�
tor marked with a certain label from a given entry
point. Thus, the problem of rule violation finding
should someway be transformed to the reachability
problem. To this end, we need to develop specifications
of rules for correct usage of a kernel API relating viola�
tions of rules and reachability of an operator marked
with a given label. Moreover, investigations showed
that, in order to obtain acceptable results of static ver�
ification of kernel modules (to find bugs of a given type
with a moderate number of false alarms), these tools
need a quite accurate environment model describing
scenarios of interaction between a kernel and modules
that occur in a real environment [11].

Thus, to find violations of rules for correct usage of
a kernel API in modules, static verification tools need
contract specifications describing formal obligations of

a kernel and modules relative to each other. From the
side of a kernel, the contract specifications should
define correctly and fully a set of possible scenarios of
interaction with modules and should provide a model
of a kernel API used by modules. From the side of
modules, the contract specifications should define
which requests of modules to a kernel are considered
to be correct.

Static verification tools are now being developed in
universities and research institutes all over the world.
Every year new tools become available [12–14]. Static
verification tools implement various methods to prove
feasibility of various specified properties. There is no
single leader in this race, since these tools use different
techniques and are designed for different classes of
bugs. Therefore, in the long term, it is important to
have an opportunity to use different static verification
tools.

In this paper, we consider those static verification
tools that can be used to check software written in the
C programming language, since kernel modules for
most of OSs are developed using C.

1.2. Characteristics
of an OS Kernels Development Process

When developing contract specifications and per�
forming static verification of modules, characteristics
of an OS kernels development process should be taken
into account.

The Microsoft Windows kernel is developed on a
centralized basis with vast resources being allocated to
develop and apply new technologies, in particular, to
ensure quality by means of static verification. A great
number of Windows kernel modules are developed and
supported by hardware manufacturers only. This
means, among other things, that only the module
developers have access to their source code that is
required to perform static verification. Therefore,
often, the developers themselves perform static verifi�
cation, analyze results, and update contract specifica�
tions when needed. For the Microsoft Windows OS,
the API between the kernel and modules is stable,1

thereby the same contract specifications can be used
for different versions of the kernel.

The Linux kernel is an open source software and it
is delivered with a great number of modules (about
4000 in the latest versions). All new versions of the
Linux kernel are developed by more than 1000 devel�
opers from more than 200 organizations all around the
world [15]. The developers do not write contract spec�
ifications by themselves. For the Linux OS, the API
between the kernel and modules is not stable.2 This

1 Documentation on Windows Driver Frameworks is available on
http://msdn.microsoft.com/en�us/Library/Windows/Hardware
/ff557565%28v=vs.85%29.aspx.

2 More information is available on http://www.kernel.org/doc/
Documentation/stable_api_nonsense.txt.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 41 No. 1 2015

CONFIGURABLE TOOLSET FOR STATIC VERIFICATION 51

complicates development and maintainance of con�
tract specifications, since, when new versions of the
kernel become available, these contract specifications
may require a refinement.

In this paper, we did not consider characteristics of
other OS kernels development process, since we have
no information about application of static verification
tools to them.

1.3. Present Toolsets for Static Verification
of Kernel Modules

In order to automate static verification of kernel
modules for various OSs, static verification toolsets are
developed. Thus far, only one static verification toolset
has risen to the level of industrial application. This is
Static Driver Verifier (SDV) [16], which was developed
by Microsoft Corporation. This toolset can be used to
check Microsoft Windows kernel modules for compli�
ance to rules for correct usage of the kernel API by
means of the SLAM static verification tool [17].

SDV automatically obtains information about
source files and build options of modules using scripts
describing a build process. In this static verification
toolset, the part of the environment model that
describes possible interaction scenarios between the
kernel and modules is generated automatically based
on specifications developed by the SDV developers for
all types of modules and on annotations for modules
that are developed manually. The model of the Win�
dows kernel API used by modules is included into
SDV. Specifications of rules for correct usage of the
kernel API are written using a specification language
for interface checking (SLIC) [18]. Today, SDV is
delivered with a set of about 200 rule specifications.
A research version of SDV [19] allows one to add rule
specifications and to use the Yogi static verification
tool. The developers of SDV paid great attention to
automate launching of the process of kernel modules
static verification and to support analysis of static ver�
ification results. The users obtain both overall results
of static verification for analyzed modules over all rules
being checked and visualized error traces (paths in
source code where rules can be violated). As of the
year 2010, SDV helped to find 270 bugs in kernel mod�
ules that are delivered with the Microsoft Windows
OS.

For Linux kernel modules, two static verification
toolsets were developed: DDVerify (Carnegie Mellon
University, Pittsburgh, USA) [20] and Avinux (Eber�
hard Karls University, Tubingen, Germany) [21].

DDVerify uses its own scripts to extract informa�
tion about source files and build options of analyzed
modules. In this static verification toolset, contract
specifications are developed completely manually
using C. The DDVerify developers prepared an envi�
ronment model for four types of modules, as well as for
hardware interrupt handlers, timers, etc. Moreover,
they included eight specifications of rules for correct

usage of synchronization primitives and rules for cor�
rect initialization of variables before use in the envi�
ronment model. DDVerify can be used to check mod�
ules using two static verification tools: CBMC [22] and
SATABS [23]. To facilitate error traces analysis, the
static verification toolset includes a plugin for the
Eclipse IDE.

The Avinux static verification toolset automatically
checks single preprocessed source files of kernel mod�
ules by modifying original scripts describing a kernel
build process. In Avinux, the environment model
should be developed almost completely by hand (only
functions exported by modules for parameters of
which initialization code is generated are called auto�
matically). Specifications of rules for correct usage of
the kernel API are written using an extended version of
SLIC. Avinux checks rules for correct usage of syn�
chronization primitives and rules for correct memory
operation. This static verification toolset was inte�
grated just with static verification tool CBMC. Avinux
is implemented as an Eclipse plugin that helps to
launch the toolset automatically. The users obtain
error traces in the CBMC format, which considerably
complicates their analysis.

None of the static verification toolsets described
above takes into account all characteristics of the
Linux kernel development process. SDV is intended
only for static verification of kernel modules for the
Microsoft Windows OS whose kernel API is stable.
DDVerify requires adaptation of its build process, ker�
nel header files, and contract specifications to each
new version of the kernel. Moreover, this static verifi�
cation toolset implements the environment model
only for four types of modules out of several hundreds.
Avinux does not support automatic check of modules
consisting of several source files, requires manual
development of the most part of the environment
model, and manual maintenance of rule specifica�
tions. Both toolsets for static verification of Linux ker�
nel modules showed no prominent results in practice
and, now, they are not developed any more.

None of the above mentioned toolsets supports
integration of third�party static verification tools. It is
especially important when checking Linux kernel
modules, since, on the one hand, there is a great num�
ber of static verification tools implementing com�
pletely different approaches and, on the other hand,
the developers of static verification toolsets, in con�
trast to Microsoft Corporation, have limited resources
to support a particular static verification tool.

Present static verification toolsets provide no
means for comparative analysis of verification results
and for automatic marking of bug reports; this is
important, since there are quite many Linux kernel
modules, rule specifications, static verification tools,
and their configurations that, in addition, evolve with
time.

52

PROGRAMMING AND COMPUTER SOFTWARE Vol. 41 No. 1 2015

ZAKHAROV et al.

Therefore, it is important to develop a new method
and toolset for static verification of Linux kernel mod�
ules.

1.4. Outline of the Paper

The new method for static verification of Linux
kernel modules is proposed in Section 2. It allows one
to configure the verification process at all its stages.
Furthermore, this section describes modifications of
the method required to check kernel components of
other OSs. The architecture of the developed config�
urable toolset for static verification of Linux kernel
modules is discussed in Section 3. Section 4 presents
results of practical application of this toolset; here, we
analyze bugs found in Linux kernel modules, causes of
false alarms and missed bugs, static verification time
consumption, and causes of unsuccessful terminations
of the static verification toolset. Moreover, Section 4
demonstrates capabilities of the developed config�
urable static verification toolset for comparing static
verification tools and their configurations. Directions
for further development of the proposed method are
discussed in conclusion.

2. METHOD FOR STATIC VERIFICATION
OF LINUX KERNEL MODULES

The proposed method consists of several steps that
are described in Subsections 2.1–2.5. Modifications
of the method required to check kernel components of
other OSs are addressed in Subsection 2.6.

2.1. Initial Processing of Source Code
for Static Verification

At the first step of the method, initial processing of
source code of the Linux kernel and modules is per�
formed. In Section 1.1, we mentioned that modern
static verification tools cannot be used to check the
entire OS kernel. Therefore, it is required to divide
source code of the Linux kernel and modules with cor�
responding compile and link commands (that describe
build rules) so that the size of resultant verification
objects is limited by several thousand or tens of thou�
sands lines of code and that these verification objects
comprise as much code implementing functions of the
corresponding modules as possible. For example, a
verification object can include source files that consti�
tute a module being analyzed together with the corre�
sponding build commands.3 A kernel module can call
kernel functions as well as functions from other mod�
ules; hence, these functions code can be added into a
corresponding verification object.

3 This can be done by using link commands related to modules,
since output files of commands for compiling source files are
input files for link commands, including module link com�
mands.

In the proposed method, verification objects are
prepared automatically using original Linux kernel
build scripts. To this end, they are modified so that,
along with assembling the kernel and modules, infor�
mation about the corresponding compile and link
commands is outputted.

2.2. Generating the Environment Model

In order to check verification objects obtained at
the first stage for compliance with rules for correct
usage of the Linux kernel API, the environment model
for these verification objects is generated at the second
stage and the entry point for static verification tools is
specified.

In a typical Linux kernel module, an initialization
function, callbacks (callbacks for probing and discon�
necting devices, callbacks for opening, reading, writ�
ing, and closing files, hardware interrupt handlers,
etc.), and an exit function are defined. The initializa�
tion function is called when the kernel loads the mod�
ule. This function registers module callbacks that are
called, when required, by the kernel to handle system
calls from user applications, hardware interrupts, and
kernel internal events. Before the module is unloaded,
the exit function is called in which resources allocated
to the module are released and module callbacks are
deregistered.

In the proposed method for static verification of
Linux kernel modules a set of scenarios of interaction
between the kernel and modules, which may occur in
the real environment, is described using π�processes
[24, 25]. This allows one to define the environment
model both on a detailed level for particular groups of
module callbacks and as callback group patterns that
cover most of the other groups. For example, these
callback group patterns may specify that module call�
backs can be called only after a successful invocation
of the initialization function, that a device can be dis�
connected only after its successful probing, and that a
file can be read only upon being opened. Thus, the π�
model of environment can be specified rather com�
pactly for all types of Linux kernel modules. Moreover,
the same specification of the π�model of environment
can be used for different versions of the kernel, since
patterns are not restricted to any particular module
callbacks or even to any particular groups of callbacks.
Figure 1 shows the layout view of the environment
model for a USB driver.

The user can refine the specification of the π�model
of environment by describing a particular group of
module callbacks, for which the environment model is
generated based on a callback group pattern, if would
be found that a certain known bug is missed because
the model specifies not all possible scenarios of ker�
nel–modules interaction or that a false alarm is pro�
duced because the model allows scenarios impossible
in the real environment.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 41 No. 1 2015

CONFIGURABLE TOOLSET FOR STATIC VERIFICATION 53

Callback group patterns from the specification of
the π�model of environment are suggested to be
selected and filled automatically by analyzing source
files of verification objects obtained at the previous
step. For each verification object several environment
models can be generated, e.g., for different groups of
module callbacks. In order to use various static verifi�
cation tools in the future, each environment model is
translated into a function written in C, from which
callbacks of a verification object are called in the same
manner and in the same sequence as in the real envi�
ronment. This function is added to source files of a
verification object and then it is used as an entry point
for static verification tools.

2.3. Developing Specifications of Rules for Correct Usage
of the Linux Kernel API

At the third step of the proposed method, for those
elements of the Linux kernel API that match with
specified rules, we develop a model4 and, based on
these rules and a state of this model, specify precondi�
tions for given API elements. Developing specifica�
tions of rules for correct usage of the Linux kernel API
is discussed in detail in [26], where an aspect�oriented
extension for the C programming language used to
develop specifications is described. Figure 2 presents a
specification of rules for correct release of USB
request blocks (URBs) to show integral parts of speci�
fications and their relations with one another and with
source code of modules being analyzed.

Note that, in the proposed method signatures of ker�
nel API elements, for which the model is developed and
preconditions are set, are described completely (see
Fig. 2 for USB_ALLOC_URB and USB_FREE_URB
definitions). Thus, compatibility of rule specifications

4 This model is a part of the environment model for Linux kernel
modules.

with the kernel API and its implementation can be
maintained automatically, since the developers as a
rule modify the corresponding API elements when
making essential changes in their implementation.

The user can improve these specifications if it is
found that they are not adequate enough or that they
miss well�known bugs or lead to false alarms. The users
can also add their own rule specifications.

Based on rule specifications, we propose to instru�
ment source files obtained at the second stage so that vio�
lations of rules for correct usage of the Linux kernel API
are transformed to reachability of the LDV_ERROR label
from given entry points. As a result, we obtain verification
tasks: reachability problems are posed for verification
objects.

2.4. Launching Static Verification Tools

At the fourth stage, static verification tools are
launched on the produced verification tasks in order to
find violations of rules or to prove correct operation of
the corresponding modules against these rules.
We propose to run static verification tools using adapt�
ers. For a certain tool, an adapter does the following:

• Prepares C files that constitute verification
objects, e.g., uses the standard C preprocessor for each
file, processes files using the CIL code transformation
tool [27], or merges all files into one with help of CIL
(all static verification tools accept preprocessed source
files as an input; some of tools can analyze only one
file at a time).

• Launches a static verification tool passing the
prepared C files together with a given configuration
and limiting the amount of resources the (CPU time
and memory) tool is allowed to consume (this is espe�
cially important, since static verification tools may run
unacceptably long time and/or require excessively
large memory capacity).

Fig. 1. Layout view of the environment model for a USB driver.

... ...

Invocation of the

Module not

Invocation of
Module

 Call of USB Call of USB

Invocation of the

Module

Call of USB

 USB device

 initialization function
(unsuccessful)

 loaded

the initialization
 function

(successful)
loaded

 probe callback
(unsuccessful)

exit function

unloaded

probe callback
(unsuccessful)probe callback

(successful)

initialized

54

PROGRAMMING AND COMPUTER SOFTWARE Vol. 41 No. 1 2015

ZAKHAROV et al.

• Handles an exit status of the static verification
tool (for example, successful termination, termination
by a signal due to exceeding the memory limit, or ter�
mination because of a bug in the tool) and evaluates
resources consumed by the tool.

• Returns the Unknown verdict when the static ver�
ification tool terminates incorrectly and points to
causes of the unsuccessful termination that can be
determined by analyzing the output of the tool, as well
as its exit status.

• Determines, based on the output of the tool, a
proper verdict in the case when the static verification
tool terminated correctly, indicating either that there
were no violations of rules (the tool returns the Safe
verdict) or that there possibly was a violation of rules
(the tool returns the Unsafe verdict).

• When the Unsafe verdict is returned, the static
verification tool provides an error trace whose format
may considerably differ for different tools; therefore,
to facilitate further analysis of static verification
results, the adapter converts all error traces to a com�
mon format (see the following subsection).

In order to integrate third�party static verification
tools, the user must develop a corresponding adapter.

One can use parts of adapters for other tools, since
they may be organized similarly.

2.5. Analyzing Static Verification Results

At the final step of the proposed method, automatic
analysis of static verification results is performed in
several directions.

First, analysis of error traces provided by static ver�
ification tools is facilitated to gain insight into causes
of revealed bugs and to find out which bug reports are
false alarms. For this purpose, all error traces are first
converted to the common format (this is done by the
corresponding static verification tool adapter), and
then the error traces represented in the common for�
mat are uniformly visualized with links to the corre�
sponding source code of the analyzed modules and the
Linux kernel.

Second, bug reports are automatically marked (to
indicate whether they correspond to real bugs or false
alarms) if error traces are proved similar to the already
analyzed ones (for example, have the same trees or
stacks of function calls). Thus, we can considerably
reduce efforts on analysis of results. For instance, if a
static verification tool produces a false alarm when

#include 〈linux/usb.h〉
#include 〈verifier/rcv.h〉

/* Set of pointers to URB structures for which memory is
allocated to a module. Header file verifier/rcv.h de
fines the “set” data type as well as operations
with objects of this type
set URBS = empty;

/* Model functions to allocate/deallocate memory
for URB structures. Header file verifier/rcv.h. */
 defines memory allocation model function ldv_alloc

struct urb *
ldv_usb_alloc_urb (void)
{
void *urb;
urb = ldv_alloc();
if (urb) {
add (URBS, urb);

}
return urb;

}
void
ldv_usb_free_urb (struct urb *urb)
{
if (urb) {
remove (URBS, urb);

}
}

/* Description of a set of points where kernel
API elements are used */
pointcut USB_ALLOC_URB: call (
struct urb *usb_alloc_urb (int, qfp_t))

pointcut USB_FREE_URB: call (
void usb_free_urb (struct urb *))

/* Binding of model function calls to points
where API elements are used */
around: USB_ALLOC_URB {
return ldv_usb_alloc_urb();

}
around: USB_FREE_URB {
ldv_usb_free_urb($arg1);

}

/* Preconditions for kernel API elements. Macrofunction
ldv_assert is defined in the header file verifier/rcv.h as follows:
#define ldv_assert (e) (e ? 0 :
ldv_error ())
static inline void ldv_error(void) {
LDV_ERROR: goto LDV_ERROR;

}
LDV_ERROR is the label that, upon reached,
indicates a violation of rules being checked. */
before: USB_FREE_URB {
ldv_assert (contains(URBS, $arg1));

}
after: MODULE_EXIT {
ldv_assert (is_empty(URBS));

}

Fig. 2. Specification of rules for correct release of USB request blocks.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 41 No. 1 2015

CONFIGURABLE TOOLSET FOR STATIC VERIFICATION 55

checking a module for a particular version of the Linux
kernel, then it will likely produce a quite similar error
trace for this module in the next version of the kernel;
therefore, owing to the automated marking of bug
reports, one can avoid performing this analysis repeat�
edly.

Third, statistic data and ability to compare static
verification results are provided, since there are a lot of
Linux kernel modules, rule specifications, static veri�
fication tools, and their configurations that, in addi�
tion, evolve with time.

Fourth, collaborative analysis of static verification
results is enabled without considerable expenses on
interaction procedures.

2.6. Adapting the Method for Checking Kernel
Components of Other OSs

The method proposed above can be used to verify
kernel components of other OSs. Thus, for a target
OS, it is required to

• Adopt an approach to preparing verification
objects. Information about source files and build
options of kernel components can be obtained using
original build scripts in the same way as for Linux ker�
nel modules.

• Develop an environment model for analyzed
kernel components by studying characteristics of
intercomponent interaction, as well as interaction
between these components and an OS environment,
and by formulating restrictions on a set of interaction
scenarios. Based on these restrictions, the environ�
ment model can be developed either manually or using
a certain formal description.

• Develop rule specifications for bugs of a sought�
for type. For example, to find violations of rules for
correct usage of a kernel API, API elements relevant to
these rules should first be found and, then, a model for
them should be developed and preconditions for these
API elements should be specified. Further steps, inte�
gration, and launch of static verification tools, includ�
ing analysis of static verification results, remain the
same as for the Linux kernel modules.

2.7. Intermediate Conclusions

The proposed method for static verification of
Linux kernel modules allows one to configure the ver�
ification process at all the stages:

• When preparing verification objects, one can
decide how to divide source code of modules and the
kernel and the corresponding build commands.

• One can refine specifications of the π�model of
environment.

• One can refine available specifications of rules
for correct usage of the kernel API and add new spec�
ifications.

• One can specify own configurations and resource
limits for integrated static verification tools, as well as
integrate third�party tools.

Such configurability helped us to raise a toolset
implementing this method to a rather high level of
maturity. This toolset is now evolving quite intensively
and has already helped to find more than 150 critical
bugs in Linux kernel modules.

3. CONFIGURABLE TOOLSET
LINUX DRIVER VERIFICATION TOOLS

The proposed method for static verification of
Linux kernel modules was implemented in config�
urable toolset Linux Driver Verification Tools (LDV
Tools) [28].

3.1. Architecture of Linux Driver Verification Tools

The architecture of LDV Tools is shown in Fig. 3.
Components and subcomponents, as well as static ver�
ification tools, are depicted in the center in the order
of invocation. Input data is shown on the left. On the
right, we depict the order of generating a report based
on static verification results, upload of the report to the
LDV database, and the LDV Analytics Center compo�
nent intended for automating analysis of static verifi�
cation results.

3.2. LDV Core

The process of static verification of Linux kernel
modules begins with launching the LDV Core compo�
nent. This component calls the Kernel Manager sub�
component that creates on a disk a copy of the Linux
kernel provided by the user in the form of an archive, a
directory, or a Git repository. After that, all compo�
nents and subcomponents of LDV Tools use this copy
only. Kernel Manager modifies original kernel build
scripts to obtain later information about source files
and build options of modules.

Then, Build Command Extractor is called, which
initiates a build process of the Linux kernel. As the
build process progresses, this subcomponent inter�
cepts a stream of compile and link commands for ker�
nel files. Using these commands, Build Command
Extractor extracts source files related to modules being
verified.

Compile and link commands are then transferred
to the Command Stream Divider subcomponent that
forms verification objects based on these commands.
Each verification object corresponds to exactly one
kernel module, so that all source files, that constitute
corresponding modules, are processed and analyzed
further. In the future, we intend to generate verifica�
tion objects for groups of interrelated modules and to
supplement them with some kernel code that the
modules analyzed depend on. The user will be offered
an opportunity to select a particular strategy for divid�

56

PROGRAMMING AND COMPUTER SOFTWARE Vol. 41 No. 1 2015

ZAKHAROV et al.

ing source code of the Linux kernel and modules and
corresponding build commands into verification
objects.

Each prepared verification object is inputted to the
Driver Environment Generator subcomponent [29]
along with the specification of the π�model of envi�
ronment integrated into LDV Tools. The user can
refine this specification if required. Driver Environ�
ment Generator finds out the initialization function,
callbacks, and the exit function based on source files
that constitute verification objects. Then, using this
data and the specification of the π�model of environ�
ment, an intermediate representation of the environ�
ment model is generated for each verification object.
This representation is translated by Driver Environ�
ment Generator into source code in C that is added to
source code of verification objects.

3.3. Domain Specific C Verifier

The Domain Specific C Verifier component weaves
verification objects with given rule specifications and

launches a particular static verification tool with a
specified configuration.

Available rule specifications are stored in a data�
base, where each specification has a unique ID. The
users can employ their own rule specification data�
bases, add rule specifications to the available database,
and modify existing specifications.

For each rule specification ID, Domain Specific C
Verifier calls Rule Instrumentor. This subcomponent
extracts, using the ID, information about a specifica�
tion of rules being checked from the database; based
on this information, it instruments verification object
source files so that the reachability problem is posed
for static verification tools (solution of this problem
corresponds to a potential violation of rules being
checked).

For static verification, LDV Tools uses either a tool
and a configuration specified by the user or a tool and
a configuration used by default. The Reachability C
Verifier subcomponent calls a static verification tool
using the corresponding adapter. The verification task,
the configuration, and resource limits for the static
verification tool are passed to this adapter.

Fig. 3. Architecture of Linux Driver Verification Tools.

BLAST CPAchecker

Reachability C Verifier

Rule Instrumentor

Domain Specific Generator

...

Driver Enviroment Generator

Command Stream Divider

Build Command Extractor

Kernel Manager

LDV Core

LDV Analytics Center

LDV database

of the π�

Report

Linux kernel

 Specification

Rule

Configuration

Adapter

 Verdict...

Adapter

specification

model of
 environment

PROGRAMMING AND COMPUTER SOFTWARE Vol. 41 No. 1 2015

CONFIGURABLE TOOLSET FOR STATIC VERIFICATION 57

Fig. 4. Static verification results grouped by the Linux kernel version (3.13�rc1) and rule specification ID.

Fig. 5. Analysis of bug reports produced by BLAST when checking the specification of rules describing correct registration of USB
gadget devices (results of marking the bug reports are shown on the right: “True positive” means that a real bug is found and “False
positive” means a false alarm).

58

PROGRAMMING AND COMPUTER SOFTWARE Vol. 41 No. 1 2015

ZAKHAROV et al.

At the present time, LDV Tools includes adapters
for BLAST [30] (used by default), CPAchecker [31],
UFO [32], and CBMC [22]. In addition, the user can
integrate third�party static verification tools into LDV
Tools by implementing the corresponding adapters.

3.4. Generating the Final Report and Uploading
It to the LDV Database

Verdicts returned by a static verification tool are
processed by all components and subcomponents of
LDV Tools in the reverse order (see Fig. 3). At each
stage, an intermediate report is supplemented with
information concerning operation of the correspond�
ing components and subcomponents. As a result, LDV
Tools generates a final report, which includes static
verification results for Linux kernel modules. This
final report can be uploaded to the LDV database.

3.5. LDV Analytics Center

LDV Analytics Center is a component that pro�
vides several types of automated analysis of static veri�
fication results uploaded to the LDV database:

• Statistical analysis that makes it possible to group
static verification results according to the Linux kernel
version, rule specification ID, etc. (Fig. 4).

• Analysis of static verification results obtained for
particular rule specifications, modules, etc. (Fig. 5).

• Comparative analysis that (allows one to com�
pare static verification results obtained for different
versions of the Linux kernel, (Fig. 6).

To facilitate analysis of error traces, LDV Analytics
Center employs the Error Trace Visualizer subcompo�
nent [33] to visualize error traces, represented in the
common format, as Web pages. The user is provided
with easy navigation over error traces and over corre�
sponding source files of modules, kernel, and contract
specifications. An example of a visualized error trace is
given in Fig. 7.

Figure 7 also shows the Web interface of Knowl�
edge Base, which is another subcomponent of LDV
Analytics Center. This Web interface makes it possible
to save results of error trace analysis. Scripts used in
Knowledge Base automatically mark all newly
uploaded error traces if they are similar according to
one or another criteria to previously obtained ones.

Fig. 6. Comparison of static verification results for modules of Linux kernel 3.12�rc1 and 3.13�rc1: some bugs were fixed (transi�
tions from “Unsafe”) and, for more modules, correctness was proved (transitions to “Safe”) or possible bugs were found (transi�
tions to “Unsafe”).

Fig. 7. Visualized error trace: the specification of rules for correct usage of mutexes in one thread is violated.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 41 No. 1 2015

CONFIGURABLE TOOLSET FOR STATIC VERIFICATION 59

For example, for the error trace shown in Fig. 7, the
verdict was generated automatically by comparing the
function call stack with that of the error trace previ�
ously analyzed for an earlier version of the Linux ker�
nel for rule specification ID 32_7a, module driv�
ers/staging/rtl8188eu/r8188eu.ko and entry point
ldv_main55. Knowledge Base compares error traces in
terms of function call stacks by default. The user can
compare error traces in terms of function call trees or
can design own comparison scripts.

The Web interface of LDV Analytics Center can be
easily shared between several users. This makes it pos�
sible to considerably reduce efforts on analysis of static
verification results obtained.

3.6. Intermediate Conclusions

LDV Tools can be configured at each stage of its
operation. The user can decide how to divide source
files of the kernel and modules and the corresponding

Fig. 8. Dependence of the number of bugs found in Linux kernel modules using LDV Tools on the kernel version: the horizontal
line represents the average number and the inclined line is the linear regression.

Fig. 9. Dependence of the number of bugs found in Linux kernel modules using LDV Tools on the kernel version for different
kernel subsystems.

Other, 16%

 Resource leaks,

Deadlocks,

Sleeping in

Null pointer dereference,

Use of uninitialized

Race

 35%

17% conditions, 10%

atomic context, 5%

 7%

variables, 9%

Fig. 10. Distribution of potential impacts of bugs found in Linux kernel modules.

25

20

15

10

5

0
2.

6.
31

2.
6.

32
2.

6.
33

2.
6.

34
2.

6.
35

2.
6.

36
2.

6.
37

2.
6.

38
2.

6.
39 3.
0

3.
1

3.
2

3.
3

3.
4

3.
5

3.
6

3.
7

3.
15

3.
14

3.
13

3.
12

3.
11

3.
103.
9

3.
8

2.
6.

31
2.

6.
32

2.
6.

33
2.

6.
34

2.
6.

35
2.

6.
36

2.
6.

37
2.

6.
38

2.
6.

39 3.
0

3.
1

3.
2

3.
3

3.
4

3.
5

3.
6

3.
7

3.
15

3.
14

3.
13

3.
12

3.
11

3.
103.
9

3.
8

5

0

10
15

20
25
30
35
40
45

Network
Media
Staging
USB
Other
File systems
Data

Character

Graphics
devices

storage

60

PROGRAMMING AND COMPUTER SOFTWARE Vol. 41 No. 1 2015

ZAKHAROV et al.

build commands into verification objects, refine the
specification of the π�model of environment, modify
available rule specifications, as well as develop new
ones, and specify a particular static verification tool,
its configuration, and resource limits to be used for
checking Linux kernel modules. Thus, LDV Tools
fully implements the method proposed in Section 2.

4. PRACTICAL APPLICATION
OF LDV TOOLS

LDV Tools has been used in practice for more than
four years. During this time, LDV Tools helped to find
more than 150 bugs in Linux kernel modules and
revealed the most critical problems in the static verifi�
cation toolset and static verification tools used.

4.1. Analyis of Bugs Found
in Linux Kernel Modules

Thus far LDV Tools helped to find 150 bugs that
were acknowledged by the developers of the Linux
kernel5 [34]. Figure 8 shows the number of bugs fixed
in Linux kernel modules versus the version of the ker�
nel. On the average, for the kernel versions from 2.6.31
(September 9, 2009) to 3.15�rc2 (April 20, 2014),
about six bugs were fixed in each version. Moreover,
the number of fixed bugs is increasing with time. This
is due to the fact that, after the four years, LDV Tools
has reached such a high level of maturity that increas�
ingly intensifies its application by the developers and
to the fact that the list of rules being checked is gradu�
ally expanding. Today, LDV Tools allows to check
more than 40 rules for correct usage of the Linux ker�
nel API.

Note that, in the last one–two years, LDV Tools
helped to find more bugs in Linux kernel modules than
the developers of the toolset manage to analyze and

5 In addition to bugs acknowledged by the Linux developers, bugs
that were fixed by that time were found along with bugs in
unsupported kernel modules. These bugs are not included into
statistic data presented in this paper.

report to authors of the corresponding modules. This
obviously demonstrates that LDV Tools have a rather
high potential in finding new bugs in kernel modules.

Figure 9 shows, using cumulative sum, the depen�
dence of the number of bugs fixed in Linux kernel
modules on the version of the kernel for various sub�
systems of the kernel. It can be seen that, on the
whole, the number of bugs fixed in the subsystems
remains to be proportional. The jumps on the plots are
explained by changes in the code base being analyzed.
For example, for the network subsystem of Linux ker�
nel 3.6, the jump occurred because LDV Tools were
used to verify, in addition to modules that represent
drivers of network devices, modules incorporated into
the main network subsystem of the kernel. New kernel
modules that already have rather high levels of quality
but, for some technical reasons, cannot yet be placed
into one of main subsystems find themselves in the
staging subsystem. Since there may be a great number
of bugs in new modules, the behavior of the corre�
sponding plot is quite unpredictable.

The diagram in Fig. 10 shows the distribution of
potential impacts of the found bugs. It can be seen
that, in most cases, we manage to avoid resource leaks6.
The second and third places are occupied by dead�
locks7 (as a result of unreleasing of synchronization
primitives in a thread in which they were acquired) and
race conditions8 (as a result of releasing of synchroni�
zation primitives in a thread in which they were not
acquired), respectively. Besides some bugs that have
specific impact on Linux kernel modules were fixed.
For example, sleeping in atomic context may consid�
erably slow down operation of the kernel and, some�
times, the entire OS may hang.

6 See definition of a memory leak on http://cwe.mitre.org /data/
definitions/401.html.

7 See definition of a deadlock on http://cwe.mitre.org/data/defi�
nitions/833. html.

8 See definition of a race condition on http://cwe.mitre.org/
data/definitions/362. html.

Table 1. Distribution of false alarms over their causes for three rule specifications and all modules of Linux kernel 3.12�rc1

Rule specification

Cause of false alarms

Correct usage
of mutexes in
one thread13

Correct release
of USB request

blocks14

Correct registra�
tion of USB gad�

get devices15
Total

Lack of source code of interrelated modules 4 29 5 38

Inaccurate environment model 24 43 7 74

Inaccurate rule specification 18 6 3 27

Inaccurate analysis by a static verification tool 17 34 5 56

Total 63 112 20 195
13 See http://forge.ispras.ru/issues/1940.
14 See http://forge.ispras.ru/issues/3233.
15 See http://forge.ispras.ru/issues/2742.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 41 No. 1 2015

CONFIGURABLE TOOLSET FOR STATIC VERIFICATION 61

Most of the bugs (about 70%) were found in error
handling code, e.g., after unsuccessful memory allo�
cation or problems occurred when initializing a
device. This is explained by the fact that, when using
and testing the OS, such situations are quite rare,
while static verification considers all possible execu�
tion paths.

Almost all bugs were found by using the BLAST
static verification tool [30]. This is due to the fact that
this tool is used in LDV Tools by default and that it was
purposely optimized to analyze Linux kernel modules.
Four bugs were found with the help of the CPAchecker
static verification tool [31], which offers extra oppor�
tunities to analyze function pointers and bit arithmetic
as compared to BLAST.

In several cases, based on discussions on found
bugs with the developers of Linux kernel modules,
they revised the design of corresponding subsystems of
the kernel or modules.9 The bugs found often occur
because of incorrect error handling10 or uninitialized
data11 (memory leaks were found initially).

In theory, other approaches to ensure software
quality could find bugs detected by LDV Tools. Some
of these bugs could manifest themselves when using
the Linux kernel or in the course of testing. However,
on the one hand, this can take much time, including
time on designing specific test scenarios, since most of
bugs were found in error handling code. On the other
hand, for bugs like resource leaks and race conditions,
it is quite difficult to exactly find what causes these
bugs.

Probably, most of the bugs could be found by tools
implementing lightweight methods of static code anal�
ysis. To do this, appropriate formal descriptions of
rules for correct usage of the Linux kernel API should
be developed; then, tools should be launched, and
results should be analyzed. Still, some bugs may be
missed (for example, several dozens of bugs were
found by interprocedural analysis and by analysis of a
control flow with complex dependencies, which is

9 Discussion of bugs found in network device drivers is available
on https://lkml.org/lkml/2012/8/14/128.

10 See an example of considerable fixes in a driver at http://linux�
testing.ru/results/report?num=L0130.

11 See an example of a fix in initialization of driver structures at
http://linuxtesting.ru/results/report?num=L0116.

supported to a limited extent by lightweight
approaches to static code analysis) and analysis of
results may be complicated by a great number of false
alarms.

4.2. Analysis of Causes of False Alarms

In experiments described in this and the following
three subsections, LDV Tools 0.5 was launched on a
computer with Intel Core i7�2600 (4 cores, 3.4 GHz),
16 GB RAM, and OS Ubuntu 12.04 (Linux kernel 3.5,
64�bit architecture). Static verification tool BLAST
2.7.2 was used in the default LDV configuration. The
maximum amount of CPU time and RAM to be used
by BLAST for solving one verification task were set to
be 15 min and 15 GB, respectively.

Table 1 gives the distribution of false alarms over
their causes for three rule specifications. To construct
this distribution, we analyzed static verification results
for all modules of Linux kernel 3.12�rc1 (about 4200
modules12). It can be seen from Table 1 that there are
few modules for which false alarms were produced
with respect to the total number of analyzed modules
(on the average, about 1.5%). Primary causes of false
alarms are as follows:

• Lack of source code of interrelated modules,
e.g., when a module being analyzed calls functions
defined in other modules.

• Inaccurate environment model; e.g., module
callbacks are called in a wrong sequence.

• Inaccurate analysis by BLAST, e.g., due to
incomplete analysis of aliases.

4.3. Analysis of Causes of Missed Bugs

Static verification methods were initially focused
on finding all possible bugs of a certain type or on
proving correctness of analyzed programs against par�
ticular rules. Nevertheless, for various reasons, bugs
can be missed.

To evaluate the number of missed bugs, LDV Tools
was run on 34 modules of the Linux kernel of various
versions where there were well�known violations of rules

12 In LDV Tools, several environment models can be generated
for a module. The results are presented taking into account all
environment models (see Table 1 and further))

Table 2. Winners of the annual International Competition on Software Verification on the DeviceDrivers64 benchmark set

DeviceDrivers64 benchmark set Place 1 Place 2 Place 3

SV�COMP 2012
41 tasks, maximum 66 points

BLAST
55 points, 1400 s

CPAchecker�Memo
49 points, 500 s

SATabs
32 points, 3200 s

SV�COMP 2013
1237 tasks, maximum 2419 points

UFO
2408 points, 2500 s

CPAchecker�Explicit
2340 points, 9700 s

BLAST
2338 points, 9700 s

SV�COMP 2014
1428 tasks, maximum 2766 points

BLAST
2682 points, 13000 s

UFO
2642 points, 5700 s

FrankenBit
2639 points, 3000 s

62

PROGRAMMING AND COMPUTER SOFTWARE Vol. 41 No. 1 2015

ZAKHAROV et al.

for correct usage of the kernel API. We managed to find
16 bugs using BLAST and 14 bugs using CPAchecker.13

BLAST found the same bugs as CPAchecker.
CPAchecker could not find two bugs found by BLAST
due to lack of time.

For the static verification tools used, primary
causes of missing other bugs are the lack of source
code of interrelated modules in verification tasks (5),
inaccurate environment model (5), inaccurate rule
specifications (3), bugs in static verification tools (4 for
BLAST and 3 for CPAchecker), out�of�memory excep�
tions (1 for BLAST), and timeouts (2 for CPAchecker).

4.4. Analysis of Verification Time
for Linux Kernel Modules

The experiments showed that verification of all
drivers that are delivered with Linux kernel 3.12�rc1
and that can be represented as modules (about 3300
modules) requires, on the average, about 25 hours of
CPU time for one rule specification. Verification of all
kernel modules required about 36 hours of CPU time.
Approximately 70% of the overall analysis time was
consumed by the static verification tool.

Note that LDV Tools do not operate in the parallel
mode, since static verification tools require great
amount of RAM; therefore, the number of processor
cores slightly affect the overall time of verification.

4.5. Analysis of Causes of Unsuccessful LDV
Tools Terminations

Out of all modules of Linux kernel 3.12�rc1 with all
generated environment modes, we fail to verify about
800 modules (approximately 15% of the total number)
due to the following reasons: bugs in Command
Stream Divider (about 12% of 800), bugs in Driver
Environment Generator (about 11%), bugs in Rule
Instrumentor (about 19%), bugs in BLAST (about
29%), out�of�memory exceptions (about 22%), and
timeouts (about 7%) for BLAST.

4.6. Capabilities of LDV Tools in Comparing Static
Verification Tools and Their Configurations

LDV Tools can be used to compare static verifica�
tion tools and their configurations on large, complex,
and dynamically evolving programs that are Linux
kernel modules [35, 36]. Thus, for static verification of
Linux kernel modules, one can select those tools and
their configurations that are optimal in terms of
decreasing the amount of missed bugs, false alarms,
and consumed resources. In addition, difficulties in
practical application of static verification tools can be
revealed, e.g., certain bugs in tools or lack of informa�
tion to visualize error traces.

13 SVN 8244 revision, the default configuration used in LDV
Tools.

In the last few years, using LDV Tools, the
DeviceDrivers64 benchmark set was prepared for the
annual International Competition on Software Verifi�
cation [12, 13]. For DeviceDrivers64 the developers of
LDV Tools selected verification tasks for which violations
of rules for correct usage of the kernel API were found or
for which static verification tools needed a large amount
of resources. Since 2013, DeviceDrivers64 became the
largest set comprising more than a half of all the
present verification tasks.

Table 2 gives the number of verification tasks in
the DeviceDrivers64 benchmark set, winners of the
annual International Competition on Software Verifi�
cation on DeviceDrivers64, and their final results (scores
and time). These results show which static verification
tools should be used for checking Linux kernel modules.

4.7. Intermediate Conclusions

Analysis of practical application of LDV Tools
clearly demonstrates that static verification tools can
advantageously be employed to find violations of rules
for correct usage of the Linux kernel API. Moreover,
the following most essential problems were identified
in LDV Tools itself:

• Lack of source code of interrelated modules in
verification tasks.

• Inaccurate specification of the π�model of envi�
ronment.

• Inaccurate rule specifications.
• Bugs in components and subcomponents of LDV

Tools,
as well as in the used static verification tools:
• Inaccurate analysis of aliases, functional point�

ers, bit arithmetic, etc.
• Bugs in static verification tools, e.g., when pars�

ing input source files.
• Resource overconsumption.
In the future, by solving these problems, the num�

ber of missed bugs and false alarms can be consider�
ably reduced, unsuccessful terminations of the static
verification toolset can be overcome, and its perfor�
mance can be improved.

5. CONCLUSIONS

Modern methods and tools for static verification
already can prove feasibility of specified properties for
medium�scale programs in a reasonable time. Thus,
these tools can be used to find all violations of rules for
correct usage of a kernel API in modules. Static verifi�
cation of a great number of complex Linux kernel
modules showed importance of solution of many engi�
neering problems without which it is impossible to
advantageously use even the most advanced static ver�
ification methods.

In the proposed static verification method, one can
configure a verification process at all its stages. Due to

PROGRAMMING AND COMPUTER SOFTWARE Vol. 41 No. 1 2015

CONFIGURABLE TOOLSET FOR STATIC VERIFICATION 63

this fact, LDV Tools implementing this method con�
tinues to advance and has already helped to find
150 critical bugs in Linux kernel modules.

In this paper, we showed that Linux kernel modules
are a unique domain for benchmarking static verifica�
tion tools to find optimal, in terms of certain criteria,
tools and their configurations. On the other hand, the
successful results of such a comprehensive approach
are a new driving force for developing methods and
static verification tools themselves.

Practical application of LDV Tools revealed prob�
lems that define the following main directions for fur�
ther development:

• Analyzing groups of interrelated modules.

• Refining the specification of the π�model of
environment.

• Refining present rule specifications.

• Fixing bugs in components and subcomponents
of LDV Tools.

Moreover, we intend to pay attention to the follow�
ing:

• Analysis of commits to Linux kernel modules to
find new critical rules for correct usage of the kernel
API and to develop new rule specifications.

• Integration of new static verification tools and
search for their optimal configurations to check par�
ticular rules.

• Multi�aspect static verification of Linux kernel
modules to find all possible violations of several rules
in a single launch of a static verification tool.

• Static verification of kernel modules for various
architectures, such as, for example, ARM, MIPS,
S/390, and PowerPC, as well as for most frequently
used configurations of the kernel.

• Application and development of methods for
regression static verification to verify changes in
source code of the Linux kernel and modules.

• Parallelization of static verification of Linux ker�
nel modules.

• Application of the proposed static verification
method to check kernel components of other OSs.

Developers of static verification tools are invited to
develop more accurate methods of analysis, to fix bugs
in their tools, and to optimize their methods to reduce
resource consumption.

Current achievements, problems, prospects, and
plans in the field are discussed on a regular basis at the
Linux Driver Verification workshops and ETAPS
competitions on software verification where the most
active role is played by the Institute for System Pro�
gramming of the Russian Academy of Sciences (the
developer of LDV Tools) and the University of Passau
(the main developer of the CPAchecker static verifica�
tion tool).

ACKNOWLEDGMENTS

We thank P. Andrianov, V. Gratinskii, V.A. Zakharov,
M. Makienko, V. Mordan’, O. Strikov, A. Strakh,
P. Shved, and I. Shchepetkov for their active partici�
pation in designing and developing LDV Tools.

This work was supported by the Ministry of Education
and Science of Russia, project no. RFMEFI61614X0015.

REFERENCES

1. Chou, A., Yang, J., Chelf, B., Hallem, S., and
Engler, D., An empirical study of operating system
errors, Proc. 18th ACM Symposium on Operating Systems
Principles (SOSP), 2001, pp. 73–88. doi: 10.1145/
502034.502042

2. Swift, M., Bershad, B., and Levy, H., Improving the
reliability of commodity operating systems, Proc. 19th
ACM Symposium on Operating Systems Principles
(SOSP), 2003, pp. 73–88. doi: 10.1145/502034.502042

3. Palix, N., Thomas, G., Saha, S., Calves, C., Lawall, J.,
and Muller, G., Faults in Linux: Ten years later, Proc.
16th Int. Conf. on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2011,
pp. 305–318. doi: 10.1145/1950365.1950401

4. Mutilin, V.S., Novikov, E.M., and Khoroshilov, A.V.,
Analysis of typical faults in Linux operating system
drivers, Trudy ISP RAN (Proc. ISP RAS), 2012, vol. 22,
pp. 349–374.

5. Ball, T., Bounimova, E., Cook, B., Levin, V., Lichten�
berg, J., McGarvey, C., Ondrusek, B., Rajamani, S.K.,
and Ustuner, A., Thorough static analysis of device
drivers, Proc. 1st ACM SIGOPS/EuroSys European Con�
ference on Computer Systems (EuroSys), 2006, pp. 73–
85. doi: 10.1145/1218063.1217943

6. Glass, R.L., Facts and Fallacies of Software Engineering,
Addison�Wesley Professional, 2002.

7. Engler, D., Chelf, B., Chou, A., and Hallem, S.,
Checking system rules using system�specific, program�
mer�written compiler extensions, Proc. 4th Symposium
on Operating System Design and Implementation
(OSDI), 2000, vol. 4, pp. 1–16.

8. Avetisyan, A., Belevantsev, A., Borodin, A., and
Nesov, V., Using static analysis for finding security vul�
nerabilities and critical errors in source code, Trudy ISP
RÀN (Proc. ISP RAS), 2011, vol. 21, pp. 23–38.

9. Lawall, J.L., Brunel, J., Palix, N., Rydhof, H.R., Stu�
art, H., and Muller, G., WYSIWIB: A declarative
approach to finding API protocols and bugs in Linux
code, Proc. 39th Annual IEEE/IFIP International Con�
ference on Dependable Systems and Networks (DSN),
2009, pp. 43–52. doi: 10.1109/DSN.2009.5270354

10. Mandrykin, M.U., Mutilin, V.S., and Khoroshilov, A.V.,
Introduction to CEGAR: Counter�Example Guided
Abstraction Refinement, Trudy ISP RAN (Proc. ISP
RAS), 2013, vol. 24, pp. 219–292.

11. Engler, D. and Musuvathi, M., Static analysis versus
model checking for bug finding, Proc. 5th Int. Conf. on
Verification, Model Checking, and Abstract Interpreta�
tion (VMCAI), 2004, vol. 2937, pp. 191–210. doi:
10.1007/978�3�540�24622�0_17

64

PROGRAMMING AND COMPUTER SOFTWARE Vol. 41 No. 1 2015

ZAKHAROV et al.

12. Beyer, D., Competition on software verification, Proc.
18th Int. Conf. on Tools and Algorithms for the Construc�
tion and Analysis of Systems (TACAS), 2012, vol. 7214,
pp. 504–524. doi: 10.1007/978�3�642�28756�5_38

13. Beyer, D., Second competition on software verifica�
tion, Proc. 19th Int. Conf. on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), 2013,
vol. 7795, pp. 594–609. doi: 10.1007/978�3�642�
36742�7_43

14. Mandrykin, M.U., Mutilin, V.S., Novikov, E.M., and
Khoroshilov, À.V., Static verification tools for C pro�
grams and Linux device drivers: a survey, Trudy ISP
RAN (Proc. ISP RAS), 2012, vol. 22, pp. 293–326.

15. Corbet, J., Kroah�Hartman, G., and McPherson, A.,
Linux kernel development: how fast it is going, who is
doing it, what they are doing, and who is sponsoring it.
http://go.linuxfoundation.org/who�writes�linux�2012.

16. Ball, T., Levin, V., and Rajamani, S.K., A decade of
software model checking with SLAM, Commun. ACM,
2011, vol. 54, no. 7, pp. 68–76. doi: 10.1145/1965724.
1965743

17. Ball, T., Bounimova, E., Kumar, R., and Levin, V.,
SLAM2: Static driver verification with under 4% false
alarms, Proc. 10th Int. Conf. on Formal Methods in Com�
puter�Aided Design (FMCAD), 2010, pp. 35–42.

18. Ball, T. and Rajamani, S.K., SLIC: A specification lan�
guage for interface checking of C, Technical Report
MSR�TR�2001�21, Microsoft Research, 2001.

19. Ball, T., Bounimova, E., Levin, V., Kumar, R., and
Lichtenberg, J., The static driver verifier research plat�
form, Proc. 22nd Int. Conf. on Computer Aided Verifica�
tion (CAV), 2010, vol. 6174, pp. 119–122. doi:
10.1007/978�3�642�14295�6_11

20. Witkowski, T., Blanc, N., Kroening, D., and Weissen�
bacher, G., Model checking concurrent Linux device
drivers, Proc. 22nd IEEE/ACM Int. Conf. on Automated
Software Engineering (ASE), 2007, pp. 501–504. doi:
10.1145/1321631.1321719

21. Post, H. and Kuchlin, W., Integrated static analysis for
Linux device driver verification, Proc. 6th Int. Conf. on
Integrated Formal Methods (IFM), 2007, vol. 4591,
pp. 518–537. doi: 10.1007/978�3�540�73210�5_27

22. Clarke, E., Kroening, D., and Lerda, F., A tool for
checking ANSI�C programs, Proc. 10th Int. Conf. on
Tools and Algorithms for the Construction and Analysis of
Systems (TACAS), 2004, vol. 2988, pp. 168–176. doi:
10.1007/978�3�540�24730�2_15

23. Clarke, E., Kroening, D., Sharygina, N., and Yorav, K.,
SATABS: SAT�based predicate abstraction for ANSI�
C, Proc. 11th Int. Conf. on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), 2005,
vol. 3440, pp. 570–574. doi: 10.1007/978�3�540�
31980�1_40

24. Mutilin, V.S., Linux drivers verification with help of
predicate abstractions, Cand. Sci. (Phys.�Math.) Dis�
sertation, Moscow: ISP RÀS, 2012.

25. Zakharov, I.S., Mutilin, V.S., Novikov, E.M., and
Khoroshilov, A.V., Environment modeling of Linux
operating system device drivers, Trudy ISP RAN (Proc.
ISP RAS), 2013, vol. 25, pp. 85–112.

26. Novikov, E.M., Development of contract specifications
method for verification of Linux kernel modules, Cand.
Sci. (Phys.�Math.) Dissertation, Moscow: ISP RAS,
2013.

27. Necula, G.C., McPeak, S., Rahul, S.P., and Wei�
mer, W., CIL: Intermediate language and tools for anal�
ysis and transformation of C programs, Proc. 11th Int.
Conf. on Compiler Construction, 2002, vol. 2304,
pp. 213–228. doi: 10.1007/3�540�45937�5_16

28. Mutilin, V.S., Novikov, E.M., Strakh, À.V., Khoro�
shilov, A.V., and Shved, P.E., Linux driver verification
architecture, Trudy ISP RAN (Proc. ISP RAS), 2011,
vol. 20, pp. 163–187.

29. Khoroshilov, A., Mutilin, V., Novikov, E., and
Zakharov, I., Modeling environment for static verifica�
tion of Linux kernel modules, Proc. 11th International
Andrei Ershov Memorial Conference (PSI), 2014.

30. Beyer, D., Henzinger, T., Jhala, R., and Majumdar, R.,
The software model checker BLAST: Applications to
software engineering, Int. J. Software Tool Tech. Tran.,
2007, vol. 5, pp. 505–525. doi: 10.1007/s10009�007�
0044�z

31. Beyer, D. and Keremoglu, M.E., CPAchecker: A tool
for configurable software verification, Proc. 23rd Int.
Conf. on Computer Aided Verification (CAV), 2011,
vol. 6806, pp. 184–190. doi: 10.1007/978�3�642�
22110�1_16

32. Albarghouthi, A., Li, Y., Gurfinkel, A., and Che�
chik, M., UFO: a framework for abstraction and inter�
polation�based software verification, Proc. 24th Int.
Conf. on Computer Aided Verification (CAV), 2012,
vol. 7358, pp. 672–678. doi: 10.1007/978�3�642�
31424�7_48

33. Novikov, E.M., Simplification of static verifier traces
analysis, Trudy nauchno�prakticheskoi konferencii
Aktual’nye Problemy Programmnoi Inzhenerii (Proc.
Res. and Pract. Sci. Conf. Actual Problems of Software
Engineering), 2011, pp. 215–221.

34. Institute for System Programming of RAS, Linux Veri�
fication Center, Problems in Linux Kernel. http://
linuxtesting.org/results/ldv.

35. Mandrykin, M.U., Mutilin, V.S., Novikov, E.M.,
Khoroshilov, A.V., and Shved, P.E., Using Linux device
drivers for static verification tools benchmarking, Pro�
gram. Comput. Software, 2012, vol. 38, no. 5, pp. 245–
256.

36. Beyer, D. and Petrenko, A., Linux driver verification,
Proc. 5th Int. Symposium on Leveraging Applications of
Formal Methods, Verification, and Validation: Applica�
tions and Case Studies, 2012, vol. 7610, pp. 1–6. doi:
10.1007/s10009�007�0044�z

Translated by Yu. Kornienko

