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Abstract. Unlike traditional relational or object-oriented databases, XML data-
bases require no schema defined in advance. To provide the benefits of a 
schema in such environments, the notion of descriptive schema (that is also 
called data guide) was introduced. Descriptive schema is a concise and accurate 
structural summary of an XML database. It serves as dynamic schema, gener-
ated from the database. Descriptive schema helps the user to formulate mean-
ingful queries to the documents without predefined schema. Descriptive schema 
is also used for query optimization as a basis for query rewriting, query type in-
ference and physical plan construction.    
 In this paper we go further and use descriptive schema for organizing storage 
system. Our approach consists in grouping nodes of XML documents in blocks 
according to their position in the descriptive schema. Thus, descriptive schema 
plays a role of index structure for path queries that allows us to avoid tree tra-
versal and minimize a number of blocks accessed. 

1   Introduction 

There is no doubt that XML has already gained ground as a widespread format for 
information exchange. With significant growth of amounts of XML data being trans-
mitted industry needs storage systems dealing with huge XML documents in efficient 
way. Particularly, these systems should handle data in secondary storage. This requires 
solving the problem of data representation that satisfies several requirements. Firstly, 
data representation should allow efficient execution of regular path expressions such 
as XPath [1] queries. Secondly, such systems should be able to process data updates 
as well as queries. And thirdly, they should take into consideration the fact that data 
representation in secondary memory influences the implementation of high level query 
languages such as XQuery [2] and XSLT [3] which are usually implemented on the 
top of XML storage. 

The problem of storing and processing XML documents efficiently has been admit-
ted by the database community as a challenge and caused high research activity in this 
field. Historically, the first wave of research was adopting relational DBMSs for stor-
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ing XML. The whole paper is not enough for detailed description of work that has 
been done, so we can only recommend a summary [6]. But the result of this research 
consists in principle constraints of pure relational DBMS to handle XML documents 
efficiently. Actually, XML documents are stored in relational systems either as atomic 
entities such as BLOBs or being decomposed into relations. The first way of storing 
cannot guaranty high performance of query evaluation because we need to extract the 
whole document from database. The second way leads to a great number of resource 
consuming joins to compose result. 

Understanding drawbacks of using relational DBMSs for storing XML caused high 
activity in development of native XML DBMSs, which would not be straitened by any 
existing infrastructure. Not pretending to give the complete classification we would 
like to underline the essential characteristics of these systems. The first group consists 
of the systems that decompose XML documents at the node level like in case of using 
relational DBMSs, but make an accent on efficient reconstruction of XML documents 
(reconstruction is the inverse operation for decomposition). The key to this problem 
lies in efficient determination of parent-child and ancestor-descendent relationships 
between nodes. For that reason the notion of numbering scheme is introduced. The 
reconstruction of XML is performed by special join operations (structural joins or 
containment joins) with the help of the numbering scheme. Usually it is insufficient to 
have only a numbering scheme and such systems have a set of indexes to get quick 
access to nodes by name and to avoid tree traversal (because tree traversal leads to a 
number of structural joins). Most papers, which play around that idea, pay little atten-
tion to storage system and updates, but rather concentrate on efficient numbering 
scheme implementation and optimization of structural joins. More details can be 
found in [11], [12], [13]. 

Native XML systems, that make up the second group, work on placement of an 
XML document (which is essentially a tree) into a number of secondary memory 
blocks. In this case an XML document is represented as a number of nodes, which are 
somehow connected with each other by references, and the task is to distribute these 
nodes among the blocks to satisfy some requirements. For instance, the requirement 
may consist in minimizing the number of blocks used or in organizing blocks in a 
balanced tree, so any leaf of the XML tree can be accessed by reading a small fixed 
number of blocks (usually 2 or 3). A drawback of such approach is that it requires the 
resource consuming tree traversal operation for path queries, so some indexes should 
be introduced to speed up query execution. An example of such system which imple-
ments this approach is [14]. 

The third group of native XML DBMSs is the most promising from our point of 
view. Their main characteristic is that they use descriptive schema or data guide of 
XML document. Descriptive schema is defined as follows: for each label path in the 
data, the same path also occurs in the descriptive schema exactly once. Descriptive 
schema is also referred to as data guide. The earliest work on exploiting descriptive 
schema for XML data management, as far as we know, is the Lore project [8]. Their 
data guide was primarily used for query optimization. SphinX [15] system uses de-
scriptive schema for organizing indexes on XML documents. We appreciate these 
works and think that our approach is closer to theirs than to any other. But they con-
centrate on indexing XML and do not discuss storage system and updates at all. The 



last work on compressing XML [16] also takes into account the advantages of descrip-
tive schema. Compressing skeleton that presents the structure part of an XML docu-
ment they get a variant of data guide, which takes little memory and speeds up query 
execution. But to the best of our knowledge there is no any native full-featured XML 
storage system built on the principles of the third group, which not only introduces 
indexes for XML, but also takes into account how XML is stored in secondary mem-
ory and how many I/O operations are performed for queries and updates. The latter is 
what we do — the approach presented in this paper is used in Sedna native XML 
DBMS being developed by R&D team MODIS [17]. Also, the ideas described have 
been approved in BizQuery [18] — a virtual data integration system developed by our 
team. 

The main contributions of this paper are as follows: 
� We propose a novel approach to storing XML documents based on descriptive 

schema. Besides providing efficient support for selection queries, our approach is 
also suitable for updates of XML documents; 

� We propose algorithms for evaluation of important subset of XPath that we call 
structure path queries; 

� We demonstrate feasibility and practical relevance of our approach by a prototype 
storage system implementation and a number of experiments. 
The rest of the paper is organized as follows. In Section 2, we present our data rep-

resentation for XML and justify our choice. In Section 3, we discuss benefits of our 
data representation for XPath queries evaluation. Section 4 gives some experimental 
results. Finally, Section 5 summaries the contribution of this paper and gives outlook 
to future work. 

2   Sedna Storage System 

In this section we describe the storage system based on descriptive schema. We start 
with the explanation of descriptive schema for XML and an example of how we can 
make it work. Then we present a mechanism of data distribution across secondary 
memory blocks. We converse about data blocks and node structure organization, 
numbering scheme and text-enabled nodes. Afterwards we discuss memory manage-
ment in Sedna DBMS. Subsequently we discuss updates over the presented data struc-
tures. We conclude with the comparison of our storage strategy with others. 

2.1   Descriptive Schema for XML 

Let us consider an example of a simple XML document and its descriptive schema in 
Fig. 1. By definition, every path of the document has exactly one path in the descrip-
tive schema, and every path of the descriptive schema is a path of the document. 
Every node of the descriptive schema (we later call it schema node) is labeled with 
type. The type is one of seven types defined in XQuery and XPath Data Model [4]: 
document node, element node, attribute node, namespace node, processing instruction 
node, comment node and text node. Some nodes depending on their type also have 



name. Note that schema nodes of the same type and name are essentially different 
nodes if they have different ancestors. So, the descriptive schema is a tree. 

For most XML documents that you can find in real life the descriptive schema is 
not very large at all. We assume that one thousand schema nodes is an average gauge 
for a XML document (which can simply have up to several millions nodes or more). It 
is hard to find a document with more than 10 thousands of schema nodes. Thus, 
descriptive schema can easily fit in main memory, which is extremely important for 
effective query evaluation, as we will see later. 

<library>
  <book>
    <title>Foundations of Databases</title>
    <author>Abiteboul</author>
    <author>Hull</author>
    <author>Vianu</author>
  </book>
  . . .
  <book>
    <title>An Introduction to Database
           Systems</title>
    <author>Date</author>
    <issue>
      <publisher>Addison-Wesley</publisher>
      <year>2004</year>
    </issue>
  </book>
  <paper>
    <title>A Relational Model for
           Large Shared Data Banks</title>
    <author>Codd</author>
  </paper>
  . . .
  <paper>
    <title>The Complexity of
           Relational Query Languages</title>
    <author>Codd</author>
  </paper>
</library>
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Fig. 1. Sample XML document alone with its descriptive schema 

2.1.1   Motivating Example 
Let us consider an example of an XPath query to the document in Fig. 1: 
/library/book/title . Having a descriptive schema and this query we will 
easily find a schema node that satisfies that query. If this schema node had an entry 
point to the corresponding nodes of the document, then we could simply read them 
from disk, avoiding traversing XML tree. Hence, descriptive schema plays a role of a 
naturally built index for path expressions. But having the entry point to the nodes we 
are looking for, how many blocks will we read from disk and how many I/O opera-
tions will be performed? To answer this question we should understand how nodes are 
stored. 

Let us group all the nodes of the XML document in blocks according to the schema 
nodes and link these nodes by pointers so that we could easily navigate from one node 
to its sibling, parent and children. So, to evaluate the query discussed we have to read 
those blocks which belong to element title  and text schema nodes (marked in 



Fig. 1), and only those ones. The blocks to be read contain only nodes that must be 
presented in the answer and do not contain any other nodes because they belong to 
other schema nodes and are stored in the other blocks. So we will read only those 
blocks from disk we need to (remember that traversing descriptive schema does not 
cost much because it fits in main memory) and minimize the amount of I/O operations. 

2.2   Data Organization 

To simplify storing of XML documents many storage systems separate the structural 
part from the textual part of an XML document. In our approach we also separate 
descriptive schema. Thus, we operate with three entities: 
� Descriptive schema of XML document. We have already discussed this entity; 
� Structural part of XML document. Structural part reflects relationships between 

nodes in XML document. If you consider an arbitrary XML document tree, parent, 
child, sibling relationships are represented by the structural part; 

� Textual part of XML document. The text content of nodes of XML document 
makes up textual part. Those are values of text nodes, attribute nodes and so on. 
Descriptive schema is rather small, so we assume that it fits in main memory. It is 

represented as a number of dynamic structures linked with each other by standard 
C/C++ pointers. To avoid serialization/deserialization process we use the mechanism 
of memory-mapped files for storing descriptive schema on disk. 

Structural and textual parts are rather large and require lots of disk space. So they 
are stored in fixed size secondary memory blocks, which can be effectively managed 
by the buffer manager. The blocks are used for storing node descriptors (which are 
essentially nodes in terms of XQuery/XPath Data Model) and text. Node descriptors 
are connected with each other, so having an arbitrary node, system can proceed to its 
neighbors (siblings, children, parent). We will discuss the details later. 
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Fig. 2. Data organization in blocks 

The descriptive schema serves as an entry point to the structural part. Every schema 
node has a list of blocks attached which stores node descriptors belonging to this 
schema node as shown in Fig. 2. For example, element paper  schema node has a link 
to a list of two blocks, which store elements with paper  name and only these ele-



ments. So if you want to obtain /library/paper  nodes you have to find a corre-
sponding path in the descriptive scheme by walking on it and then you get an entry 
point for the blocks you need. Note that node descriptors may have the same type 
(element, for example) and name, but if they belong to different schema nodes, they 
are stored in different block lists (see title elements under the /library/book  and 
/library/paper ). 

We have to mention that descriptive schema is a redundant data structure, but it al-
lows us to organize storage by placing node descriptors in corresponding blocks. Thus 
we need to keep up descriptive schema consistent with data during updates. 

2.2.1   Data Blocks and Node Descriptors 
In this section we concentrate on the organization of blocks and the structure of node 
descriptors. Text-enabled nodes will be discussed later. 

Data blocks belonging to one schema node are linked via pointers into bidirectional 
list. Node descriptors in the list are partly ordered according to document order2. It 
means that every node descriptor in the block i precedes every node descriptor in the 
block j in document order, if i < j  (i.e. the block i precedes the block j in the list). But 
node descriptors in the same block are not ordered in document order. This decision 
has been made to simplify updates and will be discussed later. To reconstruct the 
order of node descriptors we have introduced special short pointers which are used to 
link node descriptors from the same block. 

nid
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. . .
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left sibling
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next in block
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previous in block
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Fig. 3. Node descriptor structure 

The common structure of all node descriptors is shown in Fig. 3. Node descriptor 
consists of the parent pointer, the left sibling pointer and the right sibling pointer (the 
meaning of which is straightforward) and some other fields. Next in block and previ-
ous in block pointers connect nodes in the same block with the goal to reconstruct 
document order as was mentioned above. They are short and take only 2 bytes each. 

Every node that can have children (i.e. element and document nodes) has variable 
number of pointers to the children. To save up space we do not store all children 
pointers in a node, but rather store only a set of pointers to first children by schema. 
Consider an element library  in Fig. 1; it has several child elements book  (two 
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shown) and several child elements paper  (two shown as well), but by the descriptive 
schema library  element has only two children. So, exactly two children pointers 
will be presented in the node descriptor for library  element. These are pointers to 
the first child element with the name book  and the first child paper  element. Sup-
posing that there should be a large number of books and papers in a library we would 
save up lots of space. If we would like to select all book  elements, which are children 
of the library  element, we have to obtain the first book  element and follow ‘next 
in block pointer’ to get others (if all children do not fit in one block, we just simply 
switch to the next block). 

Designing the node descriptor structure we wanted to make them fixed-size. It has 
crucial importance for updates because it simplifies managing of free space in block 
and insert operations. We did it by introducing first children by schema notion as we 
described above, so even all blocks in the list of blocks have descriptors of the same 
size. But another problem has arisen — if a new node is inserted in the document for 
which there is no such schema node, we have to rebuild all blocks in the list belonging 
to the parent schema node of the inserted node, which is impropriate. So we decided 
to introduce special attribute ch_num (number of children) to every block. The at-
tribute tells us that all descriptors in this block have exactly this number of children 
pointers and these pointers are the first ch_num children of the schema node in the 
corresponding order. As a result, information about children pointers has become a 
characteristic of a block; so inserting a new node descriptor may lead to the recon-
struction of one block only, but not a list of blocks. 

The last part of every node descriptor is the nid  field, which represents the unique 
label for a node according to the numbering scheme (see Sect. 2.2.2). Note that node 
descriptors have no field for its name, because they all have the same name — the 
name of the corresponding schema node. Every block has a pointer to its schema 
node, so given an arbitrary node descriptor we can simply look at the header of the 
block and get a pointer to the schema node, where the name is recorded. This tech-
nique allows us to save up space not storing names within node descriptors. 

In addition to the fields described above, every node descriptor has its own fields 
depending on the schema node it belongs to. For example, element node descriptors 
have a type according to XML Schema [5], text node descriptors have the pointer to a 
string and the size of the string. 

To finish up with node descriptors, we have to mention that all ‘long’ pointers (sib-
lings, children) are straightforward pointers (C/C++ like) to some objects in our own 
virtual address space, which allows fast navigation from one node to another without 
converting these pointers using some tables (there is only one exception — parent 
pointer, which uses one level of indirection; we will discuss reasons for that in 
Sect. 2.4). The size of the pointer is 64 bits, so it allows us to address enormous num-
ber of objects and operate with really huge databases. Memory management in Sedna 
DBMS is a topic for another discussion, but we briefly outline it in Sect. 2.3. 

2.2.2   Numbering Scheme 
The main goal of using numbering scheme is to quickly determine ancestor-
descendant relationship between any pair of nodes in the hierarchy of XML data [11]. 



It can also be used for determining document order relationship. Let us consider a 
query /library/*/*/year . It finds all year elements that are included in library 
elements. Once all library elements and year elements are found, those two element 
sets can be joined to produce the answer. This join operation can be performed 
quickly without tree traversal with the help of the numbering scheme. 

This idea was proposed in XISS [11] and a numbering scheme was developed for 
this DBMS. We appreciate this work, but a drawback of their implementation is that a 
set of update operations may lead to a reconstruction of full XML tree. They have 
used a pair of integers as a label for node and make an effort to reserve a diapason of 
integers for future updates. When the diapason becomes exhausted the XML tree have 
to be reconstructed. 

We have elaborated the idea of a numbering scheme and created our own imple-
mentation based on strings with the goal to get rid of tree reconstruction. The idea is 
on the surface: if we have two strings str1  and str2  and str1 < str2  (lexico-
graphically) then there exists string str  for which the statement st1 < str < 
str2  is true (for example, (str1= ‘abn’, str2 = ‘ghn’) => (str = 
‘bcb’); (str1 = ‘ab’, str2 = ‘ac’) => (str = ‘abd’) ). In our 
implementation every node descriptor has a label nid = (id, d) . id  is a string 
that presents numbering label and d is a character that presents delimiter. String inter-
val (id, id+d) , where operation + means concatenation of strings, sets the range 
of numbering labels for all ancestors of the given node. Thus, to check if node 1 with 
nid1 = (id1, d1)  is an ancestor to node 2 with nid2 = (id2, d2) , we 
have to test the condition id1 < id2 < id1+d1 . If it is true, then node 1 is an 
ancestor for node 2. And for every two nodes nid1 = (id1, d1)  and nid2 = 
(id2, d2)  the following statement is true: id1 < id2  (lexicographically) if and 
only if the fist node precedes the second node in document order. 

Because of the lack of space we do not present here an algorithm for the insert 
operation, i.e. how to find a numbering label and delimiter for inserted node. A reader 
can easily depicture this algorithm by himself. We only say a few words about how we 
store numbering labels that are variable-length size. If the length of a numbering label 
is not larger than 8 bytes, we store it inside node descriptor (nid  field), else we store 
it outside of node descriptor and nid  servers as a pointer to that string. We manage 
‘outside’ nid s the same way as we manage string data. 

2.2.3   Text-enabled Nodes 
Text-enabled nodes are those which have a variable-length size data. They are text 
nodes, attribute nodes and the ones alike. Furthermore, nid s may exceed the length of 
8 bytes and then they are stored in the same way as variable-length data. We use well-
known slotted-page structure method [19] with a little modification. To manage free 
space in a block effectively we added priority queue, so now it functions similar to 
malloc implementations. 



2.3   Memory Management 

The data representation is based on the fact that an XML document is made of a num-
ber of nodes somehow distributed across the blocks and these nodes are linked with 
each other by pointers. So, almost every transfer from one node to another requires 
dereferencing. Thereafter, optimizing the dereference operation seems to be a primary 
goal to increase the performance of the system when data being processed fits into 
main memory. This statement highly correlates with the proposition that a storage 
system should provide the ground for effective implementation of high-level query 
languages such as XQuery and XSLT. Queries expressed in these languages require 
intensive work with stored data structures during joins, transformations, etc. 

All these problems were quite actual for object oriented DBMSs, because naviga-
tion through object hierarchy was an often operation. Developers have made a great 
effort studying the problem of management of pointers when blocks are moved be-
tween main and secondary memory. The process of transformation of a pointer in 
secondary memory to the pointer that can be used directly in main memory is called 
pointer swizzling [20]. We do not have enough space to give an overview of pointer 
swizzling strategies, but we would like to mention that all of them except one (as far 
as we know) have the following drawback: before you follow the pointer you have to 
check if it was swizzled or not. The work ‘Pointer Swizzling at Page Fault Time’ [21] 
avoids this problem: pointers stored in blocks are real pointers in virtual address space 
of a process, so when you want to dereference some pointer, you simply follow it. The 
problem is that the block you want to switch to may not be in memory. In this case 
you get the memory exception that can be handled and the needed block can be loaded 
into main memory. After that the query is processed in normal mode. 

We use this idea for Sedna memory management with a modification, which con-
sists in extending the size of virtual address space. Standard 32-bit architectures that 
are widely used nowadays allow addressing only 4Gb of data and operating systems 
usually restrict its size even more (to 2Gb in Windows 2000 Professional/Server, for 
example). Thus, we made an effort to extend the size of virtual address space by man-
aging our own layered virtual address space. 

The idea of layered virtual address space (LVAS) is to divide the whole huge logi-
cal address space, which is addressed by 64-bit pointers on layers. All layers have the 
same size (we have chosen 1Gb) and are mapped on the same part of process’ virtual 
address space (PVAS) provided by OS. The first 32 bits of a 64-bit pointer identify 
the layer of the object the pointer references to. Another 32 bits are served to point out 
the object in this layer. Because data is stored on disk in a number of blocks, we use 
block as the unit of interaction with disk. The access to blocks of LVAS is provided 
by mapping addresses of LVAS to addresses of PVAS. Note that we map not layer to 
layer, but addresses from different layers to addresses of PVAS. So we could work 
with parts of different layers simultaneously without remapping overhead. The map-
ping is quite simple: every block addressed by 64-bit pointer (layer, addr) is mapped 
to process pointer addressed by addr (addrs are equal). This allows us not to store any 
auxiliary tables to perform mapping. In this case dereferencing is performed by the 
following algorithm: 1) we dereference the second part of the pointer (addr) like in 



C/C++ language; 2) we check that the block addressed by addr has the same layer as 
the pointer. If any error happens the block is not in memory and we have to read it. 

To sum up with the memory management in Sedna DBMS, we would like to em-
phasize the main goals achieved. 
� We emulate 64-bit virtual address space on the standard 32-bit hardware (the plat-

form is Windows 2000); 
� Overhead for dereference operation is not much more that for dereferencing stan-

dard C/C++ pointer and is caused by support for 64-bit virtual address space; 
� And the main result is that we fully avoid swizzling, because data we work with 

have the same representation in secondary memory and in main memory (because 
pointers stored in blocks are real pointers in our virtual address space). 

2.4   Updates 

Developing system, which we believe is highly adequate for selection, we were keep-
ing in mind that it should handle updates as well. By this statement we mean that a 
local update operation should not cause the global reconstruction of XML tree. In 
other words, we should be able to estimate the number of blocks accessed by an up-
date operation before it started. And this number should be )(nO , where n is a num-

ber of nodes modified. Because of the absence of any widely accepted standard for 
XML updates we speak in terms of micro-operations (e.g. insert/delete node), which 
can be later used to express updates of any complexity. 

Node descriptors are inserted into and are deleted from blocks, which are standard 
procedures and are not interesting for discussion. One exception is that sometimes 
block splits. When a node descriptor is inserted into the full block we have to con-
struct two blocks from the existing one to preserve the proper data ordering. 

The main question is as follows. What must be modified to evaluate an update op-
eration? To satisfy requirements update operation should change only a neighborhood 
of the node in scope and avoid ‘mass’ updates. We demonstrate it on the micro-
operation move (when the block splits, some nodes are moved to another block). For a 
node being moved we have to modify its left and right sibling and his parent if the 
given node is the first child of its parent by schema. And at last, all his children have 
to be modified too, because they all refer to his parent. The number of children can be 
enormous which leads to a ‘mass’ update. For that reason we have introduced indirec-
tion table for nodes, so all parent pointers have one level of indirection. As a result, 
instead of modifying all children we simply correct record in the indirection table. 

To sum up with updates we enumerate below the decisions made to improve their 
performance. 
� node descriptors have a fixed size; 
� node-descriptors are partly ordered; 
� a numbering scheme does not need tree reconstruction during updates; 
� indirection table for parent pointers. 



2.5   Comparison with Other Storage Strategies 

In conclusion to the description of the Sedna storage system we would like to discuss 
the advantages and disadvantages of our data structures comparing with other ap-
proaches. Obviously, we avoided resource-consuming joins peculiar to the approach 
based on using relational DBMSs for storing XML. So we concentrate on comparison 
with native XML DBMSs. 

Comparing with the approach, which decomposes document at the node level and 
uses the numbering scheme for reconstruction, we have to mention that we are ready 
for using its set of algorithms. These algorithms are based on the notion of numbering 
scheme, and we support numbering scheme in full measure. We even implemented our 
own algorithm of managing numbering scheme, which is free from global reordering. 
Furthermore, we can perform navigational operations more quickly, because for every 
node we have a set of pointers to neighbors in the XML hierarchy. But the tradeoff is 
that the size of our data structures is larger than the size of theirs. 

Comparing with the approach, which manages XML document as a tree, we 
avoided the tree traversing operation, which we believe is the main drawback. With 
the help of descriptive schema we can position to the right place and get access to 
queried data immediately. Moreover this data is concentrated in several blocks (we 
know where they are) to speed up processing. 

The disadvantage of our approach is that it takes a time for outputting large parts of 
XML documents, because data is dispersed among a number of blocks and we have to 
access the same block several times to reconstruct XML tree. But our study shows that 
for most real life queries the needed blocks remain in buffers and access to it per-
formed almost for free because of using straightforward pointers. 

3   Query Evaluation 

In this section we demonstrate different execution strategies for regular path expres-
sions which are allowed by our data structures. We concentrate on usage of descrip-
tive schema for answering queries. We assume that data and its descriptive schema 
have the form that is presented in Fig. 1. Sample queries are shown below. 

Sample queries to demonstrate query evaluation strategies 

Q1: /library/book/issue 
Q2: /library/*/title 
Q3: //title 
Q4: /library/book/[issue/year=2004]/title 
Q5: /library/*[.//publisher] 
Q6: /*/book[author=”Date”]/issue[year=2004]/publish er 

The first three queries we call structure path queries, because we do not need to 
make any tests depending on data. In other words, all data, which are read by these 
queries are used to form the answer. Structure path queries are ideal to be evaluated 
using descriptive schema. Consider query Q1. We start its evaluation by traversing 



descriptive schema for the context document and make two transitions from li-
brary  element to book  element and then to issue  element. The schema node 
which is obtained has a pointer to a list of blocks with the data we are looking for. 
Now we pass through the list of blocks and output a result. 

The queries Q2 and Q3 are a bit harder to evaluate. Traversing the descriptive 
schema we find two schema nodes that satisfy the queries (for Q3 we have to traverse 
through the whole descriptive schema, but for Q2 only a part). To output the result we 
cannot just pass through the first list of blocks and then through the second one, be-
cause we may break the document order (there may exist a title of a paper which oc-
curs before some book titles in the document). Thus, if the result of schema traversal 
is several schema nodes, we have to reconstruct document order. The process is per-
formed by merge operation. The merge operation receives several lists of blocks as an 
input and produces the sequence of node descriptors, which are ordered with respect 
to document order. The numbering scheme is used for performing this operation. 
Because node descriptors in the given lists are partly ordered the process of merging is 

not resource consuming: )(∑
i

inO  comparisons of nid s, where in  is the number of 

node descriptors in the i-th list of blocks. Note that as for the query Q1 we read only 
those blocks we need to (there exists only one difference: for the queries Q2 and Q3 
we use nid s and it may lead us to reading blocks with nid s if they are large and do 
not fit in node descriptors). 

To sum up, the algorithm for evaluation structure path queries consists of two steps. 
At first we traverse descriptive schema to find the schema nodes which satisfy the 
query, and at second we pass through the lists of blocks to form a result. If traversing 
of schema leads to several schema nodes we perform the merge operation. 

The last three queries require more effort to be evaluated. Consider query Q4. As 
for the previous queries we can select /library/book  elements using the descrip-
tive schema and then apply predicate and the last part of the query using pointers in 
data. But it seems to us the following algorithm is more attractive. Firstly, we evaluate 
the structure path query /library/book/issue/year/text() . Secondly, we 
apply the predicate (we select only those nodes, for which text is equal to 2004). And 
at last, we perform ../../../title  on the result of the previous step. The idea is 
that we select blocks to which the predicate applies on the first step omitting blocks 
with book elements. Then we apply the predicate, which we hope cut off lots of data, 
and only then go up the XML hierarchy to obtain the final result. 

The mission of the query Q5 is to show how information about a predicate can be 
extracted and used to optimize the number of blocks accessed. Executing the 
/library/*  query on the first step we get two schema nodes (element book  and 
element paper ), but only the one (element book ) has descendant element with the 
name publisher . In that way not reading any data block we already can exclude 
one list of blocks from the answer, because there is no any node descriptor in that list 
which has the element publisher  as a descendant. 

And at last, the query Q6 demonstrates the importance of the numbering scheme for 
evaluating a subset of XPath queries. We propose the following strategy for evalua-
tion of this query. Firstly, we evaluate /library/book/[author=”Date”]  and 



/library/book/issue[year=2004]  queries as was shown above for the 
query Q4. On the second step we filter the obtained elements issue  by determining 
ancestor-descendant relationship between them and the selected book  elements. We 
use the numbering scheme for this purpose as was shown in Sect. 2.2.2. The operation 
which determines ancestor-descendant relationship is similar to merge operation and 
has the same computational complexity. 

Note that for the last three queries we have shown some interesting and not obvious 
strategies for query evaluation, which are allowed by our data structures. But we do 
not declare that they are best in all cases. We just reveal them, but the query optimizer 
should make the final decision which strategy is the best one. It is one of the directions 
of our future work. 

4   Performance Study 

Presented in this section are the results of Sedna performance measurement. For data 
generation we used the XMark benchmark [22]. It allows generating arbitrary amounts 
of XML data which satisfy the fixed schema (they use DTD auctions). Thus, this 
benchmark is good for testing scalability of our data structures. 

Q1 Q2

Q3 Q4

Q1: document("auctions")/site/people/person/emailaddres s

Q2: document("auctions")/site/categories/category/descr iption//listitem/text

Q3: document("auctions")/site/people/person[profile/@i ncome > 100000]

Q4: document("auctions")/site/*/*/seller[@person="pers on1111"]/..
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Fig. 4. Sample queries and performance results 

The XMark benchmark has a set of predefined queries, but these queries are formu-
lated in XQuery and cover not only path expressions, but other XQuery operations as 



well. So, we have developed our own set of queries. The four typical queries of this 
set are shown in Fig. 4. 

The environment for performance measurements was the following. The Sedna 
DBMS was running on the computer with Pentium-IV 1500Mhz and 512Mb RAM. 
The platform was Windows 2000 Server. Every query was executed from the cold 
start of the system (buffers were empty). The size of XML file (document auction.xml 
produced by the generator delivered with XMark) was 1,1Mb, 11,3Mb, 56,2Mb and 
113,1Mb. The results of performance measurements are shown in Fig. 4. The size of 
the produced results is shown in the Table 1. 

Table 1. Size of the results for sample queries 

Results size (Mb) Query 
For 1,1Mb 

data 
For 11,3Mb 

data 
For 56,2Mb 

data 
For 113,1Mb 

data 
Q1 0,017 0,2 0,8 1,6 
Q2 0,009 0,1 0,4 1,4 
Q3 0,004 0,02 0,1 0,2 
Q4 0,003 0,005 0,04 0,2 

 
Note that for all queries the time of query evaluation growths a bit slowly than the 

size of the data. That means that our data structures can be used for dealing with large 
volumes of data. 

Note that we achieved good performance results without using value indexes. For 
the last two queries we used sequential scanning. So, introducing value indexes to our 
system we can significantly improve performance results in the future. 

5   Conclusion and Future Work 

In the paper we have presented an idea of how XML storage can be organized taking 
into account a descriptive schema of a document. We also discussed the core tech-
niques of our native XML DBMS Sedna which strongly correlate with this idea. Data 
structures presented in the paper have a general-purpose nature and can be extended in 
the future. We are planning to add value-indexes and develop fine grain locking 
mechanism (we suppose that descriptive schema will be used thoroughly). And the last 
but not the least, descriptive schema and our data organization plus statistics give 
ground for query optimization. 

And to sum up, we would like to mention that understanding all drawbacks of 
methods presented in this paper we believe that our way of dealing with XML data is a 
good alternative for existing ones. 
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