
CORBA IDL/C++ mapping superstructure.

Dyshlevoi K.V.

In this paper some important problems of IDL/C++ mapping from CORBA 2.1
standard are outlined. An approach intended for increasing the convenience and
reliability of this mapping usage is suggested.

Introduction

During implementation and debugging of ORB (Object Request Broker) accom-
plished in ISP RAS (Institute for System Programming of Russian Academy of Sci-
ences) in 1996-1997 considerable experience was obtained in the field of
technology of object’s interaction in heterogeneous distributed environment. Many
shortcomings and advantages of CORBA technology were analyzed from both out-
side (i. e. from ORB user’s viewpoint) and inside (i. e. from ORB developer’s view-
point) of ORB. Numerous problems associated with the standard mapping from
IDL (Interface Definition Language) to C++ became obvious. Most of these prob-
lems can be formulated as follows: user have to take into account many mapping’s
rules and restrictions while checking of correctness of user’s actions in the most
cases is not supported by ORB.

Certainly the question arisen is to propose some mechanism built over standard
mapping (i.e. its superstructure) intended to solve these user’s problems. The idea
suggested is to use so called technique of cover objects. In this case the program
system takes upon itself the most aspects of data managing.

Thus let us begin considering the mapping problems which were the reason for sug-
gestions described in detail in the second chapter of the paper.

1. Problems of CORBA IDL/C++ mapping

1.1. One of the main abstractions of CORBA [1] is a notion of object reference.
Objects implementing interfaces specified in IDL (Interface Definition Language)
can be referred to by a special kind of data (i. e. object references). A name of some
interface (for instance,A) can be pointed as a type of method’s parameter in
description of interface’s methods. It means that it is possible to pass through corre-
sponding parameter a pointer to object implementing interfaceA.

Because of the different ways an object reference can be used and the different pos-
sible implementations in C++ [2], an object reference maps to two C++ types,

2 of 21

ISP RAS, Moscow

which quite differ one from the other in the scheme of memory usage. For interface
A, these types are namedA_var and A_ptr. The pointer type (A_ptr) provides a
primitive object reference, which semantics is similar to C++ pointer while the
object reference variable type (A_var) is a special object having constructors and
destructor providing ownership of memory it points to. That is the object will auto-
matically release the memory when it is deallocated. Mixing data of typesA_var
andA_ptr is possible without any explicit operations or casts, it is possible to assign
value of one of these data types to another. In all such assignments pointed data are
never duplicated. But assignment correctness is not checked. And it is a wide-
spread source of mistakes in object reference usage. For example, the following
sequence of assignment statements is incorrect:

{
 A_var var1 = ..; // some initialization
 A_ptr ptr = var1;
 A_var var2 = ptr;
}

In all of the assignments memory is not duplicated and three variables (var1, var2
andptr) point to the same data before end of the block. Leaving the block an error
of dynamic memory usage appears: calls of destructors ofvar1 andvar2 release
twice the same memory pointed to by these variables.

Although CORBA standard warns programmer to avoid such situations, similar
mistakes appears very often even in small applications. It is because mixing of
A_var and A_ptr types causes necessity to remember about all these variables
dependencies during program writing. Besides programmer must remember the
scheme of usage of object references as parameters (look at1.3.).

1.2. According to standard mapping requirements programmer should pay special
attention to usage ofduplicate and release operations. Theduplicate operation
explicitly copies the object reference and therelease operation destroys it. Above
example (from1.1) can be made correct with use ofduplicate operation:

{
 A_var var1 = ..; // some initialization
 A_ptr ptr = var1;
 A_var var2 = ptr->duplicate();
}

It is clear, however, that usage of these operations also make programmer think of
relationships between all object references used. Every unnecessaryduplicate invo-

3 of 21

Dyshlevoi K.V., April 6, 1998

cation or absentrelease invocation may cause memory of object reference’s data to
be never deleted. Such a mistake (for instance, in a permanently executing monitor)
may entail exceeding of available dynamic memory size. Reverse situation (unnec-
essaryrelease or absentduplicate) will rapidly lead to memory usage error as it was
shown in the above example.

1.3. Argument passing rules are the most difficult and hardly realized part of the
standard mapping.

C++ types used for parameter passing depend both on concrete IDL data type and
parameter passing direction (IN, OUT, INOUT and RESULT). Common scheme of
argument passing could be deduced only for basic data types denoted assimple in
Table 1.

Second, there is a collection of 6 argument passing cases that user should take into
account. These cases are distinguished both in data type and direction of a parame-
ter. Client and server developers must learn well all of these agreements.

1.4.One of the most arguable points concerned with data type mapping is division
of data types to fixed-length and variable-length types. A type is variable-length
type if it is one of the following types:

• the typeany,
• a bounded or unbounded string,
• a bounded or unbounded sequence,
• an object reference or reference to a transmissible pseudo-object,
• a struct or union that contains a member whose type is variable-length,
• an array with a variable-length element type,
• a typedef to a variable-length type.

Data type In Inout Out Return
simple simple simple & simple & simple
objref_ptr objref_ptr objref_ptr & objref_ptr & objref_ptr
struct, fixed const struct & struct & struct & struct
struct, variable const struct & struct & struct *& struct *
union, fixed const union & union & union & union
union, variable const union & union & union *& union *
string const char * char * & char * & char *
sequence const sequence& sequence & sequence *& sequence *
array, fixed const array array array & array slice*
array, variable const array array array slice*& array slice*
any const any & any & any *& any *

Table 1 Parameters and results mapping in CORBA

4 of 21

ISP RAS, Moscow

This division of types as shown in Table 1 considerably affects mapping of struc-
ture, union and array types. This scheme makes one take into account this type divi-
sion during writing of server object method’s signatures, organizing result returning
and invocations of methods.

Certainly, in some cases a little modification of IDL specification (for example, sub-
stitution of variable-length type for fixed-length type of an only field of structure)
entails change of property “fixed or variable” of whole compound type. Such a
change involves re-writing both client and server code. It is clear, that definition of
variable-length type is recursive and the single change of the property may involve
recursive changes of “fixed-variable“ property for all compound types containing
the type with the modified property. Of course, it entails re-writing client and server
code if OUT and/or RESULT parameters of any of the types with the modified
(directly or indirectly) property are used even if originally modified field is not
directly used there.

1.5.For every compound data type, for exampleT, mapping provides a class named
T_var which automatically deletes the pointer when an instance (object) of the class
is destroyed. Scheme of usage of such a mediator (T_var) is common for all media-
tor’s types and considerably easy for client but mapping doesn’t force client to use
T_var for argument passing. So client can pass and return parameters without the
aid of corresponding mediators, therefore client has a considerable chance to make
a mistake, forgetting about some of the standard mapping schemes of memory
usage (see1.3.).

1.6. For programmer implementing methods of server object all parameters are
transmitted without any mediators ofT_var type. Hence, programmer should pre-
cisely know argument passing mapping and meet all parameters’ memory manage-
ment rules. For example, mapping makes programmer explicitly duplicate server
object’s data to return variable-length result (including OUT parameters) even from
T_var variable:

T * f_with_res_and_out (A_ptr &obj_ref) // OUT parameter
{
 A_var out;
 T_var res;
 ...
 // incorrect (but both lines could be successfully compiled!):
 // obj_ref = out;
 // return res;
 //

5 of 21

Dyshlevoi K.V., April 6, 1998

 // correct:
 if (CORBA::is_nil (out))
 obj_ref = A::_nil ();
 else
 obj_ref = out->duplicate();
 if ((T*)res == NULL)
 return new T; // see1.7 below
 else
 return new T (*((T*)res));
}

1.7. Mapping lists several cases when aNULL pointer is not allowed to be passed
(IN and INOUT parameters by client) or returned (OUT and RESULT parameters
by server). Hence, programmer has to fill parameters even when they are not used
by another side. For instance, if some object’s method raises an exception then
nothing but the information about the exception is returned to client. But even in
this case mapping doesn’t allow to return aNULL reference for not needed OUT
and RESULT parameters.

1.8. Filling of objects ofT_var type is another source of mistakes. EveryT_var
class hasT* constructor andT* assignment operator (T_var &operator=(T*)). In
the both operatorsT_var object assumes memory pointed to byT* parameter. That
is, it must be the dynamic-allocated memory that will be deleted either when the
T_var is destroyed or when a new value is assigned to it. This scheme makes pro-
grammer copy data allocated in not dynamic memory into dynamic memory before
filling correspondingT_var. Using non-dynamic memory forT_var filling entails
error while deletion of this memory. Striking example of incorrectT_var filling is
String_var filling:

 CORBA::String_var var = “some string“;

Instead of this natural form of assignment the”some string” must be explicitly cop-
ied into dynamic memory. For dynamic allocation of strings, mapping provides
string_dup() function defined in the CORBA namespace. Using this function it is
possible to make the above example correct:

 CORBA::String_var var = CORBA::string_dup (“some string“);

For the others data types mapping doesn’t define functions similar to this one.
Hence user have to take care of allocation and filling of the dynamic memory.

1.9.It was remarked in1.8 thatT* constructor creating aT_var saves theT* pointer
without deep-copying data pointed to by the pointer. This is the only way to fill

6 of 21

ISP RAS, Moscow

T_var object not from anotherT_var object but directly with data ofT type. There-
fore T_var object setting fromconst T* can be achieved only by explicit copying
const T* data into dynamic memory.

1.10.The default constructor creates aT_var containing aNULL value ofT* type.
Hence compliant application should not attempt to access and/or return theT_var
(as OUT and INOUT parameters too) before first explicit assignment of some value
to it.

1.11. The problem of incorrect default value exists not only forT_var types but for
correspondingT types too. For instance, the default union constructor does not ini-
tialize the discriminator or any of union members. Therefore it is an error for an
application to access the union before setting it, but ORB implementations are not
required to detect this error due to the difficulty of doing so.

1.12.Especially for insertion array of some type, sayA, into Any mapping provides
A_forany type which hasn’t analogs among other data types. As it is declared in
CORBA standardA_forany type must be distinct fromA_var type in memory man-
aging scheme:A_forany’s destructor doesn’t delete array it points to. The reason for
defining such a special type is follows: if the type of array’s elements isB andB
type is not array then mapping has already defined insertion operation intoAny from
B*. But it is known that in C++ (and C) a variable of typeB[] (i.e. A) is used in the
same way as a variable of typeB*. Hence, in the sense of argument passing, com-
piler doesn’t distinguish an array from a pointer to its first element. Attempt to
implement insertion operation (<<=) into Any from A causes a conflict with the
same operation forB*.

In spite of classA_forany existence, user can make use of insertion operation<<=
into Any using array as a source and only the first element of this array will be
inserted intoAny instead of the whole array. In such a situation programmer has a
good chance to spend a lot of time finding error in the program.

In the end of this chapter it is worth to note that the most part of above problems
results in numerous errors in dynamic memory usage while programs writing and
debugging. And every C or C++ programmer knows how difficult and “time-wast-
ing“ such a debugging is.

7 of 21

Dyshlevoi K.V., April 6, 1998

2. Superstructure for IDL/C++ mapping

2.1. Cover’s usage

Anyone comparing CORBA IDL/C and IDL/C++ mappings can conclude that these
mappings are similar and they are based on the common approach. For example,
argument passing considerations are almost identical in both mappings: the only
difference is that* in C is changed to& in C++ somewhere, memory management
rules are absolutely equal. And so IDL/C++ mapping doesn’t use object-oriented
features of C++ in full measure. And all problems pointed out in the 1st chapter can
be considered as a result of this politic. Obvious question arising is how to add
object orientation to the mapping to solve all these problems.

Let us consider the following extension of the standard mapping. For all compound
types (structures, unions, sequences, arrays, strings, object references andAny) spe-
cial class-mediators calledcovers are defined. But in contrast toT_varof CORBA
mapping, cover provides more reliable mechanism of memory management on the
one hand, and a set of explicit operations for user’s optimization on the other hand.
The main idea of cover approach is that user manipulates data only by means of
such covers. In particular, it allows to simplify and increase reliability of arguments
passing and getting results (this is a solution of the problem1.5).

Using the mapping’s superstructure user doesn’t have to take into account the set of
the standard mapping memory usage requirements (see problems1.3 and1.6). With
cover technique being used the aspects of memory management required for param-
eter’s and result’s transfer are hidden from user by the internal covers’ mechanisms.

Thus, the extensions rules of argument passing can be described considerably easier
than in the standard CORBA mapping (compare the tables depicted in Table 1 and
Table 2). These rules avoid the CORBA mapping complication and division data
types to fixed-length and variable-length one, solving problems1.3, 1.4 and1.6.

Consider the scheme of the cover technique in detail. For any compound typeT the
type of cover object namedT_cvr is defined. There are two modes of cover’s usage.
The first mode is simple and reliable, and another one is effective, but more compli-
cated. User can choose the scheme of work with data according to his or her needs.

Data type In Inout Out Return
simple simple simple & simple & simple
compound (S) const S_cvr & S_cvr & S_cvr& S_cvr
Table 2 Parameters and results mapping in the superstructure

8 of 21

ISP RAS, Moscow

2.2 Basic mechanism

With this approach being used, user can imagine cover as a “smart“ container of
data of corresponding compound type. The main idea of memory management of
this approach is that the memory contained in the cover is not available for explicit
user’s manipulations. That is, the cover creates itself the memory for its data and
deletes it. The only actions with cover allowed for user are follows: to copy data to
cover’s memory setting entire compound value, to set separate elements (fields) of
compound data of the cover, and to examine cover’s contents.

The important feature of covers is that they need not to be explicitly initialized since
they contain the following default data. All their elements (fields) having construc-
tor are filled by the default constructors and others are assigned by zero value. This
scheme of initialization allows server implementation to return results of method’s
invocation (including OUT parameters) without their explicit filling. It solves the
problem1.7. The problem1.10 is also solved by the scheme of default initialization.
Covers can be used in the same way both after explicit filling and without it.

This scheme also solves the problem1.11 concerned with incorrect union contents
before its explicit initialization. Default initialization mechanism for union covers
consists in setting of discriminant and union value according to the first field
defined in the union’s IDL specification (this scheme is similar to C++ union initial-
ization scheme). If the type of the first union field is a compound type (sayS) mech-
anism of default initialization of appropriate cover type (S_cvr) will be used.

There are two ways to assign a new value to the data stored in the cover. The source
value can be of both T_cvr type (another cover of the same type) andT type (the
only exception here is a cover for object references, work with which is even sim-
pler and it is described below in the very end of subsection2.3). In both cases the
cover deep-copies the data into the memory it manages. Deep-copying means cre-
ation of a new copy of the source data completely independent from the source.
That is, upon the completion of assignment operators both operands exist indepen-
dently one from another and they doesn’t point to the common data. With this tech-
nique being used, ability to assign data of any C++ memory kind (static, automatic,
dynamic) into a cover is achieved.

Besides, value of a cover can be assigned into a variable ofT type. Such assignment
results in deep-copying too. So in this case cover also behaves like data of typeT.

To illustrate the suggested assignment scheme consider the simple struct typeS with
the single field of typelong. Let the four variables are defined and their initial val-
ues are specified after double slash:

9 of 21

Dyshlevoi K.V., April 6, 1998

 S_cvr Cvr; // 1
 S VarData; // 3
 const S CnstData; // 3
 S_cvr AnotherCvr; // 5

The initial state of the variables is depicted on the left side of Picture 1. Any cover
of S_cvr type is represented as ellipse, and data ofS type are represented as square.
Shading of figures bounds is used to distinguish memory areas for corresponding
data. Picture 1 illustrates data changes which are results of various covers’ assign-
ment operations:

1. Cvr = VarData;
 Cvr = CnstData;

in both cases data (structured value {3}) fromVarData or CnstData are copied into
theCvr’s memory.

2. VarData = Cvr;

data ({1}) from structure contained byCvr are copied intoVarData variable.

 1

 S_cvr Cvr

S VarData
const S CnstData

 3

S_cvr AnotherCvr

 5

VarData = Cvr

(Cvr = CnstData)
Cvr = VarData

Cvr = AnotherCvr

 3

Cvr: VarData:
CnstData:

 Cvr:

Cvr:

VarData:

AnotherCvr:

Picture 1 Assignment operations scheme in the base approach

 3

 1 1

 5 5

10 of 21

ISP RAS, Moscow

3. Cvr = AnotherCvr;

data ({5}) from structure contained byAnotherCvr are copied into the structure
contained byCvr.

Besides the assignment operators described above a cover provides operations for
access to elements of compound data it contains. Depending on the data type they
are:

 -> for structures, unions, sequences, object references andAny,

[] for strings, sequences and arrays,

<<= and >>= for Any (i.e. setting/getting operations for basic types to/from
Any_cvr).

The getting and setting operations(<<=, >>=) from Any and toAny are provided
for all types of covers too. Upon completion of these operators memory areas of
their operands aren’t intersected. Hence, cover-mediator provides required mecha-
nism for conversion between array and Any types in the same way as for all other
compound data types, so there is no need for specialT_forany type and the problem
1.12 is completely solved.

Therefore, one can make use of covers not only for argument passing but also for
managing contents of compound data types. It is clear that performing all these
actions user need not take care about memory contained by the cover.

It should be remarked that the second operand of assignment operator never can be
a pointer to data ofT type (i. e.T*). Remind that such assignments between vari-
ables ofT_var andT* types are allowed in CORBA mapping. Consider the exam-
ple:

 T *ptr = ...; // some initialization
 T_var var1, var2;
 var1 = ptr;
 var2 = ptr;

The assignment statements in the example above will result in the both variables of
T_var type point to the same data, entailing future (not in place of these incorrect
action!) dynamic memory usage error. Thus, absence of ability to assignT* into
T_cvrsolves the problem1.8.

If it is necessary to assign to variable of cover typeT_cvr (for instance,Cvr) a value
pointed to by variable ofT* type (for instance,Ptr) it is enough to use assignment:
“Cvr = *Ptr”. It is obvious that in the result of the statement both variables are inde-
pendent (contents of*Ptr are copied to memory ofCvr) and it doesn’t matter what

11 of 21

Dyshlevoi K.V., April 6, 1998

classes of memory variable Ptr and the data pointed by it are placed in (solution of
the problem1.9).

However, the reverse assignment (i. e. from cover into pointer) is considerably diffi-
cult. Let a cover be used as an actual parameter of some C++ function invoked not
through an object reference. If the type of corresponding formal parameter isT*
then a cover providing conversion operation toT* type can be passed as an actual
parameter. But there are different ways of parameters’ usage inside the function.
Consider the following example:

void f (T* dust) {
 delete dust; // data pointed by parameter are deleted
}
void g (T* info) {
 cout << info; // only looking at pointed value
}

There are two ways to provide implicit conversion mechanism betweenT_cvr and
T* for parameters passing into the both functions (f() and g()):

1. T_cvr to T* conversion means new dynamic memory allocation and deep-copy-
ing of cover’s data into it. But afterg(Cvr) function call the memory was pointed by
info will be never deleted.

2. This conversion means simply returning of the pointer to the data contained by
the cover. Functiong(Cvr) is completed correctly, while functionf(Cvr) destroys
the memory controlled by the cover. As a result, this memory will be deleted twice.
Besides, such a way of conversion contradicts to the agreement that only cover can
manage memory allocated for its data.

It is obvious that these both ways don’t provide conversion mechanism reliable in
any case, therefore conversion operator fromT_cvr type intoT* type cannot be
available.

Certainly, it is possible to implement both functions calls in correct way using only
cover’s assignment operations:

// f() function is called with new dynamically allocated data
T *tmp_ptr = new T (Cvr);
f (tmp_ptr);
//
// g() function is called with data which will be correctly removed
// when block execution is finished

12 of 21

ISP RAS, Moscow

{
 T tmp_dt = Cvr;
 g (&tmp_dt);
}

That is user knowing the semantics of the function’s (herein, f() or g()) formal
parameter have to explicitly provide necessary actions for parameter passing from
the cover into the function. To simplify parameter’s passing into user’s functions
cover’s methodT* copy() is provided. This method allocates dynamic memory,
deep-copies data pointed to by the cover to this new memory and returns a pointer
to it. The data in the cover are not changed. With this method being used, thef()
invocation can be performed without temporary variables:

 f (Cvr.copy());

It should be remarked that similar mechanism for correctg() invocation requires
cover’s method returning pointer to the data contained in the cover. However, such
a method can’t be provided as a part of basic approach since it doesn’t meet the
requirement of cover’s memory independence. The second (advanced) approach
defines cover’s methodT * look() for this purpose.

In the end of the first approach description it should be clear that this approach pro-
vides for user a simple mechanism represented as covers with transparent memory
control. This mechanism can be used for simple and reliable parameters and result
passing in CORBA object methods’ invocations.

2.3 Advanced mechanism

The main disadvantage of the basic approach is its inefficiency in some cases. It
includes a lot of data deep-copying operations and dynamic memory allocations. Of
course, for many programs reliability is much more important than execution time.
For such applications it is reasonable to use only this first approach. But in some
cases program’s efficiency is very important too. And it is a reason for additions
made in advanced approach described below.

This second approach is intended for C++ programmers who knows well C++ fea-
tures concerning work with data of different memory classes (static, automatic,
dynamic).

Advanced approach simply extends basic approach by adding some new cover’s
methods for explicit work with memory. In this approach cover is like a “smart
pointer” to data which sometimes is manages by user. Covers have more flexible
semantics here than cover’s constructors and assignment operators of previous

13 of 21

Dyshlevoi K.V., April 6, 1998

approach.

In the context of advanced approach user knows that immediately after default con-
struction cover contains pointer to data withNULL value. Default data allocation
(as it was described in2.2) is implicitly performed only if user attempts to read data
from cover withNULL pointer. Implicit releasing of data is performed by cover in
its destructor: if pointer is notNULL and cover owns memory (the only exception
are data given by user inpoint() method described below) then pointed data will be
deleted.

To check current state of cover’s data pointer user can call the following cover’s
method:

bool is_nil ();

This method returnsTRUEonly if the cover containsNULL pointer.

For compound typeT corresponding cover classT_cvr has also five following
methods for effective explicit covers’ memory management (for object reference
covers onlyrelease() method is needed as described below in the end of this subsec-
tion):

1. void assume (T*);

The cover assumes memory given as an argument. This memory must be dynamic
and user should not further delete this memory, since the cover will automatically
release it in destructor or in subsequent explicit operation with memory (assume(),
point(), release()).

2. void point (const T*);

This method of cover just saves pointer to data (of any memory type). The pointer
assigned in this way will be never released by cover and user should take responsi-
bility of it. It is important to note, the data given to the operation can be changed
further independently of user. So, one should be careful when passes data allocated
in const memory.

Besides, it is possible to make cover point to automatic memory. In this case user
should use the cover only inside of the block where pointed automatic variable is
defined. To put data allocated in automatic memory into the cover the following
extended form ofpoint() operation should be used:

void point (const T*, AUTOMATIC);

For example:

14 of 21

ISP RAS, Moscow

static T stat;
T_cvr foo (T ¶m)
{
 T local;
 T *dyn = new T;
 T_cvr param_cvr, local_cvr, stat_cvr, dyn_cvr, default_cvr;
 dyn_cvr . point (dyn); // no copy
 stat_cvr . point (&stat); // no copy
 // ‘param’ and ‘param_cvr’, ’local’ and ‘local_cvr’
 // are defined in the same scope, therefore it is possible:
 param_cvr . point (¶m, AUTOMATIC); // no copy
 local_cvr . point (&local, AUTOMATIC); // no copy
 ...
 if (...) return param_cvr; // new data allocation and copy
 if (...) return local_cvr; // new data allocation and copy
 if (...) return stat_cvr;
 if (...) return dyn_cvr;
 return default_cvr; // ‘default_cvr’ was not explicitly set
}

Of course,point() operation is dangerous and its usage should be restricted.

3. T* look();

By means of this operation user have opportunity to “look” at the cover’s data via
own pointer. The cover continues to manage this memory and user should not
release pointer taken such a way. In the most general case, this operation returns not
NULL pointer. If cover is empty it will be automatically initialized and pointer to
the created data will be returned. Exception consists in the following case. Method
look() of String_cvr and covers of object reference returnsNULL if cover is empty,
sinceString and object reference are the pointers themselves.

It should be noted that this method can be used for simple passing data from cover
to user’s functiong() from example in2.2:

 g (Cvr.look());

4. T* give_data();

Unlike look() operation, this method “gives up” the memory contained in the cover.
In the result of this operation the cover becomes empty and not releases given up
memory. So, user should further manage the memory taken this way. If the cover is
already empty, new memory will be allocated and pointer to it will be returned.

15 of 21

Dyshlevoi K.V., April 6, 1998

NULL pointer will be returned only for strings and object references.

5. void release();

In the result of release operation the cover will be in the same state as after creation
by means of default constructor (cover’s pointer will be equal toNULL). It does not
mean removing of the cover itself.

Picture 2 schematically illustrates all five methods described above. In this picture
two intersecting lines mean memory deleting and dashed arrow means that cover
points to memory which it can’t delete.

In general outline, each cover contains its own memory and manages it itself. But
sometimes it can be useful to have several covers that point to one and the same

 1

 T_cvr Cvr

 3

Cvr . assume (DataPtr)

 1

Cvr:

Cvr:

Picture 2 Memory management operations of advanced approach

 3

 1

 1

 1

 1

 3

T* DataPtr
DataPtr = Cvr . give_data ()

Cvr . release ()

Cvr . point (DataPtr)

DataPtr = Cvr . look ()

DataPtr

DataPtr

Cvr:

DataPtr

DataPtr

Cvr:

Cvr:

16 of 21

ISP RAS, Moscow

data. Such situation can be simulated by means oflook() andpoint() cover’s meth-
ods:

 T_cvr ac, bc;
 bc . point (ac . look ());

In this example coversac andbc will point to the same data, which was created by
means ofac cover’s initializing mechanism. Ambiguities in memory holding do not
appear sincepoint() operation do not provide rights of memory management. Com-
mon memory will be released only once by coverac.

It is important to remark that the operations described above not only extends cov-
ers’ functionality but also brings ability to make use data of different C++ memory
kinds for argument passing which such a way can be provided in more efficient way
than it can be done in accordance to the CORBA IDL/C++ mapping. For instance,
CORBA mapping doesn’t allow client to allocate memory for OUT parameter of
variable-length struct and union, sequence, array andAny type. Upon the comple-
tion of corresponding method’s invocation such a parameter will contain dynamic
memory allocated either by server object in the case of local invocation or by ORB
in the case of remote one. User should delete this memory later.

Cover’s mechanism allows user to allocate its own memory for all OUT parame-
ter’s of types listed above. It helps to avoid expenses of allocation and subsequent
deallocation of dynamic memory. Consider the example:

 MyStruct str;
 MyStruct_cvr cvr;
 cvr . point (str);
 some_object->some_method (cvr); // OUT parameter
 cout << cvr->some_field; // result printing

Certainly, server program can make use of the described operations for optimization
too. For instance, if server object has to return a variable-length value as OUT
parameter, CORBA mapping requires to allocate dynamic memory and to perform
deep-copying of the data into this memory. Deep-copying must be done even if
returned data are allocated in static memory and accessible without copying after
method invocation is finished. Mechanism suggested allows server to return such
data without performing all these actions.

For example:

17 of 21

Dyshlevoi K.V., April 6, 1998

void
some_object_implementation::some_method (MyStruct_cvr out_cvr)
{
 static MyStruct static_val;
 MyStruct auto_val;
 ...
 out_cvr . point (&static_val); // saving pointer to static memory
 // or:
 out_cvr = auto_val; // copying from automatic memory
 ...
}

Using methods of cover approach both client and server can work with parameters
without special dynamic memory allocations. Client can provide own memory for
OUT parameter. This memory is used by ORB in the case of remote invocation (i. e.
ORB fills this memory with the result obtained from a server process through a net)
or by server in the case of local one (client directly sees the result of server’s
method). Server can fill resulting parameter by means of assignment operation (like
assignment fromauto_val variable in the example). Surely, the server object can
make use of static (thestatic_val variable in the example) or dynamic memory. In
the case of local invocation and explicit memory management in server object, cli-
ent can receive the cover containing memory different from previous cover’s con-
tents. Therefore, the result obtained should be examined only through the cover
rather than through direct usage of the memory previously provided by user.

The questions discussed above was only about increasing performance of parame-
ters passing. Mechanism of result passing was not examined yet. Now consider the
following simple example:

MyStruct_cvr
some_object_implementation::some_method_with_result ()
{
 MyStruct_cvr serv_cvr;
 ...
 return serv_cvr;
}
...
// implementation object
some_object_implementation impl;
...

18 of 21

ISP RAS, Moscow

// local client in the same process directly calls server implementation:
MyStruct_cvr cli_cvr;
cli_cvr = impl -> some_method_with_result ();

In the example data of server’s local automatic variableserv_cvr should be trans-
ferred into client’s variable namedcli_cvr. The following fact was established dur-
ing debugging: even in case of local call without ORB usage, C++ compiler doesn’t
provide direct assignment fromserv_cvr into cli_cvr. After finishing the method a
temporary object ofMyStruct_cvr type is created by the copy-constructor (the
source of copying is theserv_cvr variable). This constructor allocates memory for
storing data in the object created. Then assignment from the temporary object into
cli_cvr occurs, it is a source of second data deep-copying. Upon the assignment the
temporary object is destroyed, with dynamic memory allocated for it being deleted.

In real local or remote object invocation (with ORB usage) such result returning is
performed several times in stub (client mediator object) and skeleton (server media-
tor object). Often necessary “transit“ data transfer (i. e. “return method();”) is
implemented in the same way. In this case C++ compiler also uses scheme based on
creating temporary objects.

Of course for really complicated types such a data returning may take much time.

Proposed solution of the problem is to define specialT_res type. This type serves
for data passing between covers with minimal expenses. It helps to optimize return-
ing of result from the method and is used only in operation signatures. As well as
T_cvr, object ofT_res type contains a pointer to appropriate type. UnlikeT_cvr
T_res type does not overload operators for data members manipulations (->, [], and
so on). TheT_res type is intended to be used only in operation signatures and
nowhere else (for more details see [3]).

Now, if there is a need to optimize returning of result ofMyStruct IDL type it is pos-
sible to useMyStruct_res as result’s C++ type instead ofT_cvr. For example:

MyStruct_res
some_object_implementation::some_method_with_result ()
{
 MyStruct_cvr serv_cvr;
 ...
 return serv_cvr;
}

Note that only the method’s signature is changed while method’s body remains
unchanged. But now for returning result C++ compiler uses a temporary object of

19 of 21

Dyshlevoi K.V., April 6, 1998

MyStruct_res type pointing to the same data as theserv_cvr variable (the only
exception is data in automatic memory, given by user inpoint (..., AUTOMATIC)
operation, in such a case temporaryT_res object will contain a replica of these
data). With reference counter being used, such assignment and destruction of auto-
matic variableserv_cvr result in passing memory ownership fromserv_cvr to a
temporary object. In the example with local call ownership is passed then from tem-
porary object tocli_cvr. So value is returned without memory allocations and
removing and without data deep-copying (in case whenserv_cvr contains data in
automatic memory, needed allocation and copying are performed only once).

It is important to remark that covers approach allows not to save method invoca-
tion’s result as it is done in C++ (regardless ofT_cvr or T_res was used). The mem-
ory returned will be deleted under temporary cover’s destruction ifserv_cvr owned
this memory. In CORBA mapping if variable-length result is not saved then its
memory will be never deallocated.

It is need to be remarked that everything said above is based on the assumption that
creation and destruction of both covers and data they point to are available to user.
However, object reference is the only exception from this statement. The reason is
that object reference notion is directly concerned with the ORB and meaningless
out of ORB’s context. Object reference mechanisms and its contents are transparent
for user. Moreover, user can’t create and delete data of object reference type. There-
fore, user works with object references only via covers and even pointers to object
references are not available. Using such covers user needs only assignment opera-
tions between covers from basic approach,release() and is_nil() methods from
advanced one (methodcopy()from the first approach is not needed for such covers).
For object referencesT_res type coincides withT_cvr type.

It is very important to note thatnarrow() method of object references from standard
mapping is not used by user of covers technology because of all needed reference
transformations are performed by covers:

 A_cvr a;
 B_cvr b;
 a = b;
 if ((b . is_nil () == FALSE) // ‘b’ contains object reference
 && (a . is_nil () == TRUE)) // but ‘a’ doesn’t contain anything
 {...} // ‘b’ value can not be assigned to ‘a’

Assignment between object reference covers of different types is correct. At run-
time after such assignment performed covera will contain notNULL reference only

20 of 21

ISP RAS, Moscow

if object pointed by reference contained inb implements interfaceA (real interface
of object pointed to by this object reference either coincides withA or is inherited
from A).

Thus, problems of object reference usage recognized in the beginning of the paper
(the problems1.1 and1.2) are solved by covers. Covers perform all needed actions
for managed object references themselves (the only memory management method
release()in such covers can be used to reject object reference before cover deleting
or reassignment).

Conclusion

The first approach to cover’s usage completely solves problems listed in the begin-
ning of the paper and the second approach provides more efficient and flexible data
management mechanism but requires better knowledge of C++ language. User can
choose between these two approaches according to his or her needs.

It is very important to note that the proposed technique doesn’t pretend to change
the standard. This technique is implemented as a superstructure of CORBA IDL/
C++ mapping. This superstructure is intended to be applicable to any C++ ORB
fully compliant with CORBA 2.0. In general this technique gives user simplicity
and reliability in ORB using. Note that efficiency improvement in comparison with
standard mapping can be achieved only by using “native” ISP ORB since ORB
should work with memory contained by covers directly.

What is about possible place and role of this technique?

Of course, this technique can be added even to already existing CORBA-applica-
tions to improve their efficiency (using ISP ORB and advanced approach) or to pro-
vide extensibility if complexity of application is planned to be increased (it is well
known that it is very difficult to extend applications based on not reliable tech-
nique).

The technique can become more convenient both for writing programs and for their
debugging while developing applications from the beginning.

Also, the advanced approach included into this technique with its flexible mecha-
nism for work with memory is more convenient and reliable for addition of
CORBA mechanisms to already existing C++ applications not oriented to CORBA
(some variant of legacy problem).

21 of 21

Dyshlevoi K.V., April 6, 1998

References
1. The Common Object Request Broker: Architecture and Specification. Revision

2.1, August 1997.
2. Bjarne Stroustrup. The C++ Programming Language, Second Edition. Murray

Hill, NJ: AT&T Bell Laboratories, reprinted 1992
3. Dyshlevoi K.V, Solovskaya L.B. Specification of Addition to CORBA IDL C++

Mapping, ISP RAS document. Moscow, 1998.

