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support in Cover Model

V.P. Ivannikov, K.V. Dyshlevoi, V.E. Kamensky, A.V. Klimov,
S.G. Manzheley, V.A. Omelchenko, L.B. Solovskaya, A.A. Vinokurov

1. Introduction

Conceptually we consider the set of all objects of the distributed global space
as covered by subsets of a special kind - covers. Each cover contains a
community of objects coupled together semantically. Any cover is a special
object itself. Covers can be nested and can be unified into federations.

An interaction between two remote objects is supported transparently by
covers containing these objects. The transparency means that objects do not
see covers containing them. An object invokes methods on another object
independently of:

• object locations (local or remote);

• features of interacting covers (object model supported by concrete cover;
implementation of multiaccess to cover’s objects; methods used for
security support, etc.);

• communication ways between covers (IIOP CORBA 2.0 [CORBA95] or
another specific protocol).

Without the loss of generality, we suggest the implementation language to be
strictly typed and object-oriented. Therefore we ought to distinguish two
stages of object life: design stage and run-time stage (object method
invocations). Covers support both stages and manage the process of mutual
conformation of objects on both stages. In other words, covers form both a
framework for object design and an environment for run time object
invocations.

Now that covers are responsible for transparent coherent object interactions,
they need some discipline of conformation themselves. In principle, we could
represent a homogeneous world of covers, according to some unique standard,
for example, CORBA [CORBA95] (CORBA-covers). However we would like
to suggest richer world of cover models, possessing not only various features,
but also features for description of these features (metafeatures). Since we deal
with typed languages, we need to distinguish between conformation at design
stage (static cover conformation) and conformation at run time (adaptive
dynamic cover conformation).
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For flexible cover conformation it is natural to use the technique of metaobject
control [KRB91]. However, usually, metaobject control is used either at design
stage or at run-time stage.

In the first case [Chi96] we get high-performance code, but a monolithic one,
i.e. we have not opportunity to change metacontrol at run time in a systematic
way. But often distributed applications require some changes in conformation
schemes during run time, for example, because of object migration (object is
moved to another cover with other features) or because of changes of the
cover’s features (e.g. changes of security requirement). In the second case, the
pay-off for the exceptional flexibility of unrestricted dynamic transformations
of object method invocation is a substantial slow-down (at least for one
decimal order of magnitude) because of interpretation [ZC95, ZC96].

Our approach to metaobject control [IZKN96, IDZ97] is a compromise
between these alternatives. The main idea is the following. At the design stage
we prepare different variants of possible metacontrol for object interaction (the
absence of metacontrol is also possible). And thus we get several variants of
high-performance code. At run time stage one or another variant is used.
Moreover, the current variant can be replaced at run time by another one,
which is particularly useful if dynamic conformation of covers is required.

Let us consider the internal structure of cover. As it was already said, it
contains some community of application objects, coupled together
semantically. Also, in a cover, there is a metacontext, containing metaobjects.
Metaobject can control behavior of application objects extending them with
additional functionality. For example, metaobject can support multiaccess to
application objects, or provide their persistency. According to the reflection
principle, metaobject can be controlled by other metaobjects in turn.

Metaobjects, as well as application objects, follow the common rules of
visibility within nested covers and covers federations (see section 6).

We suppose the metacontext to be orthogonally decomposed, that is divided
into functionally independent (orthogonal) collections of metaobjects, called
metaservices. Each of these metaservices provides one or another kind of
functionality, e.g. multiaccess, persistency, statistics, debugging etc.

The assumption of orthogonality is extremely important. It provides the
following capabilities:

• to bind application objects to various functional elements of metacontext
in a transparent way;

• to develop different functionalities (metaservices) independently;

• to add new metaservices without any changes of existing metaservices
(metaupgrade).
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It is important to note, that the complete orthogonalization is generally
impossible. For example, there are some algorithms, in which multiaccess and
persistency support are tightly integrated. In such cases we will act in a
pragmatic way, introducing new combined metaservice - multiaccess-
persistency.

To bind application object to metaobjects, we shall use a special kind of
metaobject called interface object (IO). In terms of the client-server model, a
client object may invoke a method on a server object either directly (without
binding to metacontext), or via an appropriate IO, which acts as a mediator.
Methods of remote object are always invoked via IO. On the one hand, IO
inherits interface of target (server) object, that is IO provides all signatures of
target object methods, and on the other hand, IO as metaobject has additional
methods for making control over invocation execution. IO can be considered
as a communication object, which performs invocations on metaobjects
methods as pre- and post-functionality within each target object method
invocation. To organize such pre- and post-functionality the orthogonality of
metacontext components is used extensively.

It is important to note, that to maintain the transparency of using IO, some
mechanisms of late binding must be used. That is, there is no static binding of
objects, which were worked out at the design stage and could not be changed
at run time. Rather, application objects communicate with each other by means
of some system environment, which is not part of the application. It is this
system environment that allows application objects to communicate
transparently via IO if it is needed.

Using IOs can provide different kinds of relationship between objects: “one-
to-one” (client and server object have one IO for their exclusive use), “many-
to-one” (all client objects invoke methods on one server via one IO), “one-to
many” (client object invokes methods on different server objects via one IO),
“many-to-many” (several client objects interact with several server objects via
one IO in multicasting mode).

Remind that binding to metacontext is transparent for both client and server
objects. Metacontrol organization does not concern implementation of
application (neither client nor server). In the sense, application objects can be
considered as “black boxes”. This scheme is convenient for many kinds of
metaobject control (e.g. synchronization, statistics).

However some kinds of metacontrol may require more close access to
properties of target object. Often, some public methods of application object
are sufficient for this purpose. However, when application object does not
support the required methods, a metaservice (e.g. persistency) might need a
direct access to the application object’s encapsulated state. This access can be
implemented in different ways for different programming languages. For
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example, in C++ language, in order to have access to object state, metaobjects
can be implemented as “friends” of target object [Str94].

It should be noted, that IO can be split into two objects: IO on the client side
and IO on the server side (as stub and skeleton in CORBA model). IO of client
and that of server can be independent of each other to some degree.
Conformation of these IOs is supported by appropriate covers. As an example
of such IO conformation one can take a transparent compression-
decompression of data transmitted between interacting objects. At run time by
means of both covers, one can make simultaneously some coherent changes in
client and server IO bindings with metaobjects performing the required
transformations. This additional data transformation may be switched on or off
by the covers by means of binding/unbinding IOs to/from metaobjects.

Here the orthogonalization also simplifies the problem of division of
dependent and independent components of metaobject control, as well as their
changes at run time.

Let us consider briefly some aspects of cover model implementation and
specific cover features at design stage. For design purposes three languages are
used: implementation language, interface specification language and language
for description of metaobject bindings. Since we would like to have reliable,
high-performance code, the implementation language must be strictly typed
object-oriented language, e.g. C++. CORBA Interface Definition Language
(IDL) is a good candidate for specification language as it guarantees the
fulfillment of the requirement of compatibility with CORBA. We do not
consider in this document how we could obtain IDL specifications of target
objects. They can be either written by hand or obtained by a compiler from the
implementation language to IDL.

Also we need a language in which to describe various kinds of bindings of
target objects to metacontext (that is the contents of IO). This language must
meet the following requirements:

1. Strict typing. It must be a strictly typed language.

2. Generic types. It should allow for parametric description (using generic
forms) and a stepwise refinement of binding schemes until the type of the
IO is completely defined.

3. Orthogonality. It provides opportunity for independent description of bind-
ing with orthogonal (independent) metaservices in the process of refine-
ment.

4. Clustering. It serves to describe variants of bindings.

Current name of the language is TL (Template Language). Compiler of IO is
fed with both TL and IDL texts as input, and produces text of IO in
implementation language as output. To support the design stage of the cover
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we need descriptions of own local objects in all three languages, and
descriptions of external covers and of objects contained in them in the TL and
IDL languages. The process of conformation of a cover A with some external
cover B is performed by means of concretization of TL declarations of this
external cover B. Specifically, the generic templates describing the cover B are
instantiated into definitions of IO of cover A, by means of substitution as
actual parameters of various elements of cover A (metaobjects, metaobject
method calls, IO state elements, etc.). Thus, we make metacontext of cover A
coherent with that of cover B.

So, the cover approach described above is based on some basic ideas:
orthogonal decomposition of system, metaobject control performed by means
of well-developed technique of mediator objects, conformation of distributed
system’s components - covers.

Orthogonal decomposition of system is described in the context of project of
aspect-oriented programming [KASP]. Traditional approach of module
decomposition is criticized in the sense that it does not reflect difference
between system element’s features (aspects) such as multi-access,
communication, debugging, etc. Authors of the project suppose that it is
tangling-of-aspects, that is the basic reason of complexity of existing
programming systems. Aspect-oriented programming allows programmer to
describe different aspects of system in different ways (e.g. in different
programming languages) and point out relations between these aspects. Then
a special tool Aspect Weaver helps to generate final execution form in some
programming language according to these descriptions.

In operating system Tigger [ZC96] orthogonal decomposition is also
performed. Any object method call can be intercepted before or/and after
method execution. Special system component (Piglet Core) refers such
interceptions to some metaobjects which are grouped according to orthogonal
functionality (metaregions).

Metaobject control and reflection are well-known technique used to design
flexible dynamic adaptive programming system in object-oriented
programming ([KRB91], [MJD96]). Some popular programming system are
based on this technique ([FDM94], [DF94], [NH96]). Sometimes metaobjects
play the role of mediators between communicating objects [GC96]. This
project assumes metaobjects to be specialized according to reification kinds:
object methods invocation, access to object state, access to program code at
run time, etc.

Transformation of object method invocation at run time needs the usage of
some mediators between objects. Sometimes, such mediators are implemented
as objects themselves according to object-oriented technique. ORBIX
[IONA96] provides objects mediators of several kinds. First of all, we can
name filters. Filters allow to add some before- and after-functionality to
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particular object, as well as to all objects working via broker (ORB). In fact,
filters perform method invocations trapping, giving possibility to add
additional parameters to method call on the client side and work on these
parameters on the server side. But conformation between client and server is
not supported and must be provided by application itself. Another mediator is
smart proxy. This object is implemented in some programming language and
replaces the target object. In principle, smart proxy can invoke methods on
other objects as well as on the target object. CORBA Security Service
[COSS96] introduces technique of intercepter similar to filter mechanism.
Such filters can add some client information to the request passed by broker
and then check it on the server side.

OMG project on multiple interfacing introduces another kind of object
mediator, an interface [MI97]. It basically serves to provide several coherent
interfaces to an object and allow client to access these interfaces. Interface
transforms nothing and performs parameter passing only. That is, interface
generalizes the notion of object reference.

Cover approach is an attempt to compile advantages of these techniques. It is
described in detail in the following sections.

2. Notion of cover

To construct and manage logically coherent objects in the distributed global
space the notion of Cover is introduced. The cover is a separate object itself.
The cover serves to arrange objects at both the design stage and the run-time
stage.

The main idea of the approach is that the cover model allows for the extension
of application semantics with additional semantics without changing the
application. In other words, application objects can be included in cover
contexts in the transparent manner. So, the cover can manage objects that were
designed knowing nothing about this model.

At the design stage, the cover is used to group objects of different types related
to specific tasks. It can be understood as a repository, which contains
information needed to specify included objects, i. e. meta-information. For
example, the cover provides information about object interfaces and parameter
types of their methods. It is important to notice, we assume this information to
be strictly typed. That is, this information should be enough to organize
invocations on the cover and its elements by means of any strictly typed
programming language (C, C++, Pascal, etc.).

Also, at the design stage the cover allows to specify typical schemes of
interaction with the cover elements. These schemes reflect the semantics of
cover contents. They are specified by means of generic templates, which fix,
according to the standard rules, the mechanisms for working with cover
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elements. The design of interaction between objects from different covers is
typically performed by substitutions of client environment parameters into
templates supplied by the server cover (so called, statically coherent covers).

Besides, the cover contains information needed for dynamical conformation of
the covers at run time.

All information provided by the cover at the design stage is used for design of
a coherent object space inside the cover, as well as design of other covers,
whose objects could interact with this cover and its elements.

At run time the covers represent an “environments”, in which objects exist and
communicate with each other. The cover controls the life cycle of objects, that
is creation and deletion of objects, which are the features of “object factory”.
Also, it organizes the communication with the environment; i.e. objects from
this cover as well as elements of other covers. The cover controls all aspects
of all objects contained in. For example, it provides the discipline of access to
the objects. To get an access to the cover’s context one needs to make a
respective request to the cover. It is important to notice, that covers act
transparently for client object, as well as for server one. So, both client and
server objects should be placed in some covers. All object communication
problems are solved by means of conformation of appropriate covers.

Each cover contains so called communication kernel. It serves to support
objects communication inside the cover and with the objects from other
covers. Communication kernel is a part of cover, but it is not necessary for the
kernel to be an object itself. The kernel provides a basic mechanism of object
interaction. It determines mutual location of objects, which take part in the
interaction (local or remote). And according to the objects location one or
another communication scheme is used. This technique allows object
communication to be more efficient in the case both client and server objects
are located in one and the same address space. In this way, the cover kernel
provides location transparency of the objects. Objects communicate with the
kernel by means of a special mediator, called Interface Object (IO). Due to the
mechanism of late binding, IO can be used in the transparent manner.

To support conformation between objects and external environment at run
time, each cover provides all needed information about included objects and
some mechanism of searching objects by name. That is, the cover performs the
functions of Naming Service. Name resolution is realized not only in the scope
of current cover. The covers can be joined in a federation in order to provide
common name space for search [ANSA93].

The cover contains some service objects, which support application objects
functionality. It is important to note, that applications do not call these objects
explicitly. Such additional cover’s objects form the set of services (e.g.
concurrency service, statistic service, persistency service, etc.). In this way,
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any object supported by the cover turns out to be included in some context. The
context consists of different services. The content of the context, as well as the
relations between application objects and context elements can be changed by
the cover at run time.

It is obvious, that the assumption of orthogonality of services helps to simplify
both the development of the services at the design stage and schemes of their
usage at run time. The assumption of orthogonality allows to work with a
service or with a subset of services separately from the others at both stages.
Also, the inclusion of new services into the cover (upgrading) at the design
stage can be performed smoothly.

The following example demonstrates some simple covers and their usage. In
the context of the cover approach, we assume that technique of late binding is
used. It can be performed by means the following operations (for notation we
use CORBA IDL language):

A get_objectA_ptr (in string object_name);
void release_objectA_ptr (in A obj);

Execution of these operations is controlled by the cover, in which the client is
located. Operationget_objectA_ptr  returns the pointer to the server object of
type A, identified by the string parameter object_name within the cover
A_cover. This is the only way the client can get reference to a server object (of
type A). Besides, the client will have to release this reference after the use by
means ofrelease_objectA_ptr operation.

Such technique gives the cover the opportunity to substitute object reference.
So, the operationget_objectA_ptr return reference to a mediator (IO), rather
than reference to the server object itself.

The simplest example of A_cover is an object whose methods implement basic
functions of Naming Service. Also, it provides the following two methods (we
assume that the cover works with the objects of type A only):

status get_object (in string name, out A result);
status delete_object (in A arg);

To arrange objects of type A the cover can use an array M of pairs “object
name - object reference”. The methodget_object  returns the object reference,
which is found by name in the array M. If the name is not found, new target
object is created by the cover and reference to it is returned. In the last case, a
new record corresponding to the new object is added to array M. The method
delete_object deletes object, pointed out as a parameter, as well as appropriate
array element.

So, at the beginning, the client cover methodget_objctA_ptr invokes the
methodget_object of the cover A_cover. Then, an IO corresponding to the
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returned object reference is created. Finally, the client gets the reference to this
IO, rather than reference to the target object of type A.

3. Cover implementation by means of Interface Object technique

The described cover model must fulfill the following requirements:

• system services of the cover must be orthogonal;

• all data, the cover and it’s elements, must be strictly typed;

• the cover mechanism must be added in the transparent way for both client
and server objects;

• the cover must provide generic templates described the work with it’s
elements;

• the cover must give opportunity to dynamically customize the schemes of
working with it’s elements.

To implement the cover model the extended metaobject control technique is
proposed to use. The metaobject control technique is based on the following
principles. The extension of application semantics with additional semantics
and the interaction of objects from different covers are performed by means of
special invocation execution, rather than due to changes in client or server
objects. Additional method calls are added to the client call of a server object
(calledtarget object) transparently for the user. Cover’s objects which
implement these additional methods are not visible for the user as well. These
objects, called metaobjects, form the metaobject context (metacontext) of the
application. Also, groups of semantically coherent metaobjects are called
metaservices (e.g. persistency, concurrency, access authorization services).

We will say that by means of metacontrol technique application object is
bound to the metaobject environment (metaenvironment) of the cover which
controls this object. Using covers to extend application semantics is called
metaextension. The process itself of the extended execution of application call
to target object will be called metaobject control (metacontrol).

The cover approach also takes into account that a program system may change
after one has started using it. The described technique supports the evolution
of the system, providing that adding new metaservices to the cover’s
metacontext (metaupgrading) was as smooth as possible. Addition of a new
orthogonal metaservice does not require to update already existing
metaservices.

Also, metacontext itself and schemes of working with it may change at run
time in both client and server covers. But these changes do not affect the
visible interface of server object.
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It is proposed to implement the metaobject control in a unique, highly
independent of the controlled applications way. At the same time, objects
forming a metacontext can be a subject of metacontrol themselves; i.e. the
system conforms to the principle of reflection. That is, the metacontext may
contain not only objects specially designed for this purpose, but also objects
designed earlier which, like application objects, know nothing about
metacontrol. The schemes of working with such metaobjects can be fixed by
means of technique of metaextension as well.

However, the inclusion of objects into the cover rises the well known problems
concerning efficiency of implementation. The point is that traditional method
of binding object to metaenvironment leads to appearance of nested layers of
interpretation, which is the main source of inefficiency in such reflective
systems [MMAY95].

In the context of the cover approach we offer the method of optimization of
reflection, based on a redesign of the mechanism of binding object to
metaenvironment of the cover. The main idea is to use a special kind of
metaobject called Interface Object (IO) as a mediator between a client and a
server objects. It is IO, who binds object to metacontext and organizes

Cover of client object

Client object

Client IO

Metaobjects

i1

Cover of server object

Server object

Server IO

Metaobjects

i2 i3

Figure 1. Metacontrol organization scheme.
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additional metaobject calls. IO can be included into either the client cover
(client IO), or server cover (server IO), or both.

Figure 1 illustrates the scheme of objects interaction by means of client and
server IO. The real interface the client uses is interface of client IO (i1). Client
IO calls methods of interface of server IO (i2). Finally, server IO actually
invokes methods of target object interface (i3). The agreement on designations
is the following. Application objects are defined by circles, IO by ellipses,
metaobject by double circles.

It is obvious, that IO interface can be different from interface of target object.
And it does not break the concept of client and server object transparent
communication. Sometimes the difference between IO and target object
interfaces can be necessary. The example is shown in the Appendix B.

In general, there are four variants of IO usage:

• client and server objects communicate without any mediators (metacontrol
is not performed);

• only client IO is used; binding to metaenvironment of client cover is done;

• only server IO is used; binding to metaenvironment of server cover is
done;

• both client and server IO are used; the metacontrol is worked out by
metaobjects of both client ans server objects.

In case of  remote invocation, since themarshalling of parameters according
to some protocol is necessary, client and server IOs organize communication
via the cover kernels. Each cover kernel performs all needed data
transformation and makes actual data transmission to another cover kernel. At
the same time, the basic mechanism of data transmission provided by the
kernel can be extended by means of IO technique and appropriate metaobjects
(for more details see section 7 and Appendix A). Since interface object and
corresponding application object are located in a single cover, the
communication between them does not require any data transformation and
does not depend on mutual location of application objects. So, we may say,
that a pair of IOs used on both ends of remote interaction provides the location
transparency of application objects. That is, client and server objects can know
nothing about where the other party is located. Appropriate IOs choose needed
mechanism of communication itself.

4. Means of specification of binding object to cover metaenvironment

Remind our agreement that interfaces of all objects (in particular, IO and
metaobjects) are described by means of CORBA IDL language. We do not
bear in mind any concrete programming language and use an IDL-like syntax
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agreements to describe metacontrol. As it was already said, we assume the
programing language to be strictly typed and, in general, object-oriented.

Another specification language, TL language, serves to describe variants of
metacontrol schemes for different client and server metaenvironment.
Metacontrol descriptions in TL do not depend on concrete application and
programming environment. For each object type (type means interface
specification in IDL) several types of client and/or server IO can be described
in TL. Each IO has some set of parameters, which can be initialized and
changed at run time. In this way, IO can be dynamically customized to some
metaenvironment. That is, by means of parameters substitution the cover can
change IO’s binding with metaobjects at run time. Also, statically defined
metacontrol schemes can be chosen dynamically. In general, metacontrol
scheme means the sequence of metaobject invocations.

So, TL language is intended to describe binding object to metaenvironment.
TL compiler has as input TL description of such binding, as well as IDL
specification of all object interfaces used. The compiler generates code in a
required target language.

To illustrate the features of TL language consider the following example.

4.1. Metacontrol specification example

Remind, that in IDL each parameter declaration must have one of the three
passing modes:

- IN - input parameter;
- OUT - output parameter;
- INOUT - in-output parameter;

Without loss of generality, all methods are considered to be procedures in this
example.

The example is as follows. Two objects O1 and O2 exchange information
represented by strings. Object O1 calls on object O2 which implements an
interface T with the method:

exchange_info (IN string arg_info, OUT string res_info);

Let us consider the situation of remote communication between objects O1
and O2. In this case, the subject of metacontrol is data compression
/decompression used to reduce the size of passed data. To organize such
metacontrol we need two IOs (client and server IO), which compress the data
before sending and decompress the data received from the net.
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There are metaobjects implementing some interface ZIP with compress and
decompress methods:

compress (IN string info, OUT string compressed_info);
decompress (IN string compressed_info, OUT string info);

Covers C1 and C2, which contain respectively the objects O1 and O2, create
each its own metaobject of type ZIP and bind it to the corresponding IO.

Metacontrol for operationexchange_info of client and server IO is described
by means of TL language as follows:

T {
// common declarations for client and server IOs
OBJECT Zip_metaobject : ZIP;

SERVER IS {
exchange_info (compressed_arg, compressed_res) USE {

variable arg_info : string;

Cover 1

Client object

Client metaobject

Cover 2

Server object

Server metaobject

Interface
of ZIP type

Server IO

Interface
of ZIP type

2. Send_info () 4. Send_info ()

1. compress ()

6. decompress ()
5. compress ()

3. decompress ()

Client IO

Figure 2. Metacontrol organization example.
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variable res_info : string;

Zip_metaobject . decompress (compressed_arg, arg_info);
// target object’s method call:
send_info (arg_info , res_info);
Zip_metaobject . compress (res_info, compressed_result);

};
// server IO’s metacontrol description for other methods
...

};

CLIENT IS {
exchange_info (arg_info, res_info) USE {

variable compressed_arg : string;
variable compressed_res : string;

Zip_metaobject . compress (arg_info , compressed_arg);
// server IO’s method call:
send_info (compressed_arg, compressed_res);
Zip_metaobject . decompress (compressed_res, res_info);

};
// client IO’s metacontrol description for other methods
...

};
};

Object reference Zip_metaobject of type ZIP is a part of state of both client and
server IO. The cover initializes it by a reference to a metaobject performing
compression/decompression. For client IO, as well as for server one,
implementation of methodexchange_infocontains two invocations on
metaobjects and an invocation on target object itself. Fig. 2 illustrates all
invocations numbered in the order of execution. Note, that for the client IO the
target object is the server IO, whereas for the server IO the target object is O2.
To manage the data transfer, some local temporary variables turned out to be
necessary; these are compressed_arg and compressed_res in the client IO and
arg_info and res_info in server IO.

4.2. IO operation execution scheme

The example described above demonstrates the usage of only one variant of
metacontrol, which performs the data compression/decompression in the
transparent manner. But execution of these additional methods implies a
consumption of computation resources. Therefore, it makes sense to provide
another variant of metacontrol, when data are transmitted without changing.
These two alternatives of metacontrol schemes allow client and server to
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consistently choose the variant of conforming metacontrol at run time. That is,
the current metacontext can be dynamically changed.

The alternative scheme of metacontrol described above consists of a single
invocation of methodsend_info. For the client IO:

{
// server IO’s method call:
send_info (compressed_arg, compressed_res);

};

and for server IO:

{
// target object’s method call:
send_info (arg_info , res_info);

};

The above metacontrol switching mechanism is implemented by means of the
cluster technique (described in detail in section 4.7). In this way, the user needs
to point out all possible variants of metacontrol which can be switched at run
time, before compilation. Each scheme of metacontrol has a block structure
with a set of local variables encapsulated in each block, the body of a block
being a sequence of calls interconnected by parameters. The cover makes
decision on the choice of needed metacontrol scheme at run time. And exactly
this scheme is executed during invocation of appropriate IO method. It is
important to note, that one of statically specified metacontrol scheme can be
replaced by another one at run time by client and server covers consistently.

4.3. Basic means for metacontrol description

The example described in section 4.1 illustrates that one needs to use
temporary variables in metacontrol specification in order to store some
temporary data between methods invocations on metaobjects. It implies the
question about scopes of such variables. Method calls using one and the same
variables are picked out in blocks that encapsulate such variables.

Thus, one should declare any metacontrol alternative ( i.e. coherent statically
defined sequence of object invocations) by means of block structures of
proposed TL language. Blocks have the following properties:

1. Blocks can be nested.

2. Block may contain local variables declaration section at the very beginning.

3. Standard scope rules are used for variables encapsulated in blocks.

4. Some blocks may have labels in order to allow transition between them.
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Block declaration looks as follows:

[Block name] {
variables declaration section;
invocations; blocks declarations;

}

where every invocation consists of reference to object to be invoked, method
name, and list of parameters used in invocation: object.method(par_1, ...,
par_n).

Object reference can be omitted in description of IO’s target object invocation
only: target_method(par_1, ..., par_n).

Invocations and nested blocks in TL can be declared in any order. Nested
blocks have the same structure as the outer ones. That is, local variables can
be declared in nested blocks, besides, variables of all outer blocks are
accessible according to standard scope rules.

4.4. Metaobject environment specification for applications

Object references contained in IO must be declared as a part of IO state. It
should be done before one use them for metaobject method calls.  In the
example described in section 4.1 the following declaration are used:

OBJECT Zip_metaobject : ZIP;

It introduces IO data member (or part of IO state) - object reference
Zip_metaobjectof ZIP type. Besides, attribute (in the sense of IDL language)
corresponded to data member appears in the IO interface declaration. The
attribute is accessible from cover and has the same name and type as data
member from above declaration. The attribute is dedicated to data member
access, however client cannot use it. This attribute is accessible only for cover
of the IO, more exactly for some cover’s metaservice which manages
conformation of IO and its metaenvironment and possibly metaenvironment of
target object. That is, IO has two different interfaces: one visible for clients and
another one that is not visible and is not accessible by clients. It is called
metainterface and is dedicated to IO state manipulation. Metainterface is
known to cover and is used for initialization during IO creation and for later
changes of IO state. Considered declarations having OBJECT keyword
together with declarations of cluster sets form IO metainterface and are
discussed later in section 4.7.

Figure 3 shows both IO interfaces. Dotted lines designate manageability (the
possibility of modification), and solid lines designate only use of element
pointed by arrow.
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At run time metacontrol is carried out by means of sequence of method
invocations on some metaobjects. Object references to metaobjects are formed
in discussed way. Cover containing IO can dynamicaly switch one metacontrol
scheme to another by changing appropriate object reference (by dynamic
altering of IO data member value).

We can say, that collection of such declarations of object references used as IO
parameters reflects some metaenvironment in which the IO could be
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Figure 3. Scheme of work with interface object.
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potentially put by cover at run time. That is all metaobject’s types that
metacontrol of IO can use must be defined in these declarations.

4.5. Templates libraries

Metacontrol programming dealing with the same types of objects often leads
to practically identical sequences of declarations. In this way, certain
sequences of method calls can be present as generic templates (patterns) and
form templates libraries for one or another type of objects (services). Libraries
may correspond to services themselves and to services in the context of a
certain type of a cover. In the last case cover refines service semantics use and
affects possible use schemes of the service. Set of libraries corresponding to
various cover services can be treated as an informational element of cover at
design stage as it was said in section 2.

Semantics of a cover’s service determines typical sequences of service method
invocations. It is a basic idea for templates library construction. For example,
access controlling service (concurrency service) having two operations (lock
that acquires object access and unlock that releases object) can be used with
the only sequence of service calls:

lock ( rw_flag ) ;
Work with managed object;
unlock ;

where rw_flag parameter sets needed lock mode - write (rw_flag = WRITE) or
read (rw_flag = READ) one. Above sequence of calls can be declared as a
template as follows:

LockPattern ( rw_flag ) < concurrency_objref > { ControlledOperations } IS {
A {

concurrency_objref . lock ( rw_flag );
DO ControlledOperations WITH EXCEPTION HANDLER B;

}
B {

concurrency_objref . unlock ;
}

}

Identifiers used in the template have the following meanings:

LockPattern - template name;

rw_flag - template parameter, the name of lock operation parameter;

concurrency_objref - template parameter, the name of access control
service;
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ControlledOperations - template parameter, controlled operations;

A, B - block’s labels;

WITH EXCEPTION HANDLER - keywords, they means the control is
trasferred to a given block if exception is raised during controlled operations
execution (here block B is used as an exception handler).

Thus, we described typical concurrency metaservice object that is to be binded
with some target object. Obviously, specific binding description is a
refinement of above template. Refinement consists of specific method
parameters, object references, and sequences of calls (the place for which is
reserved by parameters similar to ControlledOperations one) substitution. The
last parameters kind allows, for instance, one to use template for several
methods of target object having identical metacontrol. It is necessary in such
case to pass target method call specification as value of ControlledOperations
parameter in metacontrol definiton for every such method.

Let us consider example illustrating concurrency service template use. We
assume there is an IO with the appropriate attribute declaration (see section
4.4):

// reference to Concurrency metaservice
OBJECT Concur_service : Concurrency;

Then methodsome_operation (in SomeType arg) that always modifies object’s
state can be metacontrolled in IO with the help of concurrency service
template as follows:

some_operation (arg) USE {
LockPattern (WRITE) < Concur_service > { OPERATION }

}

It should be noted that keyword OPERATION used in above specification
means target object’s method invocation (in our case it issome_operation
method) with the given IO parameters (in this example it isarg parameter).
This keyword allows one to define identical metacontrol for group of methods
in one specification:

method_1 (...), method_2 (...), ..., method_n (...) USE {
...
OPERATION;
...

}

4.6. Using templates compositions

At design stage of metacontrol to work with services of another covers
programmer should be able to get generic templates from that cover and use



20 of 49

May  1997                                  Cover Model ISP RAS

them. It allows source code to be reused and programmer to know nothing
about object call details of used services. Besides, presence of templates
libraries gives possibility to one to orthogonalize (to make independent)
various services in metacontrol descriptions. Programmer can abstract from
details of method invocation in a given service and think in terms of
refinements of templates compositions. Every template is interpreted now as a
large-scale semantic unit of cover’s service.

Let us consider now how one can bind two independent services to IO. For this
purpose we continue our example in whichsome_operation method is
wrapped with synchronization locks. We assume that IO has also another
attribute referencing to statistics service of type Statistic:

OBJECT stat_obj : Statistic;

This new service hasbegin_time andfinish_time methods dedicated to store
start and finish time of some activity. Obviously, it is worth to put service
template in the templates library:

StatisticPattern <statistic_objref> { ControlledOperations } IS {
{

statistic_objref . begin_time ;
DO ControlledOperations ;
statistic_objref . finish_time ;

}
}

Composition of declared above patterns LockPattern and StatisticPattern may
look as follows:

some_operation (arg) USE {
LockPattern (WRITE) < Concur_service > {

StatisticPattern < stat_obj > { OPERATION }
}

}

So,some_operation invocation can be wrapped with concurrency control and
statistics irrespective of details of implementations for both templates. In this
order nesting  provides lock-unlock service not only for controlled operation,
but also for statistics service calls. That is a pair of objects - controlled server
object and statistics service are protected. If it is desirable to protect only
server object call nesting must be altered:

some_operation (arg) USE {
StatisticPattern < stat_obj > {

LockPattern (WRITE) < Concur_service > { OPERATION }
}

}
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4.7. Using clusters

As it was noted above (see section 4.2), each IO operation might have several
variants (schemes) of metacontrol defined statically, i.e. at the design stage.
Obviously, IO should have mechanism allowing dynamic (at run time) switch
of variants. One of possible solutions is to add some specific data member (or
attribute in the sense of IDL) of enumeration type to IO. Changing value of the
attribute one might change metacontrol scheme. What’s more, attribute value
change can be considered as an entire IO state change, but not only as a change
of execution scheme of one particular operation.

Attributes permit execution scheme change for several operations and even for
all IO operations at once. From this point of view we can say that a set of
clusters for IO is provided. Each of clusters affects metacontrol scheme for one
or more operations and has its own identifier. Set of cluster’s identifiers makes
values of enumeration type for correspondent IO attribute.

Let us continue statistics service example from section 4.6 in order to illustrate
work with a cluster set. Besides of described in StatisticPattern template
metacontrol scheme, we want to provide controlled operation execution
without statistics collection. For this purpose a set of clusters
StatisticClusterSet having two elements (clusters) MakeStatistic and
NoStatistic is declared. Alternatives of metacontrol schemes are declared in
StatisticCasePattern template. These declarations are placed into library of
statistics service, as well as StatisticPattern template used in them:

TEMPLATES LIBRARY StatisticLib {
StatisticPattern <statistic_objref> { ControlledOperations } IS {

statistic_objref . begin_time ;
DO ControlledOperations ;
statistic_objref . finish_time ;

}

CLUSTER SET StatisticClusterSet {
DEFAULT MakeStatistic, NoStatistic };

StatisticCasePattern <service_ref> { ControlledOperations } IS {
MakeStatistic :

StatisticPattern < service_ref> { ControlledOperations };
NoStatistic : DO ControlledOperations;

}
}

Keyword DEFAULT used in clusters set declaration points out that
MakeStatistic variant is a default one. That is, after IO creation initial value of
StatisticClusterSet attribute is MakeStatistic. Therefore, statistics service is
used as it is indicated by first template until cluster is changed, i.e. until
attribute value is changed.
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Now, when one need to use this library’s declarations in metacontrol
definitions he/she should refer to it explicitly:

USE TEMPLATES LIBRARY StatisticLib;

Such library referencing leads not only to possibility of its templates use, but
to automatic addition of StatisticClusterSet attribute to IO.

If declaration of IO attribute (object reference stat_obj of Statistic type) is
similar to one from previous example (see section 4.6) metacontrol description
for some_operation method looks like follows:

some_operation (arg) USE {
StatisticCasePattern < stat_obj > { OPERATION }

}

Using StatisticClusterSet attribute, cover of IO may change current
metacontrol scheme for a given operation at any time.

Note, that clusters allow one to use not only various metacontrol for the same
methods. Also, it helps to make different groups of target object’s methods be
accessible to client at different time. Example illustrating use of clusters in this
sense is considered in details in Appendix B. In this example access
management for object encapsulating a file is described. In this case client IO
contains three clusters. They are active when 1) file is not opened (only method
for file opening is accessible); 2) file is opened for reading (reading, seeking,
and closing methods are accessible); 3) file is opened for reading and writing
(client can invoke reading, writing, seeking, and closing methods).

In general, any IO can use any number of libraries with clusters definitions at
the same time. That is, IO may have any number of attributes varied
independently of each other. These attributes usage makes possible to manage
orthogonal metaservices independently.

For example, we can bind concurrent access control metaservice (Concurrency
service mentioned in section 4.5) to IO which has already been worked with
statistics service. It leads to inclusion of ConcurClusterSet set of clusters and
ConcurCasePattern template into service’s template library besides of
LockPattern template described in section 4.5. These templates define two
alternatives for service use (similar to statistics metaservice) which define
whether metaservice used (MultiAccess cluster) or not (NoConcurrency
cluster):

TEMPLATES LIBRARY ConcurrencyLib {
... // description of LockPattern

CLUSTER SET ConcurClusterSet {
DEFAULT MultiAccess, NoConcurrency };
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ConcurCasePattern ( rw_flag ) <service_ref> { ControlledOperations } IS {
MultiAccess :

LockPattern ( rw_flag ) < service_ref> { ControlledOperations };
NoConcurrency : DO ControlledOperations;

}
}

Metacontrol description using both these metaservices should reference both
appropriate libraries:

USE TEMPLATES LIBRARY StatisticLib;
USE TEMPLATES LIBRARY ConcurrencyLib;

Also, two IO data members are declared:

OBJECT concur_service : Concurrency;
OBJECT stat_obj : Statistic;

some_operationmethod’s metacontrol using both metaservices might be
defined as follows:

some_operation (arg) USE {
StatisticCasePattern < stat_obj > {

ConcurCasePattern (WRITE) < ñoncur_service > { OPERATION }
}

As one can see, this description of metaservices composition is similar to one
used appropriate templates without clasters (see section 4.6). However, two
independent IO attributes ConcurClusterSet and StatisticClusterSet are
declared here. Every attribute can be managered by appropriate metaservice
knowing nothing about other attributes and corresponded metaservice.

4.8. IO sequential refinement technique

Let us pay attention to sequence of metacontrol definitions described in the
previous section. As one can see, at the begining statistics service was
separately described and then Concurrency service was added. So, to add
possibility of work with new service the description of metacontrol
specification must be rewritten. However such step-wise refinement seems
very natural during real metacontrol development: IO specification is the result
of adding work with metaservices in sequence, rather than is fixed in one step.
The possibility of step-by-step metacontrol definition is included in TL
language.

IO definition can be developed as a sequence of refinements. Each of such
refinment has its own identifier (name) and is a generic description for some
part of metacontrol. So, description of the work with statistics service
(example from section 4.7) can be considered as its first refinement. (Interf is
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an interface havingsome_operation method; this interface is used in the
context of one cover, therefore only server IO is defined):

Interf {
// First refinement of IO
USE TEMPLATES LIBRARY StatisticLib;
OBJECT stat_obj : Statistic;

SERVER FirstVersion < other_services {} >
IS {

some_operation (arg) USE {
StatisticCasePattern < stat_obj > {

other_services { OPERATION } }
}

}
}

This spicification of IO contains only binding of Statistic metaservice.
Parameter other_services of this refinement named FirstVersion leaves the
possibility to extendsome_operation method call in the futher refinements.
Next refinement uses descriptions from first one (it is referred by keyword
REFINES) and adds work with metaservice Concurrency through parameter
substitution:

Interf {
// Second refinement of IO
USE TEMPLATES LIBRARY ConcurrencyLib;
OBJECT ñoncur_service : Concurrency;

SERVER SecondVersion
REFINES FirstVersion < ConcurCasePattern (WRITE) <ñoncur_service> >;

}

Obviously, such separated IO definition is not only convenient for IO
development representation, it also simplifies possible redesign of
metacontrol, because usage of different metaservices are localized in different
refinements.

Besides, IO refinement process makes possible to separate development of
client IO at the design stage in server and client covers, respectively, in quite
natural way. Let us continue example from section 4.1 to illustrate this
statement. The example concerns of compression/decompression which can
be added to interaction between two remote objects.

Interface T in TL from the example contains metacontrol for client and server
IOs. Remember that similar metacontrol descriptions are contained in server
design stage cover  (it contains declarations for server object of type T). So,
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only metacontrol from server IO can be fully defined in this way. As for client
IO server cover’s defined metacontrol is insufficient to it in the most cases.
Server cover defines only those metaservices in client IO that are necessary for
conforming interaction with server IO (in our case it is a metaobject for data
compression/decompression on the client side). In general, client IO
metacontrol refinement takes place in client design stage cover. Client cover
can both refine metaobjects use and add new orthogonal metaservices used in
this client cover. Such refinement and addition in client cover might be done
step by step.

First refinement of client IO is described on the server side and called
ServerVersion.

T {
// First (server) version of metacontrol description for client IO
CLIENT ServerVersion <compr_decompr_type, compress_op, decompress_op >
IS {

// IO’s data member which type will be defined in client cover
OBJECT metaobject : compr_decompr_type;

exchange_info (arg_info, res_info) USE {
variable compressed_arg : string;
variable compressed_res : string;

Zip_metaobject . compress_op (arg_info , compressed_arg);
// server IO’s method call:
send_info (compressed_arg, compressed_res);
Zip_metaobject . decompress_op (compressed_res, res_info);

};
};

};

This refinement contains three parameters with the following meanings:

• compr_decompr_type- metaobject compression/decompression type;

• compress_op - metaobject method for data compression;

• decompress_op - metaobject method for data decompression.

Client design stage cover sets specific metaobject type and its method names
as first refinement of the generic IO description received from server cover:

T {
// Second version of metacontrol description for client IO
CLIENT FirstClientVersion

REFINES ServerVersion <ZIP, compress, decompress >;
}
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Note, that this refinement does not contain parameters, but still can be refined.
For example, in the next refinement one can use statistics metaservice:

T {
// Third version of metacontrol description for client IO
CLIENT SecondClientVersion { some_statistic_pattern {} }

REFINES FirstClientVersion
IS {

exchange_info (arg_info, res_info) USE {
sîme_statistic_pattern {

FirstClientVersion::exchange_info (arg_info, res_info) }
};

};
};

Third (second on the client side) refinement has parameter
some_statistic_pattern that should be refined later with some template
describing usage of statistics service. It is worth to note the metacontrol
definition forexchange_info method in this example uses the same method
declarations as in previous refinement (FirstClientVersion::exchange_info):
statistics service template wraps existing metacontrol. In other words
refinement technique allows one not only to substitute parameters in earlier
defined refinements, but to extend metacontrol with new orthogonal
metaservices too.

Last refinement has all parameters resolved. For this purpose object reference
to metaobject of type Statistic is declared and StatisticPattern template is
passed as parameter of previous refinement:

T {
// announcement of statistics server’s library (from client cover) use
USE TEMPLATES LIBRARY StatisticLib;

// IO’s data member that is reference to statistics metaservice
OBJECT stat_obj : Statistic;

// Final refinement of client IO description
CLIENT

REFINES SecondClientVersion { StatisticPattern <stat_obj> };
};

This refinement cannot be refined further since it is not named.

TL language compiler treats refinement as finished one if it does not have
parameters and it is not refined with another refinement. Whole sequence of
refinements including last one defines resulting IO contents.
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5. The cover’s implementation

We deal with covers at both the design stage and the run-time stage. Within the
object model framework, at both stages the cover is an object implementing a
certain external IDL interface. For design stage covers, the external interface
is understood as a collection of methods intended for future interaction
between covers and other objects contained within them. For run-time covers,
the external interface consists of methods destined to coordinate the work of
objects of different covers. Also, the run-time covers provide an internal
interface which is available only to their own objects.

Each design stage cover is targeted to the development of the contents of all
run-time covers of certain type, and of mechanisms of operation with internal
objects of these covers, as well as with objects of other covers. One of the most
important tasks being solved by these covers during the system design is to
provide a set of various metacontrol schemes for possible objects of the
respective run-time covers. Besides, it is necessary to fix a set of statically
named objects, i.e. objects of known types which can be referred to by names
during the design stage. Mechanisms for run-time creation of objects also need
to be developed. Such mechanisms must be used further to create objects
before operating on them.

The external interface of the design stage cover contains methods intended for:

• provision with information on the corresponding interface of run-time
covers;

• description of typical mechanisms of interaction with objects of the
corresponding run-time covers in the form of a collection of templates
libraries (see section 4.5);

• description of possibilities for dynamic change of the metacontrol for
objects in run-time covers (i.e. for a change of a cluster or of IO’s data
members - see section 4.7).

The external interface of a run-time cover provides a possibility to work from
other covers with a certain collection of services of the cover. A part of these
services may be intended to control the work with the cover’s objects of given
type. In particular, such services may control the life time of the objects
(creation and deletion of objects). Another group of services may be needed to
support the work of the cover’s internal objects, as well as to provide
information on cover’s contents.

Perhaps, the most important of such services is the naming service. It is the
only service which is considered to be standard and which must be supported
by all kinds of covers. To standardize operating with this service, we fix a
corresponding set of methods as the base cover’s interface which all other run-
time covers interfaces must inherit from. Below follows a description of this
base interface in IDL:
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module Covers {
typedef string Name;
typedef sequence<Name> CompoundName;
struct Binding {

Name binding_name;
Object binded_obj;

};

typedef sequence<Binding> BindingList;

interface SearchIterator {
boolean next_one (out Binding b);
boolean next_n (in unsigned long how_many, out BindingList bl);
void destroy();

};

interface BaseCover {
void register (in Name n, in Object obj);
void unregister (in Name n);
Object simple_resolve (in Name n);
Object compound_resolve (in CompoundName n);
void local_search (in unsigned long how_many,

in Name search_pattern, out SearchIterator bi);
void full_search (in unsigned long how_many,

in Name search_pattern, out SearchIterator bi);
};

};

The above interface assumes objects to be identified either by simple names
(Name) comprising of a single string, or by compound names
(CompoundName) defined as a sequence of strings. Simple names are used in
the following methods:

• register - registration under the designated name, of either the cover’s
internal object, or an external object (including external cover);

• unregister - deregistration of previously registered object;

• simple_resolve - resolving the name within the given cover according to
the cover’s rules (using cover nesting and federations as described further
in section 6).

The two following methods are intended to arrange the search of name by a
pattern; to navigate over the resulting list of associations “object-name”, a
search iterator (SearchIterator) is produced:

• local_search - a search within the given cover only;
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• full_search - a search over the total space of associations “object-name”
which are available from the given cover (according to the same rules as
with the simple_resolve method).

Besides, acompound_resolvemethod is provided for resolving a compound
name according to the standard rules (each component but the last one names
a cover the rest of the name is to be searched in).

Thus we supply a programmer with an IDL specification of theBaseCover
interface, as well as its implementation in a language being in use. In addition
to this base mechanism, some cover type specific methods can be added by the
user. Also, the implementation of base methods can be rewritten. Say, the
functionality of thesimple_resolve method can be extended by the will of the
user so that on taking a name argument from a specific set of reserved names
it creates a certain kind of object instead of making a search. Hence, a new
object creation facility can be added to a cover without even adding new
methods to the cover’s interface.

6. Naming facility extension

Though a search by compound names can be applied as well to covers other
than that in which the search was initiated, however the user of this facility is
required to know a precise way in the cover’s naming graph. In order to utterly
simplify the usage of naming facility, some additional means providing
transparency across the set of covers is necessary.

A possible way of implementing such a transparency is using ahierarchy of
covers; i.e. covers can be nested like blocks in programming languages do.
Similarly, when a simple name can not be found in a cover the search continues
through covers that contain this one. In other words, the same standard
visibility rule is applied as that used for variables within nested blocks.

A more complicated, however much more flexible way of extending naming
facility is the usage offederations. Federation is a group of covers which allow
each other to access to their spaces of object-to-name bindings. A simplest
form of federation is that in which all members have an unrestricted access to
the space of all other members of the federation. In a more general case covers
can restrict other members’ access to their space as well as their access to
spaces of other covers of the federation; thus, the total search space reduces so
as to accelerate the search. To specify these restrictions one can use either
export list which defines what in this cover is accessible from the other covers,
or import list which define what and where is visible from this cover.

Recall that both naming extension mechanisms mentioned above are used in a
full_search method of the cover’s base interface. The search over federations
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or enclosing covers has a lower priority than the search in the cover it was
initiated in. In other words, a name is resolved first in the cover’s local naming
service and only if the resolution fail it will be continued according to
mechanisms specified above.

Thus, with the help of the extended naming facility the covers allow their
objects to resolve simple names against a distributed naming space as if they
are local. To achieve this, the cover only needs to be adjoined in a federation
with all covers being potentially interesting for its objects.

Note, however, that in some programming systems the client is not always an
object. In this case, to unify the cover technique, particularly to provide a
uniform usage of namings one might need to extend an object model.

For example, in the programming system OS UNIX / C++, routines run within
processes starting from the functionmain. The usage of other functions which
are not methods of objects is also allowed in this programming environment
as the legacy of C language. However, the need of using object references and
name resolution may occur in this functions as well as in C++ object methods.
For the proposed technique to be unified, let us consider UNIX processes as a
sort of objects. These are pure client objects without any interface. Any run
time activity takes place either in these objects or in other objects invoked via
object reference.All such objects must be ascribed to some covers. Thus, in the
extended object model, any usage of object reference occurs in the frame of an
object within a cover.

When a programming environment provides a guaranteed context (i.e. object,
cover) for an arbitrary client job, one can speak about a unified way of using
cover’s internal interface. The methods of the unified interface are called in the
same way from different objects. The execution of a method depends solely on
the context; i.e. it is defined by mechanisms of the current cover. Thus, say,
methodObject_resolve(in Name n) of the internal interface uses for resolution
of a given simple name the mechanism of the cover containing the calling
object.

A substantial feature of cover internal interface is that the methods can be
implemented as functions which do not relate to a particular object (if it is
allowed by the programming language). For example, the above method is
implemented in C++ as a function with the following signature:

Object *resolve (const Name &n).

It is convenient to use such way of calling when defining metacontrol. For
example:

obj_ptr = RESOLVE (name);

Such call does not require an object reference created earlier. Rather, it
executes according to the algorithm provided by the cover containing the
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interface object at run time. In particular, this facility can help solving IO
initialization problem. That is, one can use such calls to initialize IO state (see
section 4.4) during its initialization. To do it, one only needs to fix in such calls
just several simple names of metaobjects at the project stage. And at the run-
time stage, each cover in which such an IO is created must resolve these names
possibly making use of federation mechanism and cover hierarchy.

7. Conformation of covers

As was mentioned before, each run-time cover interface contains, in addition
to the base interface, also other interfaces for various services contained. These
services may be designed specifically for manipulating certain groups of
objects, say, objects of specific type. These interfaces can be added by
inheriting specifications in IDL. Note that service interfaces also may inherit
each other.

Each element of the object space is contained in a cover, which provides, in
addition to object creation and deletion, also a metaenvironment required for
these objects, and customizes interface objects included in it during their
creation and work. Methods of different services can be used to control from
the outside the creation and the deletion of objects, as well as for various kind
of control for metaenvironment inside the cover.

To enable the control of the object’s work in the frame of a cover, a special
interface object methodBaseCover get_cover() is provided, which returns a
reference to the cover containing the target object of the given IO. It is worth
noting, that during the further work with this cover’s object reference, one
need not know the exact type of the cover, that is the whole interface. Rather,
only the interface of the needed service must be known. It is provided by the
mechanism of inheriting interfaces.

One of the most important application of the described technology for
manipulating covers is conformation of metaenvironments of different
objects, which enables their interaction. This may reduce to conformation of
covers containing this objects, which is conducted with the help of the
corresponding services of these covers.

Recall the necessity to conform the behavior of covers in the example in
section 4.2. In this example two different schemes of metacontrol have been
described at the project stage for both server and client objects: one involved
compression/decompression of data, while other manipulated data without
changing them. For the first scheme, the metacontrol technology presumes that
the related cover supplies the IO with the metaobject capable of making the
required transformation. Clearly, the client and server IO can understand each
other only when the enclosing covers can come to an agreement about which
kind of metacontrol to use. That is, these covers should contain a service for
conformation of metacontrol for the considered kind of objects. The
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conformation of metacontrol can take place not only at the appearance of a
new client, in which case the client cover asks the server one for initialization
of the metacontrol of the same type. A conformation mechanism can be
provided, which can be used by both covers dynamically yet after the
connection between the client and the server is established. The need of this
type can appear in either cover, say, when the conditions of existence of IO
within the cover change. As an evident example of a situation when the
dynamic conformation is needed consider the migration (translocation) of
either of the two objects.

A more complicated example of cover conformation is described in Appendix
A. The example is about the usage of covers for adding new, more efficient
mechanisms to arrange the interaction between objects in the frame of
CORBA technology (see also section 8 below). In particular, we describe a
method of communication between objects from different processes of a single
workstation (OS UNIX is considered) over the shared memory with the help
of the client and server metaobjects. Surely, for the normal joint work of the
client and server IO, a coherent customizing of the IO metacontrol provided
by special services of the enclosing covers is needed here as well.

8. Conformation with CORBA technology.

Below we discuss how the above mechanism of working with covers can be
arranged and how to use the metacontrol relying on CORBA - the widely-
known architecture for communicating objects in distributed systems. Note
that the interface specification language IDL we are using now was borrowed
from CORBA. In the modern CORBA standard are defined both IDL itself and
its mapping onto programming languages C and C++. Hence, the application
of cover mechanisms in the frame of CORBA implies, besides the usage of
IDL itself, also much of the features of interfaces defined with the help of TL
language. In particular, the mapping fixes the properties of object references
with respect to the programming language needed, including such features as:

• inheritance;

• memory management, in particular wrt passing parameters to methods;

• using mediator objects as A_var representing an object reference of
interface type A.

Clearly, even just these objectives have a significant impact on the
implementation of interface objects whose great deal of functionality consists
of manipulating object references to various metaobjects.

In addition, the CORBA architecture presumes the usage of mediator objects
as object references. On the client side this mediator is called stub, on the
server side it is called skeleton. The only purpose of these mediators is to
provide the location transparency. That is, depending on the location of the
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client and the object requested, these mediators provide selection of the
necessary method call managing mechanisms defined in ORB (Object Request
Broker). As one can easily see, within the CORBA-related metacontrol the
cover’s communicational kernels (see section 2) can be based on such brokers.

Note that the CORBA mechanism for managing object references presupposes
using a kind of late binding of objects. Hence CORBA applications intending
to make use of metacontrol should arrange interconnection always via legal
CORBA object references (that is one should not strive to improve efficiency
by calling local object methods directly via well-known pointer). To say more,
as ORB and produced by the IDL compiler mediators (stubs, skeletons) are not
proper parts of the application (they are in fact parts of system environment),
one can arrange metacontrol without updating application, by expanding the
system environment, even if the application was not intended for the use of
metacontrol. What one only needs is that various application objects
communicate with each other and with the other application’ objects by means
of legal object references. As in this example with CORBA, one can see that
in general case, applications designed for a certain system environment can be
wrapped transparently (from the applications’ point of view) by means of
cover technique, provided that the system environment ensures the late
binding due to the usage of mediators supplied by the environment.

As for CORBA itself, the question remains, how does IO which is also a
mediator between client and server, relate with stub and skeleton.

For the beginning, consider the server side. Both the server object itself and
the server IOs are created and controlled by the cover containing them. Thus,
following CORBA, the cover should create a skeleton and bind it with the
server object, so that each method call pass via the skeleton as a mediator. As
one can easily see, both the server IO and the skeleton have very close
generation schemes and occupy the same place in operating with target object.
Hence, on the server side, these two kinds of mediators can by unified in the
sense that the functionality if IO can be added to the skeleton.

As for the client side, the relation between stub and the client IO is somewhat
more difficult to define. As a matter of fact, the stub, as opposed to skeleton,
cannot be created by the cover. It is created by internal ORB’s mechanisms
when the client receives an object reference from other objects. Furthermore,
the client often does not use stub as an object (that is, client doesn’t call
methods of stub). Instead, it is used as an object reference being passed to
another object. In this case there is no need in using client IO at all.

Thus, in an attempt to unify stub and IO on the client side in a single mediator
as we did on the server side, we would encounter the following problems:

• losing the ability to control the life time of the IO;

• having no ability to select needed IO for a given client;
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• having too complicated stub when it is not used for method invocations
and thus all IO specific methods and data are pure overheads.

So, on the client side, the stub and the client IO can not be unified. As the need
of using IO gets apparent only with the first invocation via stub, the
functionality of stub should be extended in the following way: when the client
invokes on the stub for the first time, the stub requests the client cover for an
IO. Depending on the type of the stub, the cover selects a client IO needed to
the particular client, optionally conforming it to the server cover (i.e the cover
may have the conformation service for IO types). Surely, many different
algorithms for associating IO with stubs can be provided within the cover. For
example, the stubs of the same type can use the same instance of IO, or the
scheme “1 stub - 1 client IO” can be used instead.

After the stub receives a reference to the associated client IO from the cover,
all method calls including the first one are passes to the IO. Surely, if the cover
knows that a given client working with a given server does not need using a
metacontrol, then the IO reference will be nil and the stub will simply pass the
call further to the server (where it can be yet caught by a server IO).

Note that the location transparency provided by stubs and skeletons in
accordance with CORBA standard was considered by us as a base
functionality of IO. Surely, when the CORBA mediators are unified with IOs,
the latter can provide the transparency either using the stub-skeleton features
or adding new ways to arrange data transfer due to the usage of the metacontrol
technique. For example, this can be brought about by the coherent usage of
metaobjects providing the usage of the shared memory as described in
Appendix A.

Thus, the described technology for expanding functionalities of stubs and
skeletons allows to arrange a symmetric management of client and server IOs
by means of covers. The covers themselves manage the creation of both types
of IOs and have an opportunity to select the necessary type (version) of both
client and server IOs. The described approach expands the base mechanisms
of object invocation provided by CORBA. On both client and server sides,
they include, generally speaking, nothing but a support for the remote object
invocation. The mechanism of covers and interface objects provides a
possibility not only to modify the behavior of an application object on the
server side, but also to (equally!) distribute the additional states and
functionalities between the server and client parts. Thus there arises an
opportunity to divide semantically the responsibility of client and server sides
for different aspects of managing application, which simplifies the design of
the application and makes it more efficient.

It should be noted, that the technique of covers is brought to the CORBA
model not at the expense of changes in ORB implementation, but rather by
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means of conforming the compiler of IDL to the implementation language
with the compiler of metaspecifications (see section 1).

With the implementation of the cover technique on the base of CORBA, a
question also arises about the interrelation between the cover metaservices and
the standard CORBA services [COSS96].

As it was noted earlier, the only metaservice we have fixed as a base one, i.e.
which must be implemented in all covers, is the naming service. As is
generally known, the CORBA standard defines the interface
CosNaming::NamingContext of naming service objects and describes the
main features of its semantics. In order to preserve the compatibility of the
cover naming service with the CORBA one, the latter is inherited by the main
cover interface BaseCover. Thus, the base cover interface gives an opportunity
to take cover as a CORBA naming context. In addition, the cover supports also
a different from CORBA naming mechanism suggested earlier.

As for the rest of the standard CORBA services, the metacontrol technology
allows to use them along with any other services both as cover metaservices as
well as components of user applications. We do not regulate anyway such a
usage which remains completely to the judgement of the programmer who
designs an object system in the frame of the cover model.
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Appendix A

This appendix describes in detail the covers conformation example which was
mentioned above in section 7. Two covers ClCover of ClientCover type and
SvCover of ServerCover type are considered (see Figure 4). These covers are
designed to establish more efficient communication (than ORB’s standard
mechanism) with server objects of some ServObj type by means of some
metaservices. All server objects of this type work in SvCover cover that can
be referred thereby as a server cover. In its turn client is located in ClCover
cover (client cover). If client and server objects are resided in different
processes in the same computer, special metaobjects are generated by the
covers. These metaobjects play the role of mediators organizing data
(parameters and results) transmission by means of shared memory segment
which is common for client and server processes. This way of data
transmission is often more efficient than standard mechanism the ORB uses.

Client Cover Server Cover

Client object

Client IO

MO1

Metaservice
ServObj_client

Interface
ServObj_client

Interface
ClientCover

Server object

Server IO

MO2

Metaservice
ServObj_getting

Interface
ServObj_getting

Interface
ServerCover

Figure 4. Covers conformation for organization of interconnection via shared memory.
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The part of covers interfaces IDL specifications significant for this example is
as follows:

// for server cover
interface ServObj_getting {

...
ServObj use_optim_connection (in ServObj_IO client);

};
interface ServerCover : ..., ServObj_getting, ... {

...
};
// for client cover
interface ServObj_client {

...
void use_shared_mem (in ServObj_IO client, in long sh_mem_segm);

};
interface ClientCover : ..., ServObj_client, ... {

...
};

So, the server cover includes ServObj_getting service that is responsible for
creation of objects of ServObj type. One of the service’s methods
(use_optim_connection) allows the server cover to choose the most efficient
way of communication with client object (that is, with appropriate IO) pointed
as parameter of the method. In its turn, client cover has ServObj_client service
which controls interface objects of ServObj_IO type. The method
use_shared_mem of this service customizes the metacontext of IO pointed as
the first parameter to use the shared memory segment (its identifier is provided
by the second parameter) for communication with target object of this IO.

So we have the following algorithm of communication between client and
server objects:

• client cover ClCover creates IO of ServObj_IO type;

• the object reference to server cover SvCover is searched out by means of
naming service of client cover;

• IO being initialized callsuse_optim_connection method of server cover;
IO identifies itself in the parameter of this call;

• ServObj_getting service (which is used to perform the
use_optim_connectionmethod) of server cover creates both object of
ServObj type and server IO to work with this object; further this service
learns from object reference to client IO that client is resided in the same
computer as server is resided; thereby server metaobject MO2 is created
for organization of data transmission via shared memory;
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• server cover creates a shared memory segment and passes identifier of this
segment and reference to client IO into cover of this IO (theget_cover
operation described above is used in server cover to get reference to client
cover according to object reference to this IO), more precisely it calls
use_shared_mem method of ServObj_client service from client cover;

• according to server cover’s request client cover creates metaobject MO1
and customizes client IO to work via this metaobject;

• control flow is returned to server cover and than to client IO which gets
reference to server IO created by server cover on previouse stage.

Thus during initialization client IO calls server cover and gets reference to
server IO as a result of this call. Covers coherently customize environment of
IO according to communication mechanizm chosen on the server side. Note,
that IO does not take part in this conformation and client and server covers
manage it themselvs.

Appendix B

This appendix demonstrates the example of internal interface use for
organizing communication between client and server IOs (this means that
interface of server IO is distinguished from interface of target object). Besides,
this example shows the use of cluster mechanism (see 4.7.) for selection of
some groups of interface methods that can be used by client at the certain time.
The possibility to use any of this methods is determined by current state of
client IO.

In this example we suppose that we have got some application dedicated to
work with files. This application acts within the framework of some cover
which could be realized (for example) as some directory of a file system. Here
we are interested in application objects (contained by such a cover) which
present separate files of such directory. The naming of all such objects is
performed by means of base naming service of the cover (see section 5). By
means of this metaservice client gets access to some needed file. In this
example we do not consider other questions concerned such a directory - cover
(creation, removing, logical binding of files etc.).

All objects - files implements the following IDL interface:

enum Mode {READ, READ_WRITE};
typedef sequence<octet> Data;
typedef long Status;

interface File {
Status open (in Mode use_mode);
Status close ();
Status read (in long byte_cnt, out Data result);
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Status write (in Data info);
Status seek (in long byte_cnt);

};

Application objects implementing this interfaceFile are dedicated to work
with one client only which has (by means of one of these objects) a possibility
to:

• open a session of file use; client is to choose the mode of work with this
file: only data reading (READ mode) or writing and reading
(READ_WRITE mode) (this mode can determine, for example, the way of
data buffering during opened session);

• close a session;

• read needed amount of bytes from current position in file; when this
operation is finished, current position in file is exactly the last position data
was read from;

• write data to file (this operation can be performed without errors only if
current session was opened in READ_WRITE mode) beginning from the
current position in file; when this operation is finished, current position in
file is exactly the last position data was written at;

• set the current position in file (with seek operation) according to offset
relative to file beginning.

All methods mentioned in the example return exit status as a result (that is,
value of Status type).

By means of cover approach we are going not only to control life time of File
objects but to organize multiaccess for different clients (possibly remote) to
such objects too. As it was pointed above, application is not dedicated to be
used by some clients simultaneously. We can use interface objects to solve the
issue.

We can use division of READ and READ_WRITE modes, already provided
by the application. For clients work synchronization on server side we will use
metaobjects with the following IDL interface:

interface Concurrency {
Status connect (in Mode use_mode);
Status disconnect ();
Status lock () ;
Status unlock ();

};

Objects implementing this Concurrency interface provide a possibility to work
with target object either for set of clients simultaneously in READ mode or
only for one client in READ_WRITE mode. To open session in needed mode
connect method is used,disconnect method is used to finish previously opened
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session;lock andunlock methods are to be used for transit locking of the object
only for a while of one method execution within the framework of the current
session. We suppose that all calls from different clients are handled in different
threads (i.e. in multithread mode), and so in the UNIX process such threads
can be delayed if some client is already working in READ_WRITE mode with
the same server object.

There is the following pattern for work organization withlock andunlock
methods in templates library for Concurrency service (it is similar to example
from 4.5.):

TEMPLATES LIBRARY ConcurrLib{
LockPattern < concurrency_objref > { ControlledOperations } IS {

A {
concurrency_objref . lock;
DO ControlledOperations WITH EXCEPTION HANDLER B;

}
B {

concurrency_objref . unlock ;
}

}
}

But the problem is that original application objects assume work with a single
client and such a server object contains current position in file forthis client.
It is obvious that in case of multiaccess this way of work is possible only in
READ_WRITE mode (because in this mode one server can work only with
one client at the same time). But when some clients simultaneously read data
from the file, all these clients must work so as they had exclusive access to his
file. To support such kind of abstraction (i.e. metacontrol transparency) is
exactly one of the general tasks of cover approach. That is, by means of IO
mechanism we should organize special state (position in the file) for every
individual client. This state must be taken into account  in anyread operation.

So, to save current position in file we should have a global (accessible to all
methods and persistent between methods calls) variable (let’s name it
current_position) of long type  in client IO.

Client IO can be in one of three different states that determine its behavior and
client’s possibility to use its methods. The following three clusters correspond
to these states:

• NOT_CONNECTED - this atate of IO means that appropriate client object
is not in the session of connection with target object yet (session is not
opened yet or is already closed);

• READING - in this state file is accessible for reading only;
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• WRITING - in this state client works with object-File in exclusive mode
and can modify it.

It is obvious that only part of target object methods is accessible in all these
states:

NOT_CONNECTED - open;

READING - read, seek, close;

WRITING - read, write, seek, close;

As it was mentioned above (see 4.7.) attempt to call method not contained in
current cluster cause exception raising and neither methods of metaobjects nor
method of target object are called.

Of course in READING and WRITING clusters metacontrol of their common
methodsread andseek must be different. In READING cluster (unlike
WRITING cluster)current_position variable must be used. In READING
clusterseek method saves its parameter in this variable only and does not call
target object. Andread method execution in the same cluster performs  (at
first) setting of current position in file according to value ofcurrent_position
variable and (second) data reading from this position. But it can not be
implemented as two sequential calls ofseek andread methods because
between these two calls any other client can change the state of the target
object according its own state. So these calls can be performed only as a single
operation on the server side. Thus we need additional method of server IO
dedicated to data reading in multiaccess mode. This method has all the same
parameters asread method and one additional parameter for delivering of
current position of concrete client. The signature of this method on IDL is:

Status read_from_position (in long position, in long byte_cnt, out Data result);

Metacontrol for client and server IOs described above can be specified in TL
language as follows:

File {
SERVER IS {

// specification of changes in server IO interface
ADD METHOD Status read_from_position (

in long position, in long byte_cnt, out Data result);
// specification of templates library use:
USE TEMPLATES LIBRARY ConcurrLib;
// global variable (=data member of IO) definition
OBJECT concur_serv : Concurrency;

// definition of metacontrol in methods of server IO
open (use_mode) USE {
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concur_serv . connect (use_mode);
};
close () USE {

concur_serv . disconnect ();
};
read (byte_cnt, result), write (info), seek (byte_cnt) USE {

LockPattern <concur_serv> { OPERATION; }
};
read_from_position (position, byte_cnt, result) USE {

LockPattern <concur_serv> {
seek (position);
RESULT = read (byte_cnt, result);

};
};

};

CLIENT IS {
CLUSTER SET CurrentState {

DEFAULT NOT_CONNECTED, READING, WRITING };

// global variable definition
variable current_position : long;

// definition of metacontrol in methods of client IO
open (use_mode) USE {

NOT_CONNECTED :
OPERATION;
if (use_mode == ReadingMode) {

CurrentState = READING;
} else {

CurrentState = WRITING;
}

};
write (info) USE {

WRITING : OPERATION;
};
close () USE {

READING :
OPERATION;
CurrentState = NOT_CONNECTED;

WRITING :
 OPERATION;
CurrentState = NOT_CONNECTED;

};
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read (byte_cnt, result) USE {
READING : RESULT = read_from_position (

current_position, byte_cnt, result);
WRITING : OPERATION;

};
seek (byte_cnt) USE {

READING : {
current_position = byte_cnt;
RESULT = 0; // means that method finished correctly

};
WRITING : OPERATION;

};
};

};

It should be noted that metaobject of Concurrency type used by some IO has
access to methods of this IO’s target object too. This metaobject must callopen
andclose methods of target object  (from metacontrol description follows that
server IO never calls these two methods itself) because only metaobject knows
when target object should be switched from one mode to another (such a mode
switch takes a place if all reading sessions are closed and new changing (in
READ_WRITE mode) session begins and vice versa).

Note also that in more complex case of multiaccess organization data needed
for restoring the state of server to work with some client (in this example it is
client’s offset in the file) can have much more complex structure. In this case
more complex data handling is needed too. And so it is more convenient to use
separate metaobject instead of IO state for work with such data.

Besides, to organize multiaccess it can be not enough to use methods of target
object for every separate client’s state handling. For instance, if object-File do
not haveseek method for moving of current position in the file (i.e. this object
can provide only sequential access to data in the file and work with strictly
encapsulated own state containing current offset in the file) then we would
directly change internal state of target object to set position in the file for the
client. In this case we would use special metaobject working with target
object’s content similar to metaservice described in Appendix C which provide
persistency metaservice.

Appendix C

In this appendix we describe the example of persistency [COSS96, Klein96]
metaservice which shows special metacontrol variant when metaextension is
impossible without source program texts modification.
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In this example application is a set of objects implementing the following
Store interface:

typedef long Status;
typedef long Label;
typedef sequence<octet> Info;

interface Store {
Label save (in Info info_piece);
Status read (in Label what, out Info result);
Status remove (in Label what);

}

Any such object is dedicated to be used by one client as store of data of any
size. For instance, such server object can be used for saving of data from other
processes which have not ability to store large portions of information in own
memory. We can consider process that controls getting of video information
and working on device which produces such amount of data but has no own
memory for data storing. Server object of Store interface can be locally used
as mediator to work with dynamic memory too.

Store object methods are dedicated tosave given data portion which is present
as byte (octet) sequence. This method allocates a dynamic memory piece of
needed size for given information. The identifier (label) of this memory is
returned as a result of the method. The next (read) method is intended for
reading of previously saved data. And the last method (remove) can be used to
remove data when they are obsolete.

So such server object is a simple mediator to work with dynamic memory of
the process for both local and remote access.

Metaextension in this example consists in organization of the work with
Persistency metaservice. It is done withminimal (butneeded) changes in
source texts of Store_realization object that implements Store interface.

For Persistency service organization application objects’ cover uses
metaobjects implementing the following interface:

interface PM {
typedef string PID;

Status persist_save_anywhere (in Label elem_id, out PID pid_res);
Status persist_save (in Label elem_id, in PID pid_arg);
Status persist_restore (in PID pid, out Label elem_id);
Status persist_delete (in PID pid);

}
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Such metaobject allows to save in file (PID contains a name of the file) either
entire state of the controlled (by this metaobject)Store object (elem_id = -1)
or only one its element pointed byelem_id label. There are two methods with
this functionality:persist_save method allows user to choose saving file
(which is identified bypid parameter value) andpersist_save_anywhere
methods finds out saving place itself. The next method (persist_restore)
restores object’s state from the file (entire state or one element of the state).
And persist_delete method removes the pointed saved data (file).

Note that this example shows possibility to organize persistency by means of
metacontrol not only for entire objects state but for some part of this state too.
Methods of object of Persistency type provide a possibility to save pointed
portion of information and to restore this informatio separately in future. Of
course the data label can be changed after restoring (new label is returned
through OUT parameter ofpersist_restoremethod).

This example also illustrates very important capability of proposed
metacontrol mechanism. It consist in possibility to change interface of target
object visible to client (indeed, means client IO interface ) as it was done for
server IO. In this case for saving ability of transparent work of metacontrol (it
means that user has possibility to work with client IO so if user has direct
access to application object’s interface) we should only add new methods to
client IO interface with inheritance of all methods of application object’s
interface. It is obvious that new methods of client IO can be executed without
any calls to target object, that is they can be consist in work with metacontext
only.

So described metaextension of Store objects drives to extension of interface
available for client. But client still can work with these objects without
knowing anything about changes in interface.

Following code in C++ language illustrates some features of described in this
example special kind of metacontrol. We suppose that objects implementing
Store interface are instances of the following  Store_realization class:

class Store_realization {
protected:

Info *info_arr;
long arr_length;

public:
Label save (const Info &info_piece);
Status read (Label what, Info *&result);
Status remove (Label what);

};

So every object - instance of this class saves needed information in array of
structures, each of which is used to point to one data portion saved in dynamic
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memory (value of Label type is ordinal number of element in this array). The
data memberinfo_arr points to such array. Longarr_length is its current
length (this length can be dynamically changed according to some algorithm
and dependent on current stored data pieces). All three methods of the class
work with this array and do not have own state interesting for Persistency
service. Certainly, state encapsulated in object (Store_realization class
instance) is accessible from outside of the object neither for reading nor
writing.

To work with objects of Store_realization type we work out the following
class:

class StorePersistency {
protected:

Store_realization *_target_obj;
public:

// constructor
StorePersistency (Store_realization *target) : _target_obj (target) {};

Status persist_save_anywhere (Label elem_id, PM::PID &pid_res);
Status persist_save (Label elem_id, const PM::PID pid_arg);
Status persist_restore (const PM::PID pid, Label &elem_id);
Status persist_delete (const PM::PID pid);

};

Object (instance) of this type has data member_target_obj which points to
some object of Store_realization type. This pointer is set (via constructor’s
parameter) by cover during object creation. But accessible from outside
Store_realization methods do not allow to work with state of instances of this
class. To allow instances of StorePersistency class to access to internal state of
Store_realization we should add to its class definition the next string (in C++):

friend class StorePersistency;

This declaration makes all data members of  Store_realization objects
accessible (for reading and writing) to all objects of StorePersistency type.
This change is the only one needed to be done in source program of the
application.

To finish the example we consider possible implementation of some
StorePersistency class methods:

Status
StorePersistency::persist_save_anywhere (Label elem_id, PM::PID &pid_res) {

// search where to save data
...
pid_res = ...;
return persist_save (elem_id, pid_res);
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}
Status
StorePersistency::persist_save (Label elem_id, const PM::PID pid_arg) {

FILE *file = fopen (pid_arg, “wb”);
if (file == 0)

return -1;
if (elem_id < 0) (

// saving of entire state of out object
Info *cur_info = _target_obj-> info_arr;

fprintf (file, “%d”, _target_obj-> arr_length);
for (int i = 0; i < _target_obj-> arr_length; i++, cur_info++) {

// writing of length and content of current element to file
fprintf (file, “%d”, cur_info->length());
fwrite (&((*cur_info)[0]), cur_info->length(), 1, file);

}
}
else {

fprintf (file, “%d”, -1);
...// saving of one pointed element

}
return 0;

}
Status
StorePersistency::persist_restore (const PM::PID pid, Label &elem_id) {

elem_id = -1;
FILE *file = fopen (pid_arg, “rb”);
if (file == 0)

return -1;

long elem_cnt;
fscanf (file, “%d”, &elem_cnt);
if (elem_cnt < 0) {

...// one element restoring
}
else  {

...// entire array _target_obj-> info_arr restoring
}
return 0;

}
Status
StorePersistency::persist_delete (const PM::PID pid) {

...// removing of the file named pid
}


