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1. INTRODUCTION

The issues of hardware verification stay quite topical
for many years. There are several techniques to con�
duct it, but no unified solution has been created yet.
Hardware designs are developed with the help of hard�
ware description languages (HDLs), such as, for exam�
ple, Verilog [1]. Even relatively simple modules (i.e.,
parts of complex designs or very simple designs) hardly
can be checked by means of manual code inspection,
to say nothing of more complicated designs. There�
fore, automated verification, i.e., checking the mutual
conformance of designs’ behavior and their specifica�
tion is of importance and requires much attention.
The existing estimates say that about 70% of total
amount of development efforts are spent on the verifi�
cation [2]. Practice shows that at least half of total
design development time is spent on this. A code writ�
ten in an HDL is called an HDL model; it can be trans�
lated into a net�list, and, then, on its base, a real device
is created. If the net�list is not modified manually, the
functionality of the produced device will be the same
as that of the HDL�model. Even if some corrections
took place, the equivalence can be checked by means
of special tools, e.g., [3]. Therefore, functional errors
can be revealed and corrected even at the stage of the
HDL model development. It should be noted that the
correction of functional errors on later stages and, in
particular, after chip manufacturing requires more
efforts and time because of necessity to pass all stages
of manufacturing again.

Complicated designs are usually developed by
means of abstraction and decomposition techniques.
The common approach is to develop the whole system
abstractly and then to create its subparts (modules)
more carefully. Usually, test is created for the whole
system (we will call it design under verification, DUV,

or implementation), but they are rather abstract. As
some parts of the system can be critical for the total
system behavior, the module�oriented test systems are
developed. If these “small” test systems could help to
improve the common test system for the whole DUV,
it would be very convenient. It would result in the
increasing of the code reuse level and the debugging
abilities of the common test system.

This paper is organized as follows. First, a survey of
works related to verification of hardware designs is
given. In Section 3, architecture of the test systems
formerly proposed in [4] is described. Section 4 intro�
duces architecture of multi�module test systems. Sec�
tion 5 includes case studies. Section 6 concludes the
paper.

2. SURVEY OF RELATED WORKS

There are two basic ways of hardware verification.
First, formal methods can be used, e.g., to prove satis�
fiability of logical constructs in a formal model con�
structed on the basis of the hardware design in model
checking [5]. All the analyses in this case are con�
ducted over static hardware designs. These methods
work well in the case of module�level verification, but
their scalability is insufficient in the case of really
complex DUVs [6]. To improve scalability, hardware
designs can be checked dynamically in the course of a
simulation process with the use of an HDL simulator.
Simulation�based verification allows checking DUVs
under conditions close to their real operation. Usually,
simulation�based approaches possess high level of
scalability, and thoroughness of verification varies
depending on available resources and time. Below,
speaking of verification, we mean only simulation�
based verification.
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Typical components of test systems are test
sequence generator (stimuli generator), reaction checker
(or test oracle), and test completeness estimator. The test
sequence generator can be made manually based on
explicit description of test cases. Other stimuli gener�
ators produce test actions semi�automatically requir�
ing manual description of set of variables in each stim�
ulus with restrictions on their values. To generate stim�
uli in this case, a special mechanism selects a subset of
available stimuli, solves constraints imposed on values
of their variables, and starts stimuli. This approach is
called constraint�driven verification (CDV) [7].
Another well�known way of stimuli generation is FSM
traversing [8], where states of the FSM are states of the
system under test and transitions between them are
operations applied. The reaction checker should
always know correct behavior of DUV, using, for
example, a reference model. The test completeness
estimator usually works based on source code coverage
or functional model code.

The main subject of the paper is the possibility for
developing test systems allowing reuse in the multi�
module complex design case. In order to avoid extra
problems, we suggest using a uniform architecture for
all test systems. When merging test systems, there
arises a question of merging their components. Such a

possibility should be provided by relatively simple
means initially built in the architecture.

Among the most widespread approaches to verifi�
cation, we selected Open Verification Methodology
(OVM) [9], which seems to be most suitable for merg�
ing test systems. According to OVM, test systems are
developed in accordance with the given architecture
and subdivision of test system’s components into sev�
eral layers [10]. The test system for each single module
is a separate block called Open Verification Component
(OVC) (see Fig. 1). Each OVC contains basic means
for creating a CDV stimuli flow and delivering the flow
to the DUV. The stimuli are created by means of a
transaction sequence generator, where a transaction is
an abstract message containing information about a
test situation. The delivery problem is solved by the so�
called transactors, i.e., components that implement
direct and reverse transformation of data between
transactions and DUV’s wire signals. OVCs can be
connected to each other under control of the united
test controller, or, in other words, virtual generator [7].
In this case, all the OVCs will generate stimuli flows,
and the developer of the test system may switch off
redundant generators connected to unavailable
DUV’s wires. The OVCs with turned off generators
check their target modules correctness according to
the indirect stimuli flow from the other DUV’s parts.

OVC

Master Slave

Transaction 

Driver Monitor

Coverage

DUT

Bus

sequence generator
Transaction 

sequence generator

Driver Monitor

collector

Fig. 1. Open verification component.
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Summarizing the above�said, we may state that test
systems made according to OVM satisfy many tasks,
especially those arising in verification of connection of
several test systems. It should be noted that the OVM
methodology is oriented to programming in System�
Verilog, so that connection with other languages is
possible but is associated with development of inter�
mediate components.

We developed a new approach and presented some
its aspects in [4]. That paper touched upon only prob�
lems of oracles’ development for single test systems.
We will briefly review this approach here and discuss it
in detail in the next section. Our method utilizes sim�
ulation�based verification and implies subdivision of
test system into two components: stimuli generator and
oracle (or reaction checker). The generator should cre�
ate a flow of stimuli and pass it to the oracle, which is
usually based on a reference model developed on the
selected level of abstraction. The test is completed
when the generator indicates this in accordance with
the generation strategy.

One of the distinctive features of our approach
compared to OVM is that reference models used in
reaction checkers can be originally written at a high
level of abstraction and, then, can be refined in the
course of the DUV development. This is achieved with
the help of special techniques, such as model reactions’
arbitration mechanism, DUV reactions’ detection mech�
anism, etc. After all, in the course of the DUV devel�
opment, the verification engineers usually develop a
software simulator for the entire DUV. As they usually
do this in C++, it makes sense to use this language in
creation of reference models for test systems by reus�
ing parts of simulators. As the approach described in
[4] uses C++, it has a certain advantage over OVM in
solving the task of system simulator reuse.

3. ARCHITECTURE
OF SINGLE TEST SYSTEM

The architecture described in [4] was based on
UniTESK technology [11] developed at the Institute
for System Programming of RAS. The architecture
includes stimuli generators (including FSM�based
ones, in which irredundant traversal algorithms are
implemented [12]), oracle (reaction checker), as well
as coverage tracker and verification report generator
(Fig. 2). The stimuli generator produces a sequence of
messages and sends them as a parameter when calling
interface operations of the reference model. These
calls are called sending model stimuli:

dut.start(&DUT::pop_stimulus, dut.iface1, msg);
The reaction checker processes messages and cre�

ates model reactions. Then, it sends stimuli (which are
now called design stimuli) to the target design and
receives its design reactions. Next, reaction checker
checks correspondence between model and design
reactions and returns a verdict about correctness of the
DUV in the current cycle. The coverage tracker dumps
the information about update of functional coverage in
each cycle. The report generator processes test traces
and shows important information about the verifica�
tion, such as operations called, the functional cover�
age reached, and the verification result.

The most complex component requiring and
allowing reuse is the reaction checker (Fig. 3). The
reaction checker supplies its reference model with all
necessary functions, which allow the stimuli generator
(or other reaction checker) to use the reference model
and the model adapter.

Messages sent to the checker are called model stim�
uli (MSs). The generator (or other reaction checker)
directs the MS flow to one of the input interface models.

Having received the MS, the precondition check�
ers check if the MS can be started. If the staring
requirements are not satisfied at the current state of
the functional model, the MS is rejected. Otherwise,
the stimulus is supplied to the DUV via input interface
adapters (on this step, the processed MSs are called
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Fig. 2. Architecture of a single test system.
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design stimuli, DS) and to the functional model via
input interface models selected by the generator.

The functional model produces model reactions
(MRs) and places them into one of the output interface
models according to rules included into the functional
model.

The output interface models contain reaction
queues keeping MRs and primary arbiters, which select
an MR subset at the current simulation cycle. The
arbiters work according to a strategy selected by the
test developer. The MR subset is sent to the reaction
detectors to help to recognize DUV’s reactions (DRs).

The reaction matchers fetch the MR subset from
the output interface models and, then, start to wait for
the corresponding reactions from the DUV. Addi�
tional restrictions can be imposed on this subset by the
secondary arbiters and customized by the test devel�
oper. There are certain time restrictions on the wait�
ing. If they are violated, the test system shows the tim�
eout error and stops working.

When the DRs are found, they are put into one of
the output interface adapters (the corresponding MR, if
found, helps to select the particular adapter). If some
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DRs do not have the corresponding MRs, the test sys�
tem shows unexpected reaction error and stops working.

The output interface adapters send checked reac�
tions (CRs) to the reaction matcher to find the corre�
sponding MR that satisfies the restrictions imposed by
the secondary arbiters. After all, the postcondition
checkers check equivalence between the correspond�
ing MR and CR. If the MR and CR are identical, the
test process goes on. If an error is detected, the test sys�
tem displays it and stops working.

The test successfully finishes when the stimuli gen�
erator have made everything it had been asked to do by
the test developer (like visiting all reachable states of
the FSM, etc.).

4. ARCHITECTURE
OF MERGED TEST SYSTEM

The proposed TLM�based approach to the devel�
opment of single test systems can be used when a test
system for the entire DUV is created on the basis of
test systems for its separate components. Test systems
for components can conveniently be reused when
parts of the test systems can be connected to each
other through the interfaces they already have. There�
fore, the selected TLM�based way of the interface
development has certain advantages: TLM is designed
just for solving the task of reusing components of the
test system as they are, without taking only parts from
the components or using a copy�paste method.
The development of complex test systems proceeds as
follows.

When several test systems are connect to one
another, some of them miss their connection with the
DUV. We propose to create a common test system that

includes all small reaction checkers from the earlier
developed test systems to be connected (see Fig. 4).
Therefore, input and output interface adapters and
reaction detectors should be modified to create con�
nection with other reaction checkers. Fortunately,
their separation from the reference model allows us to
do this without huge reference model modifications.

When merging the reaction checkers, we create a
common test system and place built�in reaction
checkers into it. The common test system possesses its
own stimuli generator, reaction checker, and coverage
tracker. In the development of all these parts, the reuse
of some parts of the earlier developed test systems is a
good result by itself.

The stimuli generator can inherit scenario func�
tions from the sub generators only if the parts of the
model stimuli preparation and the calling of original
reaction checkers are separated from each other and
located in different functions. In this case, the reaction
checkers used can easily be replaced with new ones by
means of overload of the corresponding functions

The coverage tracker is a common component for
all test systems. To use it, the coverage structure should
be described and registered in the tracker. The regis�
tration is identical in the cases of single and multi�
module test systems. To refresh the coverage informa�
tion, some functions from the functional models are
usually used. Since the old models have been inserted
into the common test system, the reuse of the coverage
costs nothing. The common test system just calls the
required functions at every cycle to collect informa�
tion about the coverage. It should be noted that cover�
age structures from single test systems sometimes do
not provide important information for the case of
combined DUVs; in this case, it is required either to
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track intersection of the earlier coverage or to create
new coverage structures for the whole DUV.

The combined reaction checkers is one of the most
difficult parts of combined test systems. The common
reaction checker looks like a single reaction checker,
but it should use functionality of all included reaction
checkers. Only the common reaction checker may
change values of DUV’s wires, while the sub reaction
checkers’ input and output interfaces adapters are
switched off. The switching them off is possible by
means of overloading of methods that send model
messages to other reaction checkers rather than to the
absent DUV (see Fig. 5).

To facilitate the connection between the reaction
checkers, we propose to use channels. The channel is a
way to connect an output interface model and an input
interface model together. To do this, the message from
the sender should be translated into a form applicable
to the receiver and placed into the latter. This activity
can be done by the channels. The channels can also
broadcast messages to several receivers. The usage of
channels is shown in Fig. 6.

The overloaded input interface models usually
contain precondition checkers; therefore, they can
check communication protocols between the sub
modules. This may help to reveal problems that cannot
be detected if the reference model takes input stimuli
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only from the stimuli generator due to a wide range of
input variables values. In the case of interconnection,
the values assigned are much closer to those in real
work situation for the DUV’s parts and, at the same
time, can be checked.

The approach is supported by the C++�based
library and can use some parts of system simulators,
which are usually written in C++. Moreover, owing to
the accepted architecture, the reference models can be
reused in the development of Verilog models as stubs.
In this case, input and output interface adapters work
in unusual way: input interface adapters take messages
from the DUV, send them to the functional model and
to the DUV by means of messages via output interface
adapters (see Fig. 7).

The common test system controls the reaction
checkers built in the DUV. The checkers help the Verilog
model developer to speed up development of the hard�
ware model, since the code with the same functionality
is usually written quicker in C++ than in Verilog.

Summing up, the approach allows one to develop
test systems that can be reused as parts of a common
test system. These test systems check not only the out�
put data of DUV but also their input data by means of

precondition checkers. When the test systems are con�
nected to each other rather than to the DUV, they can
check behavior of their neighbors and, thus, the inter�
connection protocol of DUV’s components. Each test
system supports special means that allow it to create
interconnections, such as interfaces and channels.
After all, to reduce time spent on the development of
the first version of DUV for system�level verification,
the test systems can be inserted into the Verilog code of
the DUV when the latter is still under developing.
The approach is supported by a C++�based library, so
that the test systems developed according to the
approach should also be based on C++. This makes it
possible to use many C++ means facilitating the test
systems development. It should be noted that C++ is
usually used in system�level simulators for DUVs, so
that parts of the simulators can easily be reused as ref�
erence models in the test systems, and vice versa.
Finally, the library is compatible with UniTESK
approach. This means that it is possible to develop
high�quality tests based on FSM traversing even for
the system�level case and to distribute tests among
clusters of computers [13].

Reference 
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Fig. 6. Usage of channels.

Applications of the suggested approach

Design under verification Depth of verification Source code, KLOC Labor costs, man�months

Translation lookaside buffer (TLB) Up to cycle�accurate 2.5 2.5

Non�blocking L2 cache Up to detailed�timed 3 6

Northbridge data switch Up to cycle�accurate 3 3

Memory access unit (MAU) Up to cycle�accurate 1 1
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5. CASE STUDY

The approach to the single test system development
has shown its effectiveness in several projects [4]. The
most interesting cases are presented in the table.

The labor costs in the table include verification
plan writing, test system development, as well as veri�
fication process and debugging of the developed test
system. In the case of the non�blocking L2 cache, the
costs also include test system maintaining due to per�
manent modifications in the DUV. The table shows
that time spent to the verification can be roughly esti�
mated to be one man�month per one KLOC. The L2
cache case is an exception from this rule, since it
required additional accounting of the permanent
changes.

A comparison between our results and the second
approach (OVM) could be interesting. We could not
do this because of insufficient number of available
results of the OVM application. We believe that time
required for the development of test systems is about
the same in both cases. This assumption is based on
the fact that the OVM also utilizes an object�oriented
language and the set of test system components looks
similar to ours. Nevertheless, our approach provides at
the same time additional means of the FSM�based

stimuli flow generation. True, we have not analyzed
this issue in detail. This is the subject of future studies.

The proposed way of merging is a new revealed
ability of the basic approach. By now, only some
experiments were conducted to estimate the possibil�
ity of merging. First, the test system for a simple FIFO
module was developed. This took about two man�days,
including efforts spent for documenting the project.
Then, three such modules were connected to each
other. Two of them were input buffers, and the third
module became an output buffer. We placed an arbiter
between them to select the input buffer for sending
data to the output one. The arbiter always selected the
first FIFO if it contained any data. To test this cell, we
combined three test systems for the original FIFO
modules and added functionality of the arbiter in a
very simple way: the functional model of the arbiter
always read data from the first FIFO if it contained any
data and from the second FIFO otherwise. The stimuli
generator used original scenario functions like “pop”
and “push” with small modification, since, now, two
FIFO could only receive data and the third FIFO
could only output data. The interface adapters of the
sub test systems were overloaded to provide an oppor�
tunity of sending messages via input interfaces of the
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output FIFO. Initially, the registration of adapters of
interfaces looked as follows:

CPPTESK_SET_OUTPUT_ADAPTER(iface3,
FIFOMediator::deserialize_iface3);

where deserializer is a function translating DUV’s
wires signals into the design messages. Since the out�
put interface iface3 had lost its output status, we over�
loaded its adapter:

CPPTESK_SET_INNER_IFACE_ADAPTER(F
IFOMediator,
fifo0, fifo0.iface3, MM::deserialize_inner_iface0);

The new deserializer calls the output FIFO fifo2:
CPPTESK_DEFINE_PROCESS(

 MM::deserialize_inner_iface0)
{
…
if(!fifo2.is_full()) {

…
fifo2.start(&FIFO::push_msg,

fifo2.iface1, data);
}

}
The output interface model of the output FIFO just

sends messages to the common reaction checker’s
output interface model. The creation of the common
test system took us about half a day, including time
spent on studying merging possibilities. The time
requirement for the development of a common test
system from scratch is estimated to be about two days,
but it is not of big importance. The time to connect sub
test systems slightly correlates with complexity of
DUV’s sub parts. Mostly, it depends on the number of
input and output interfaces and efforts required to
connect them together. Our estimate is that connec�
tion of one input interface to one output interface
takes about one hour. This time is spent on the devel�
opment of a channel between the interfaces to trans�
late their messages. An average DUV’s module, by our
estimates, consists of about ten input interfaces and
ten output interfaces; hence, connection of two aver�
age DUV’s modules will take one or two man�days,
depending on the productivity of the verification engi�
neer.

6. CONCLUSIONS

The proposed approach provides the researcher
with a convenient way of development of test systems
for separate parts of DUVs and merging test systems
with high level of reuse. The main advantages of the
approach are verification of the DUV’s parts intercon�
nections without need in writing an additional code
and special means of facilitating the reuse. The
approach is supported by a library in C++, which
allows one to take advantage of rich set of tools avail�
able in the language in the course of developing test

systems. The fact that system�level simulators are usu�
ally based on C++ points to the possibility of reuse of
parts of these simulators as reference models of the test
systems being developed, and vice versa. The approach
has two bonuses. First, the test systems can be parts of
components under test and, thus, control communi�
cations between functional models inside the DUV.
This is especially important when the DUV is under
development, since it helps to speed up the onset of its
verification. The second bonus is that the library sup�
porting the approach has been developed in accor�
dance with the UniTESK technology, which makes it
possible to create high�quality tests based on the
FSM�traversing and distribute tests among clusters of
computers.
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