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Abstract. Unlike traditional relational or object-orienteéthbases, XML data-
bases require no schema defined in advance. Toigeothe benefits of a
schema in such environments, the notion of desegpschema (that is also
called data guide) was introduced. Descriptive sthés a concise and accurate
structural summary of an XML database. It servegslasamic schema, gener-
ated from the database. Descriptive schema helpaigier to formulate mean-
ingful queries to the documents without predefisetiema. Descriptive schema
is also used for query optimization as a basiscfoery rewriting, query type in-
ference and physical plan construction.

In this paper we go further and use descriptiveesna for organizing storage
system. Our approach consists in grouping nodesME documents in blocks
according to their position in the descriptive sotae Thus, descriptive schema
plays a role of index structure for path querieatthllows us to avoid tree tra-
versal and minimize a number of blocks accessed.

1 Introduction

There is no doubt that XML has already gained gmb@s a widespread format for
information exchange. With significant growth of ammts of XML data being trans-
mitted industry needs storage systems dealing hithhe XML documents in efficient
way. Particularly, these systems should handle otesacondary storage. This requires
solving the problem of data representation thaisfiat several requirements. Firstly,
data representation should allow efficient exeaqutad regular path expressions such
as XPath [1] queries. Secondly, such systems shbeldble to process data updates
as well as queries. And thirdly, they should takéoi consideration the fact that data
representation in secondary memory influencesmif@eémentation of high level query
languages such as XQuery [2] and XSLT [3] which amially implemented on the
top of XML storage.

The problem of storing and processing XML documegftiently has been admit-
ted by the database community as a challenge aunsecbhigh research activity in this
field. Historically, the first wave of research wadopting relational DBMSs for stor-

1 The work was partially supported by the Russianifrdation for Basic Research (grant 02-07-
903008).



ing XML. The whole paper is not enough for detailddscription of work that has
been done, so we can only recommend a summarnyBié.the result of this research
consists in principle constraints of pure relatibB8MS to handle XML documents
efficiently. Actually, XML documents are stored ielational systems either as atomic
entities such as BLOBs or being decomposed intatiahs. The first way of storing
cannot guaranty high performance of query evalueliecause we need to extract the
whole document from database. The second way leadsgreat number of resource
consuming joins to compose result.

Understanding drawbacks of using relational DBM&sdtoring XML caused high
activity in development of native XML DBMSs, whicliould not be straitened by any
existing infrastructure. Not pretending to give tbemplete classification we would
like to underline the essential characteristicshafse systems. The first group consists
of the systems that decompose XML documents antige level like in case of using
relational DBMSs, but make an accent on efficiegtanstruction of XML documents
(reconstruction is the inverse operation for decosition). The key to this problem
lies in efficient determination of parent-child amohcestor-descendent relationships
between nodes. For that reason the notiomwibering schemis introduced. The
reconstruction of XML is performed by special joaperations (structural joins or
containment joins) with the help of the numberiraheme. Usually it is insufficient to
have only a numbering scheme and such systems &aet of indexes to get quick
access to nodes by name and to avoid tree travéssahuse tree traversal leads to a
number of structural joins). Most papers, whichyptaound that idea, pay little atten-
tion to storage system and updates, but rather eatnate on efficient numbering
scheme implementation and optimization of strudtjodns. More details can be
found in [11], [12], [13].

Native XML systems, that make up the second gromprk on placement of an
XML document (which is essentially a tree) into amber of secondary memory
blocks. In this case an XML document is represerge number of nodes, which are
somehow connected with each other by references tlaa task is to distribute these
nodes among the blocks to satisfy some requireméits instance, the requirement
may consist in minimizing the number of blocks usedin organizing blocks in a
balanced tree, so any leaf of the XML tree can beessed by reading a small fixed
number of blocks (usually 2 or 3). A drawback othuapproach is that it requires the
resource consuming tree traversal operation foh jpateries, so some indexes should
be introduced to speed up query execution. An exaropsuch system which imple-
ments this approach is [14].

The third group of native XML DBMSs is the most pnising from our point of
view. Their main characteristic is that they usesciéptive schema or data guide of
XML document. Descriptive schema is defined asdai: for each label path in the
data, the same path also occurs in the descrigoleema exactly once. Descriptive
schema is also referred to as data guide. Theesanvork on exploiting descriptive
schema for XML data management, as far as we kriswhe Lore project [8]. Their
data guide was primarily used for query optimizati®GphinX [15] system uses de-
scriptive schema for organizing indexes on XML dowmnts. We appreciate these
works and think that our approach is closer to theéhan to any other. But they con-
centrate on indexing XML and do not discuss storagsetem and updates at all. The



last work on compressing XML [16] also takes intccaunt the advantages of descrip-
tive schema. Compressing skeleton that presentsttieture part of an XML docu-
ment they get a variant of data guide, which takttke memory and speeds up query
execution. But to the best of our knowledge thex@d any native full-featured XML
storage system built on the principles of the thineup, which not only introduces
indexes for XML, but also takes into account how XN& stored in secondary mem-
ory and how many I/O operations are performed foeges and updates. The latter is
what we do — the approach presented in this papersed in Sedna native XML
DBMS being developed by R&D team MODIS [17]. Alsthe ideas described have
been approved in BizQuery [18] — a virtual data gration system developed by our
team.

The main contributions of this paper are as follows
[0 We propose a novel approach to storing XML docursemdsed on descriptive

schema. Besides providing efficient support foresébn queries, our approach is

also suitable for updates of XML documents;

[0 We propose algorithms for evaluation of importanbset of XPath that we call
structure path queries;

[0 We demonstrate feasibility and practical relevanteur approach by a prototype
storage system implementation and a number of éxygarts.

The rest of the paper is organized as follows. &ti®n 2, we present our data rep-
resentation for XML and justify our choice. In Semt 3, we discuss benefits of our
data representation for XPath queries evaluati@ttiBn 4 gives some experimental
results. Finally, Section 5 summaries the contiifiutf this paper and gives outlook
to future work.

2 Sedna Storage System

In this section we describe the storage systemdasedescriptive schema. We start
with the explanation of descriptive schema for XNhd an example of how we can
make it work. Then we present a mechanism of dasiridution across secondary
memory blocks. We converse about data blocks andenstructure organization,

numbering scheme and text-enabled nodes. Afterwanrsliscuss memory manage-
ment in Sedna DBMS. Subsequently we discuss upaatessthe presented data struc-
tures. We conclude with the comparison of our sgeratrategy with others.

2.1 Descriptive Schema for XML

Let us consider an example of a simple XML documandl its descriptive schema in
Fig. 1. By definition, every path of the documerashexactly one path in the descrip-
tive schema, and every path of the descriptive sthés a path of the document.
Every node of the descriptive schema (we later taichema nodeis labeled with
type. The type is one of seven types defined in XQuand XPath Data Model [4]:
document node, element node, attribute node, naatespode, processing instruction
node, comment node and text node. Some nodes dapend their type also have



name. Note that schema nodes of the same type antkrare essentially different
nodes if they have different ancestors. So, thedptve schema is a tree.

For most XML documents that you can find in redelithe descriptive schema is
not very large at all. We assume that one thoussgitema nodes is an average gauge
for a XML document (which can simply have up to seal millions nodes or more). It
is hard to find a document with more than 10 thawds of schema nodes. Thus,
descriptive schema can easily fit in main memoryiah is extremely important for
effective query evaluation, as we will see later.

<library>
<book>
<title>Foundations of Databases</title>
<author>Abiteboul</author>
<author>Hull</author>

<author>Vianu</author> element
</book> library
<book>
<title>An Introduction to Database element element

Systems</title> paper
<author>Date</author>
<issue>
<publisher>Addison-Wesley</publisher>
<year>2004</year>
<[issue>
</book>
<paper>
<title>A Relational Model for
Large Shared Data Banks</title> text text
<author>Codd</author>
</paper>

element element text text

<paper> text text
<title>The Complexity of
Relational Query Languages</title>
<author>Codd</author>
</paper>
</library>

Fig. 1. Sample XML document alone with its descriptive sofa

2.1.1 Motivating Example

Let us consider an example of an XPath query to thecument in Fig. 1:
llibrary/book/title . Having a descriptive schema and this query wel wil
easily find a schema node that satisfies that quérthis schema node had an entry
point to the corresponding nodes of the documemntwe could simply read them
from disk, avoiding traversing XML tree. Hence, ddptive schema plays a role of a
naturally built index for path expressions. But haythe entry point to the nodes we
are looking for, how many blocks will we read frodisk and how many 1/O opera-
tions will be performed? To answer this questionsteuld understand how nodes are
stored.

Let us group all the nodes of the XML document lodks according to the schema
nodes and link these nodes by pointers so thatewtdceasily navigate from one node
to its sibling, parent and children. So, to evatuttie query discussed we have to read
those blocks which belong to elemetitie and text schema nodes (marked in



Fig. 1), and only those ones. The blocks to be readtain only nodes that must be
presented in the answer and do not contain anyratbees because they belong to
other schema nodes and are stored in the othekbldso we will read only those
blocks from disk we need to (remember that travegsilescriptive schema does not
cost much because it fits in main memory) and mizirthe amount of I/O operations.

2.2 Data Organization

To simplify storing of XML documents many storaggstems separate the structural
part from the textual part of an XML document. lmroapproach we also separate
descriptive schema. Thus, we operate with thregiest

00 Descriptive schema of XML documeWite have already discussed this entity;

[0 Structural part of XML documenttructural part reflects relationships between
nodes in XML document. If you consider an arbitra¢lL document tree, parent,
child, sibling relationships are represented bystractural part;

[0 Textual part of XML documeniThe text content of nodes of XML document
makes up textual part. Those are values of texiesodttribute nodes and so on.
Descriptive schema is rather small, so we assuraeitHits in main memory. It is

represented as a number of dynamic structures dinkih each other by standard

C/C++ pointers. To avoid serialization/deserialiaatprocess we use the mechanism

of memory-mapped files for storing descriptive setzeon disk.

Structural and textual parts are rather large ayglire lots of disk space. So they
are stored in fixed size secondary memory blocksictv can be effectively managed
by the buffer manager. The blocks are used foristpnode descriptors (which are
essentially nodes in terms of XQuery/XPath Data Mipand text. Node descriptors
are connected with each other, so having an amyitnade, system can proceed to its
neighbors (siblings, children, parent). We will diss the details later.

library el

element

Fig. 2. Data organization in blocks

The descriptive schema serves as an entry poititdstructural part. Every schema
node has a list of blocks attached which storesenddscriptors belonging to this
schema node as shown in Fig. 2. For example, elépegmer schema node has a link
to a list of two blocks, which store elements wipaper name and only these ele-



ments. So if you want to obtaitibrary/paper nodes you have to find a corre-
sponding path in the descriptive scheme by walkimgit and then you get an entry
point for the blocks you need. Note that node dgdors may have the same type
(element, for example) and name, but if they belomglifferent schema nodes, they
are stored in different block lists (see title elems under thdibrary/book and
llibrary/paper ).

We have to mention that descriptive schema is aineldnt data structure, but it al-
lows us to organize storage by placing node desergpin corresponding blocks. Thus
we need to keep up descriptive schema consistehtdeta during updates.

2.2.1 Data Blocks and Node Descriptors
In this section we concentrate on the organizatbblocks and the structure of node
descriptors. Text-enabled nodes will be discuss¢et|

Data blocks belonging to one schema node are linkagointers into bidirectional
list. Node descriptors in the list are partly orddraccording to document ordett
means that every node descriptor in the blogkecedes every node descriptor in the
blockj in document order, if<j (i.e. the blocki precedes the blogkin the list). But
node descriptors in the same block are not ordémetbcument order. This decision
has been made to simplify updates and will be dised later. To reconstruct the
order of node descriptors we have introduced spetiart pointers which are used to
link node descriptors from the same block.

A parent
| pointer
. . | .
previous in block <« | —_ |y nextin block
pointer pointer
. nid R
left sibling €= — — + — — +~ — — 9 right sibling
pointer / cee \ pointer
7 A}
/ children \
pointers

Fig. 3. Node descriptor structure

The common structure of all node descriptors isvadn Fig. 3. Node descriptor
consists of thgarent pointer theleft sibling pointerand theright sibling pointer(the
meaning of which is straightforward) and some otfields. Next in blockand previ-
ous in blockpointers connect nodes in the same block with glo@l to reconstruct
document order as was mentioned above. They an¢ ahd take only 2 bytes each.

Every node that can have children (i.e. element dodument nodes) has variable
number of pointers to the children. To save up spae do not store all children
pointers in a node, but rather store only a sepaiiters tofirst children by schema
Consider an elemenibrary in Fig. 1; it has several child element®ok (two

2 Informally, document order is the order returnegldn in-order, depth-first traversal of the
document [2]



shown) and several child elemepaper (two shown as well), but by the descriptive
schemadlibrary  element has only two children. So, exactly twoldhén pointers
will be presented in the node descriptor filirary ~ element. These are pointers to
the first child element with the nant®ok and the first childpaper element. Sup-
posing that there should be a large number of baoid papers in a library we would
save up lots of space. If we would like to seleltt@ok elements, which are children
of thelibrary  element, we have to obtain the fitsbok element and follow ‘next
in block pointer’ to get others (if all children doot fit in one block, we just simply
switch to the next block).

Designing the node descriptor structure we wantethake them fixed-size. It has
crucial importance for updates because it simgifiranaging of free space in block
and insert operations. We did it by introducifigst children by schemaotion as we
described above, so even all blocks in the lisblufcks have descriptors of the same
size. But another problem has arisen — if a new nisdeserted in the document for
which there is no such schema node, we have toileall blocks in the list belonging
to the parent schema node of the inserted nodegiwisi impropriate. So we decided
to introduce special attributeh_num (number of children) to every block. The at-
tribute tells us that all descriptors in this blobkve exactly this number of children
pointers and these pointers are the febt num children of the schema node in the
corresponding order. As a result, information abohildren pointers has become a
characteristic of a block; so inserting a new natéscriptor may lead to the recon-
struction of one block only, but not a list of blk&:

The last part of every node descriptor is thid field, which represents the unique
label for a node according to the numbering schésee Sect. 2.2.2). Note that node
descriptors have no field for its name, becausg thié have the same name — the
name of the corresponding schema node. Every bluk a pointer to its schema
node, so given an arbitrary node descriptor we siamply look at the header of the
block and get a pointer to the schema node, whiaeentame is recorded. This tech-
nigue allows us to save up space not storing namtsn node descriptors.

In addition to the fields described above, everglaalescriptor has its own fields
depending on the schema node it belongs to. Fompie, element node descriptors
have a type according to XML Schema [5], text natiscriptors have the pointer to a
string and the size of the string.

To finish up with node descriptors, we have to nienthat all ‘long’ pointers (sib-
lings, children) are straightforward pointers (C/Clike) to some objects in our own
virtual address space, which allows fast navigafimm one node to another without
converting these pointers using some tables (tlierenly one exception — parent
pointer, which uses one level of indirection; wellwdiscuss reasons for that in
Sect. 2.4). The size of the pointer is 64 bits,itsallows us to address enormous num-
ber of objects and operate with really huge datababMemory management in Sedna
DBMS is a topic for another discussion, but we Hgi@utline it in Sect. 2.3.

2.2.2 Numbering Scheme
The main goal of using numbering scheme is to glyicletermine ancestor-
descendant relationship between any pair of nodelse hierarchy of XML data [11].



It can also be used for determining document ondgationship. Let us consider a
query/library/*/*lyear . It finds all year elements that are included ilorary
elements. Once all library elements and year elémare found, those two element
sets can be joined to produce the answer. This meration can be performed
quickly without tree traversal with the help of thembering scheme.

This idea was proposed in XISS [11] and a numbesngeme was developed for
this DBMS. We appreciate this work, but a drawbadkheir implementation is that a
set of update operations may lead to a reconstrnotif full XML tree. They have
used a pair of integers as a label for node andevak effort to reserve a diapason of
integers for future updates. When the diapason lmesoexhausted the XML tree have
to be reconstructed.

We have elaborated the idea of a numbering schemleceeated our own imple-
mentation based on strings with the goal to getafidree reconstruction. The idea is
on the surface: if we have two stringgl andstr2 andstrl < str2 (lexico-
graphically) then there exists strirgir for which the statemenstl < str <
str2 s true (for example(strl= ‘abn’, str2 = ‘ghn’) => (str =
‘beb’); (strl = ‘ab’, str2 = ‘ac’) => (str = ‘abd’) ). In our
implementation every node descriptor has a lateél= (id, d) .id is a string
that presentaumbering labebndd is a character that presemtslimiter. String inter-
val (id, id+d) , where operatior means concatenation of strings, sets the range
of numbering labels for all ancestors of the giverde. Thus, to check if node 1 with
nidl = (id1, d1) is an ancestor to node 2 withid2 = (id2, d2) , we
have to test the conditioill < id2 < id1+d1l . If it is true, then node 1 is an
ancestor for node 2. And for every two nodedl = (id1, d1) andnid2 =
(id2, d2) the following statement is truédl1 < id2 (lexicographically) if and
only if the fist node precedes the second nodedauinent order.

Because of the lack of space we do not present hearalgorithm for the insert
operation, i.e. how to find a numbering label araichiter for inserted node. A reader
can easily depicture this algorithm by himself. \Gtdy say a few words about how we
store numbering labels that are variable-lengtle sizthe length of a numbering label
is not larger than 8 bytes, we store it inside nagscriptor Gid field), else we store
it outside of node descriptor amdd servers as a pointer to that string. We manage
‘outside’nid s the same way as we manage string data.

2.2.3 Text-enabled Nodes

Text-enabled nodes are those which have a varigth size data. They are text
nodes, attribute nodes and the ones alike. Furtbe¥mid s may exceed the length of
8 bytes and then they are stored in the same wasgable-length data. We use well-
known slotted-page structure method [19] with dditmodification. To manage free
space in a block effectively we added priority gaego now it functions similar to

malloc implementations.



2.3 Memory Management

The data representation is based on the fact tha¢ML document is made of a num-
ber of nodes somehow distributed across the blacid these nodes are linked with
each other by pointers. So, almost every trangfemfone node to another requires
dereferencing. Thereafter, optimizing the derefeeeoperation seems to be a primary
goal to increase the performance of the system wdtia being processed fits into
main memory. This statement highly correlates witle proposition that a storage
system should provide the ground for effective immpkntation of high-level query
languages such as XQuery and XSLT. Queries expdesséhese languages require
intensive work with stored data structures duriampg, transformations, etc.

All these problems were quite actual for objectemtied DBMSs, because naviga-
tion through object hierarchy was an often operatiDevelopers have made a great
effort studying the problem of management of poistevhen blocks are moved be-
tween main and secondary memory. The process ofstoamation of a pointer in
secondary memory to the pointer that can be useectly in main memory is called
pointer swizzling20]. We do not have enough space to give an oesvwof pointer
swizzling strategies, but we would like to mentitirat all of them except one (as far
as we know) have the following drawback: before yollow the pointer you have to
check if it was swizzled or not. The work ‘Point8wizzling at Page Fault Time’ [21]
avoids this problem: pointers stored in blocks gral pointers in virtual address space
of a process, so when you want to dereference quoiger, you simply follow it. The
problem is that the block you want to switch to magt be in memory. In this case
you get the memory exception that can be handlatitha needed block can be loaded
into main memory. After that the query is procesgedormal mode.

We use this idea for Sedna memory management witiodification, which con-
sists in extending the size of virtual address spa&tandard 32-bit architectures that
are widely used nowadays allow addressing only 4Gata and operating systems
usually restrict its size even more (to 2Gb in Winngs 2000 Professional/Server, for
example). Thus, we made an effort to extend the sizvirtual address space by man-
aging our own layered virtual address space.

The idea of layered virtual address space (LVASpislivide the whole huge logi-
cal address space, which is addressed by 64-bittei on layers. All layers have the
same size (we have chosen 1Gb) and are mappedeosathe part of process’ virtual
address space (PVAS) provided by OS. The first 88 bf a 64-bit pointer identify
the layer of the object the pointer referencesMoother 32 bits are served to point out
the object in this layer. Because data is storedlizk in a number of blocks, we use
block as the unit of interaction with disk. The a&ss to blocks of LVAS is provided
by mapping addresses of LVAS to addresses of PM@&e that we map not layer to
layer, but addresses from different layers to adges of PVAS. So we could work
with parts of different layers simultaneously wititaremapping overhead. The map-
ping is quite simple: every block addressed by @&4pbinter (layer, addr) is mapped
to process pointer addressed by addr (addrs araledthis allows us not to store any
auxiliary tables to perform mapping. In this casereferencing is performed by the
following algorithm: 1) we dereference the secorattpof the pointer (addr) like in



C/C++ language; 2) we check that the block addrédseaddr has the same layer as

the pointer. If any error happens the block is motemory and we have to read it.
To sum up with the memory management in Sedna DB#& would like to em-

phasize the main goals achieved.

[0 We emulate 64-bit virtual address space on thedsteth 32-bit hardware (the plat-
form is Windows 2000);

[0 Overhead for dereference operation is not much ntioa¢ for dereferencing stan-
dard C/C++ pointer and is caused by support fob@4srtual address space;

00 And the main result is that we fully avoid swizztinbecause data we work with
have the same representation in secondary mematyramain memory (because
pointers stored in blocks are real pointers in eintual address space).

2.4 Updates

Developing system, which we believe is highly adatgufor selection, we were keep-
ing in mind that it should handle updates as wBl. this statement we mean that a
local update operation should not cause the glababnstruction of XML tree. In
other words, we should be able to estimate the remah blocks accessed by an up-
date operation before it started. And this numbessd be O(Nn) , where n is a num-

ber of nodes modified. Because of the absence gfvaeidely accepted standard for
XML updates we speak in terms of micro-operatioagy( insert/delete node), which
can be later used to express updates of any corntplex

Node descriptors are inserted into and are del&twd blocks, which are standard
procedures and are not interesting for discuss@ne exception is that sometimes
block splits. When a node descriptor is insertetb ithe full block we have to con-
struct two blocks from the existing one to presettve proper data ordering.

The main question is as follows. What must be miedifto evaluate an update op-
eration? To satisfy requirements update operatimukl change only a neighborhood
of the node in scope and avoid ‘mass’ updates. V@ena@hstrate it on the micro-
operationmove(when the block splits, some nodes are moved tutlsr block). For a
node being moved we have to modify its left andhtigibling and his parent if the
given node is the first child of its parent by sch&. And at last, all his children have
to be modified too, because they all refer to hésgnt. The number of children can be
enormous which leads to a ‘mass’ update. For teason we have introduced indirec-
tion table for nodes, so all parent pointers hawe ¢evel of indirection. As a result,
instead of modifying all children we simply corragtcord in the indirection table.

To sum up with updates we enumerate below the dmtssmade to improve their
performance.

[ node descriptors have a fixed size;

[ node-descriptors are partly ordered;

[ a numbering scheme does not need tree reconstnudtiong updates;
[ indirection table for parent pointers.



2.5 Comparison with Other Storage Strategies

In conclusion to the description of the Sedna sgeraystem we would like to discuss
the advantages and disadvantages of our data stasccomparing with other ap-
proaches. Obviously, we avoided resource-consunuigs peculiar to the approach
based on using relational DBMSs for storing XML. §e concentrate on comparison
with native XML DBMSs.

Comparing with the approach, which decomposes derurat the node level and
uses the numbering scheme for reconstruction, we @ mention that we are ready
for using its set of algorithms. These algorithnme hased on the notion of numbering
scheme, and we support numbering scheme in fullsmesa We even implemented our
own algorithm of managing numbering scheme, whilfrée from global reordering.
Furthermore, we can perform navigational operatiose quickly, because for every
node we have a set of pointers to neighbors inXML hierarchy. But the tradeoff is
that the size of our data structures is larger ttensize of theirs.

Comparing with the approach, which manages XML duent as a tree, we
avoided the tree traversing operation, which weaéwd is the main drawback. With
the help of descriptive schema we can positionhe tight place and get access to
queried data immediately. Moreover this data iscmntrated in several blocks (we
know where they are) to speed up processing.

The disadvantage of our approach is that it takésa for outputting large parts of
XML documents, because data is dispersed amongrdbauof blocks and we have to
access the same block several times to reconstdtt tree. But our study shows that
for most real life queries the needed blocks remairbuffers and access to it per-
formed almost for free because of using straightfnd pointers.

3 Query Evaluation

In this section we demonstrate different executstrategies for regular path expres-
sions which are allowed by our data structures. ¥@acentrate on usage of descrip-
tive schema for answering queries. We assume thtd dnd its descriptive schema
have the form that is presented in Fig. 1. Samplertes are shown below.

Sample queries to demonstrate query evaluationegfies

Q1: /library/book/issue

Q2: /library/*/title

Qa3: /ltitle

Q4: /library/book/[issue/year=2004]/title

Q5: /library/*[.//publisher]

Q6: /*/book[author="Date"]/issue[year=2004]/publish er

The first three queries we caltructure path querieshecause we do not need to
make any tests depending on data. In other worllisjada, which are read by these
queries are used to form the answer. Structure gatries are ideal to be evaluated
using descriptive schema. Consider query Q1. Wet #fs evaluation by traversing



descriptive schema for the context document and eniako transitions fronli-
brary element tobook element and then tissue element. The schema node
which is obtained has a pointer to a list of blockih the data we are looking for.
Now we pass through the list of blocks and outpu¢sult.

The queries Q2 and Q3 are a bit harder to evaluataversing the descriptive
schema we find two schema nodes that satisfy trexiga (for Q3 we have to traverse
through the whole descriptive schema, but for Q& @npart). To output the result we
cannot just pass through the first list of blocksdahen through the second one, be-
cause we may break the document order (there miy axitle of a paper which oc-
curs before some book titles in the document). Thiuthe result of schema traversal
is several schema nodes, we have to reconstruatrdent order. The process is per-
formed by merge operation. The merge operationiveseseveral lists of blocks as an
input and produces the sequence of node descripidigh are ordered with respect
to document order. The numbering scheme is usedpérforming this operation.
Because node descriptors in the given lists ardyardered the process of merging is

not resource consumin@(z n,) comparisons ofiid s, wheren; is the number of
i

node descriptors in the i-th list of blocks. Noteat as for the query Q1 we read only
those blocks we need to (there exists only oneedéffice: for the queries Q2 and Q3
we usenid s and it may lead us to reading blocks witidl s if they are large and do
not fit in node descriptors).

To sum up, the algorithm for evaluation structueglpqueries consists of two steps.
At first we traverse descriptive schema to find thehema nodes which satisfy the
query, and at second we pass through the listdafks to form a result. If traversing
of schema leads to several schema nodes we petf@merge operation.

The last three queries require more effort to baleated. Consider query Q4. As
for the previous queries we can selditirary/book elements using the descrip-
tive schema and then apply predicate and the last @f the query using pointers in
data. But it seems to us the following algorithmmisre attractive. Firstly, we evaluate
the structure path queribrary/book/issuelyear/text() . Secondly, we
apply the predicate (we select only those nodeswaich text is equal to 2004). And
at last, we perform./../../title on the result of the previous step. The idea is
that we select blocks to which the predicate appba the first step omitting blocks
with book elements. Then we apply the predicateicihwe hope cut off lots of data,
and only then go up the XML hierarchy to obtain fiveal result.

The mission of the query Q5 is to show how informatabout a predicate can be
extracted and used to optimize the number of bloeksessed. Executing the
llibrary/* query on the first step we get two schema noddésnientbook and
elementpaper ), but only the one (elemerttook ) has descendant element with the
namepublisher . In that way not reading any data block we already exclude
one list of blocks from the answer, because thened any node descriptor in that list
which has the elememiublisher  as a descendant.

And at last, the query Q6 demonstrates the impaeansf the numbering scheme for
evaluating a subset of XPath queries. We proposefdhowing strategy for evalua-
tion of this query. Firstly, we evaluatébrary/book/[author="Date”] and



llibrary/book/issue[year=2004] queries as was shown above for the
guery Q4. On the second step we filter the obtaiakmmentsssue by determining
ancestor-descendant relationship between themlamddlectedook elements. We
use the numbering scheme for this purpose as wawrsin Sect. 2.2.2. The operation
which determines ancestor-descendant relationshgnilar to merge operation and
has the same computational complexity.

Note that for the last three queries we have sheame interesting and not obvious
strategies for query evaluation, which are allowsdour data structures. But we do
not declare that they are best in all cases. Wergieal them, but the query optimizer
should make the final decision which strategy is best one. It is one of the directions
of our future work.

4 Performance Study

Presented in this section are the results of Squbrformance measurement. For data
generation we used the XMark benchmark [22]. Iba# generating arbitrary amounts
of XML data which satisfy the fixed schema (theyeuBTD auctions). Thus, this
benchmark is good for testing scalability of outaatructures.

Q1: document("auctions")/site/people/person/emailaddres s
Q2: document("auctions")/site/categories/category/descr iption//listitem/text
Q3: document("auctions")/site/people/person[profile/ @i ncome > 100000]
Q4: document("auctions")/site/*/*/seller[@person="pers onl1111"/..
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Fig. 4. Sample queries and performance results

The XMark benchmark has a set of predefined quekiasthese queries are formu-
lated in XQuery and cover not only path expressjdng other XQuery operations as



well. So, we have developed our own set of queridse four typical queries of this
set are shown in Fig. 4.

The environment for performance measurements wasfdlowing. The Sedna
DBMS was running on the computer with Pentium-1VODBhz and 512Mb RAM.
The platform was Windows 2000 Server. Every quegsvexecuted from the cold
start of the system (buffers were empty). The fiZXML file (document auction.xml
produced by the generator delivered with XMark) wig&Mb, 11,3Mb, 56,2Mb and
113,1Mb. The results of performance measurememshown in Fig. 4. The size of
the produced results is shown in the Table 1.

Table 1. Size of the results for sample queries

Query Results size (Mb)
For 1,1Mb For 11,3Mb | For 56,2Mb For 113,1Mb
data data data data
Q1 0,017 0,2 0,8 1,6
Q2 0,009 0,1 0,4 1,4
Q3 0,004 0,02 0,1 0,2
Q4 0,003 0,005 0,04 0,2

Note that for all queries the time of query evaloatgrowths a bit slowly than the
size of the data. That means that our data strestaan be used for dealing with large
volumes of data.

Note that we achieved good performance resultsaithusing value indexes. For
the last two queries we used sequential scanningirffroducing value indexes to our
system we can significantly improve performanceautissin the future.

5 Conclusion and Future Work

In the paper we have presented an idea of how Xittiragge can be organized taking
into account a descriptive schema of a document. alée discussed the core tech-
niques of our native XML DBMS Sedna which stronglgrrelate with this idea. Data
structures presented in the paper have a generabpa nature and can be extended in
the future. We are planning to add value-indexed aevelop fine grain locking
mechanism (we suppose that descriptive scheméwillsed thoroughly). And the last
but not the least, descriptive schema and our damnization plus statistics give
ground for query optimization.

And to sum up, we would like to mention that undersling all drawbacks of
methods presented in this paper we believe thatn@yrof dealing with XML data is a
good alternative for existing ones.
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