
Distributed Generation of Billion-node Social
Graphs with Overlapping Community Structure

Kyrylo Chykhradze*, Anton Korshunov*, Nazar Buzun*, Roman Pastukhov*,
Nikolay Kuzyurin*, Denis Turdakov*, and Hangkyu Kim**

*Institute for System Programming of the Russian Academy of Sciences
Moscow, Russia

**Data Intellegence Lab, Software Research Center, Samsung Electronics Co., Ltd.
Suwon, South Korea

{chykhradze, korshunov, nazar, pastukhov, nnkuz, turdakov}@ispras.ru
hangkyu.kim@samsung.com

Abstract. In the field of social community detection, it is commonly ac-
cepted to utilize graphs with reference community structure for accuracy
evaluation. The method for generating large random social graphs with
realistic community structure is introduced in the paper. The resulting
graphs have several of recently discovered properties of social community
structure which run counter to conventional wisdom: dense community
overlaps, superlinear growth of number of edges inside a community with
its size, and power law distribution of user-community memberships.
Further, the method is by-design distributable and showed near-linear
scalability in Amazon EC2 cloud using Apache Spark implementation.

Keywords: random graph, social network, community detection, bench-
mark network, graph generation, LFR benchmark, Affiliation Graph
Model, SNAP, distributed algorithms, Amazon EC2, Apache Spark

1 Introduction
Community structure is a natural property of human networks, including on-

line social networks where users tend to unite either explicitly (by means of group-
ing functionality of network software) or implicitly (by establishing ties based
on shared affiliation, role, activity, social circle, interest, function, or some other
property). Social data scientists widely employ intuitive notions of separability,
density, and cohesiveness of social groups for discovering and evaluating implicit
communities from social networks [4,10,12].

Recent advances in studying modular structure of social networks [13,14] helped
to reveal several fundamental properties that appear to be common in human in-
teraction networks: dense community overlaps, superlinear growth of number of
edges inside a community with its size, power law distribution of user-community
memberships and communities size, etc. This suggests the need for revisiting ac-
curacy evaluation techniques for community detection methods and adequacy of
the methods themselves.

Despite the availability of community detection benchmarks based on real
networks, it is desirable to learn some fundamental properties from it and develop

a tool for producing synthetic benchmarks with similar properties and different
characteristics. For a reliable and comprehensive evaluation, a community detec-
tion method must be tested on benchmark networks of variable size and other
parameters as they may have significant impact on the results.

The main contributions of the paper could be summarized as follows:

– we introduce a novel approach to benchmark networks generation for commu-
nity detection methods based on Community-Affiliation Graph Model (AGM),
where memberships of users to communities are modeled with a bipartite
graph and links among people stem from shared community affiliations [13];

– we introduce CKB - a method for distributed generation of large benchmark
networks with realistic properties of social graph and social community struc-
ture;

– we make our method particularly suitable for benchmarking community de-
tection algorithms by providing the set of parameters for tuning the most im-
portant structural properties: number of nodes, mean node degree, edge prob-
ability inside a community, power law exponents for distributions of commu-
nity size and node-community memberships, etc;

– we introduce simple and efficient distributed algorithms for building user-
community affiliation network and linking nodes inside communities;

– we develop and evaluate a distributed implementation of the proposed method
capable of producing billion-node random social graphs with reference com-
munity structure;

– we make our implementation accessible to the research community by pro-
viding it as a web service with possibility to download the generated graphs1.

The rest of the paper is organized as follows. Section 2 contains problem de-
scription and section 3 describes the details of CKB. In section 4 accuracy and
performance of the method are evaluated. We conclude in section 5 with possible
future directions.

2 Problem
Let’s consider a graph G = (V,E), where |V | = N1 and |E| = m. A com-

munity Ci with |Ci| = nci is defined as an induced subgraph. The number of
communities is N2, all communities together constitute a cover of a graph. The
number of entries of j-th node into different communities (node-community mem-
berships) is mj .

The internal (dintj) and external (dextj) degree of vertex j ∈ Ci are defined
as the number of edges connecting j to other vertices in Ci or to the rest of the
graph respectively. So the total degree of vertex j is dj = dintj + dextj . Number of

edges inside Ci is dci = 1
2

∑
∀j∈Ci d

int
j .

The task is to generate G with the following properties:

1. power law degree distribution: p(d) ∼ d−β [3];
2. giant connected component presence: ∃ G∗ ⊂ G : |V ∗| ∼ N1,∀ i, j ∈ V ∗

∃ w1, w2, ..., wk ∈ E∗ ∃ tl ∈ V :w0 = (i, t0), w1 = (t0, t1), ..., wD = (tD−1, j) [11];

1 http://ckb.at.ispras.ru/

3. small effective diameter: ∀ i, j ∈ V ∗∃ w1, w2, ..., wk ∈ E∗ ∃ tl ∈ V :w0 =
(i, t0), w1 = (t0, t1), ..., wDi,j = (tDi,j−1, j) such that

P
(

(1− ε) lnN1

ln lnN1
≤ Di,j ≤ (1 + ε) lnN1

ln lnN1

)
→ 1 for N1 →∞ [1];

4. users could have zero degrees and memberships: dj ≥ 0, mj ≥ 0;
5. communities are overlapping: ∃ Ci, Cj : Ci ∩ Cj 6= ∅ [6];
6. each community Ci is connected with high probability:

P (Ci is connected) ≥ 1− 1
nCi

;

7. intra-community density is larger than the average link density of whole graphG:
dCi

nCi (nCi−1)
> m

N1(N1−1) [7];

8. number of edges inside the community is greater than number of edges linking
vertices of the community with the rest of the graph: dCi >

∑
∀j∈Ci d

ext
j ;

9. number of edges in the community increases superlinearly with the commu-
nity size: dCi ∝ n

1+γ
Ci

, where γ ∈ (0, 1) [14];

10. user-community memberships have power-law distribution: p(mi) ∼ m−β1

i [14];

11. size of communities has power-law distribution: p(nCi) ∼ n
−β2

Ci
[5];

12. overlaps of communities are more densely connected than the non-overlapping

parts: ∀ Ci∀ Cj(i 6= j), Ci∩j = Ci ∩ Cj ⇒
dCi∩j

nCi∩j (nCi∩j−1)
>

dCi
nCi (nCi−1)

[13];

13. low-degree nodes tend to be part of very few communities, while high-degree
nodes tend to be members of multiple groups: di ∼ mi [8].

3 Method
The main steps of CKB graph generator are:

1. Degree sequences for users and communities are generated on the assumption
of input parameters;

2. Users are assigned to communities using modified configuration model [9];
3. Edges inside each community are generated using configuration model.

Fig. 1: General workflow

General workflow is shown in Figure 1. Master node is the central node of com-
putational cluster and by slave nodes we mean the rest of cluster nodes. HDFS
files are distributed across local file systems of slave nodes. On the master node,
the non-distributed part of computations is carried. During the distributed com-

putations, the master node assigns tasks to slave nodes and aggregates the re-
sults. First step of the generation process is done once on the master node while
second step is distributed across slave nodes. During the third step edge genera-
tion inside each community is performed in a distributed way, so that each slave
node generates some part of edges which are then merged.

Table 1: Parameters of CKB

Parameter Meaning Default value

N1 number of nodes –

dmean mean node degree –

xmin minimum user-community memberships 1

mmin minimum community size 2

xmax maximum user-community memberships 10,000

mmax maximum community size 10,000

β1 > 1
power law exponent of user-community
membership distribution

2.5

β2 > 1 power law exponent of community size distribution 2.5

α > 0 affects edge probability inside communities 4

0 < γ < 1 affects edge probability inside communities 0.5

ε controls the number of edges in ε-community 2N−1
1

3.1 Users-communities bigraph generation
Bipartite graph (or bigraph) is a graph whose vertices can be divided into

two disjoint sets U and V and such that every edge connects a vertex in U to
one in V . In our case V (|V | = N1) is a set of nodes and U (|U | = N2) is a set of
communities. User-community affiliations are modeled as bigraph edges.
1. Number of users (nodes) N1 is a parameter. At first on the master node num-

ber of communities N2 is computed from the equation:
M0 = N1 · E[m] = N2 · E[x], (1)

where E[m] and E[x] are the expectation of node memberships and commu-
nity sizes respectively. The number of generated edges is defined as

M = (1 + E[Pmultci,j])M0, (2)

where Pmultci,j
is multiple edge probability (section 3.3) which helps to reduce

the bias introduced by deleting multiple edges.
k-th moment of the random variable distributed by power law with exponent
(β1 for membership distribution and β2 for community size distribution are
parameters) is

E[xk] =

∫ xmax

xmin

xkp(x)dx =

∫ xmax

xmin

xk
1− β

x1−βmax − x1−βmin

x−βdx, (3)

since p(x) = 1−β
x1−β
max−x1−β

min

x−β . So,

E[xk] =
(1− β)(xk+1−β

max − xk+1−β
min)

(x1−βmax − x1−βmin)(k + 1− β)
(4)

Note that for k − β + 1 = 0 the expectation equals to

E[xk] =
1− β

x1−βmax − x1−βmin

ln

(
xmax
xmin

)

2. Identical power law degree sequences are generated on each slave node.
3. Each vertex is associated with degree (d1i for i-th user-node and d2j for j-th

community-node) from degree sequence that was generated at previous step.
4. Numbers D1

1 = d11, D1
2 = D1

1 + d12, ... , D1
k+1 = D1

k + d1k+1, ..., D1
N1

=
D1
N1−1 + d1N1

and D2
1 = d21, D2

2 = D2
1 + d22, ... , D2

k+1 = D2
k + d2k+1, ...

,D2
N2

= D2
N2−1 + d2N2

are computed.
5. For the sequence of natural numbers

[M] = {1, 2, 3, . . . , bM
s
c},

where bxc = max{n ∈ Z|n ≤ z} and s is the number of slave nodes, compute
in a loop on each slave node:
for t = 1 to bMs c do:
(a) choose random natural numbers p and q from [M] with uniform distri-

bution;
(b) find the interval [D1

i , D
1
i+1] to what the number p belongs;

(c) find the interval [D2
j , D

2
j+1] to what the number q belongs;

(d) if i 6= j add to the bigraph an edge (i, j).
6. Merge all generated edges and remove multiple edges.

Complexity of this stage is O(M log(N1N2)).

3.2 Intra-community edges generation
At this stage edges between nodes are generated in conformity with their be-

longing to communities. We sample number of edges in community Cj from Bi-
nomial distribution (considering the number of multiple edges):

Mcj =
1

s
(1 + Pmultck

)Bin(xck , pck), (5)

where xck is community size, pck is edge probability in the community ck, s is
the number of slave nodes, and Pmultck

is multiple edge probability (section 3.3)
which helps to reduce the bias introduced by deleting multiple edges.

Then, on each slave node Mcj edges are generated using configuration model.
Finally, all generated edges are merged and multiple edges are removed. Self-loops
are filtered during the generation process.

For each pair of nodes i and j in the community ck the probability of edge
(i, j) is defined as

pck =
α

xγck
, (6)

where α and γ are parameters (0 < γ < 1, α > 0) [14].

The total probability of an edge between i and j in overall graph is

p(i, j) = 1−
∏

ck∈Cij

(1− pck), (7)

where Cij is a set of communities that i and j share [14].

Therefore, overlaps of communities are more densely connected than the non-
overlapping parts. Also low-membership nodes will have low-degree. And vice
versa, if membership of node increases then its degree is growing too.

ε-community To allow for edges between nodes that don’t share any common
communities, we add an additional ε-community [13] which connects any pair of

nodes with a small probability ε. This step is also necessary to ensure the exis-
tence of zero membership nodes with non-zero degrees in the resulting graph. In
other words, some part of users with low degrees are not members of any com-
munity.

The number of edges generated on each slave node is

Mε =
1

s

N1(N1 − 1)

2
ε, (8)

where ε is a parameter.
Complexity of this stage is O(Km), where Km =

∑
cj
Mcj .

3.3 Multiple edges
Knowing multiple edge probability for each step of generation helps to reduce

the bias introduced by deleting multiple edges produced by configuration mod-
els. So for users-communities bigraph generation the probability that in
bipartite graph an edge appears two or more times will be

Pmultci,j ≈
(xcimj

M

)2
(9)

For intra-community edges generation the probability of multiple edge is

Pmultck
≈ α2

4x2γck
(10)

3.4 Mean degree
Since mean degree is an important feature for graph analysis and community

detection algorithm testing, we obtained the dependence between input param-
eters α and γ and mean degree. Calculation of the mean degree allows to prove
that density of edges inside the community is increased than in overall graph.
Due to limited space we provide only the final equations. So the mean degree is:

dmean ≈
(S1 − S2 + S3)

(
N1

2

)
N1

, (11)

where N1 is the number of nodes in the whole graph and S1, S2 and S3 are

Sr = αrE
[∑
c1<...<cr

∏
k={1,...,r}

1

xγck

∏
t={i,j}

(xckmt

M

)]
(12)

Each moment E[xy] can be computed from (4). Now after solving the cubic
equation in variable α (and fixed γ) we can compute probability pci . But the (11)
is valid only with some constrains, that are not provided due to limited space.
3.5 Connectedness of community

Using known results on evolution of random graphs in Erdos-Renyi model [2]
we can claim the following:

Theorem 1 The community Ci is connected with high probability for
α > ln(xci)x

γ−1
ci (13)

4 Evaluation
We implemented the proposed method in Scala using Apache Spark2 - a frame-

work for efficient computations in distributed environment.
The results of running time evaluation on Amazon EC2 clusters and single

machine are shown in Figure 2. Near-linear scalability on the number of nodes in

2 http://spark.incubator.apache.org/

the generated graph allows to produce synthetic networks of huge size in reason-
able time: one billion nodes graph generation took < 2 hours on Amazon EC2
cluster with 100 m1.large instances.

Number of nodes (·106) Number of nodes (·106)
Fig. 2: Scalability evaluation results. Left: Amazon EC2 clusters of m1.large in-
stances, blue line - 2 slave nodes, red line - 4 slave nodes, yellow line - 8 slave nodes,
green line - 16 slave nodes. Right: single machine.

Degree Community size Membership Connected component

Fig. 3: Community size, user-community memberships, degree distribution and con-
nected component distribution for N1 = 106, β1 = β2 = 2.5

Table 2: Comparison of CKB against SNAP networks and LFR

Orkut LiveJournal YouTube CKB LFR

Number of nodes 3M 4M 1.1M 3M 97.5K 100K

Mean degree 76.2 17.3 5.3 109.9 68.8 66.7

Community size power law
exponent βcommsize

2.12 2.14 2.36 2.19 2.57 2.54

Membership power law
exponent βmemb

1.59 2.22 2.83 2.28 2.62 –

Degree distribution power law
exponent βgraph

1.58 2.15 2.53 2.22 2.54 2.56

Community size
distribution median

16 2 3 5 49 40

Membership distribution median 14 2 1 7 1 1

Average clustering coefficient 0.169 0.353 0.172 0.039 0.055 0.226

Effective diameter deff 4.8 6.4 6.5 4.38 3.88 3.98

Generation time (sec) – – – 160 11 863

Table 2 summarizes the most important statistics of LiveJournal, ORKUT
and YouTube datasets from Stanford Large Network Dataset Collection3 and
compares them with CKB and LFR benchmarks [5]. Comparing the tables sug-
gests that CKB graphs have very similar structural properties to real networks.
The only difference is low average clustering coefficient of the generated networks.
However, achieving more realistic clustering coefficient requires some changes in
the edge generation process and is a subject of future work.

5 Conclusion
A method for distributed generation of large benchmark networks with realis-

tic properties of social graph and social community structure has been introduced
and evaluated. Possible directions for future work include:
– distributed computation of Normalized Mutual Information or other mea-

sures for comparing covers of communities;
– testing different community detection algorithms;
– allow to control clustering coefficient and degree correlation of nodes.

References
1. Albert, R., Jeong, H., and Barabasi, A.-L. Diameter of the world wide web.

Nature 401 (1999), 130–131.
2. Erdos, P., and Renyi, A. On the evolution of random graphs. Bull. Inst. Int.

Statist. Tokyo 38 (1961), 343–347.
3. Faloutsos, M., Faloutsos, P., and Faloutsos, C. On power-law relationships

of the internet topology. SIGCOMM (1999), 251262.
4. Fortunato, S. Community detection in graphs. Physics Reports 486, 3 (2010),

75–174.
5. Lancichinetti, A., and Fortunato, S. Benchmarks for testing community de-

tection algorithms on directed and weighted graphs with overlapping communities.
Phys. Rev. 80(1) (2009).

6. Lancichinetti, A., Fortunato, S., and Kertsz, J. Detecting the overlapping
and hierarchical community structure in complex networks. New J. Phys. (2009).

7. Leskovec, J., Lang, K. J., Dasgupta, A., and Mahoney, M. Statistical prop-
erties of community structure in large social and information networks.

8. Mislove, A., Marcon, M., Gummadi, K., Druschel, P., and Bhattacharjee,
B. Measurement and analysis of online social networks. IMC (2007).

9. Molloy, M., and Reed, B. A critical point for random graphs with a given
degree sequence. Random Structures and Algorithms 6 (1995), 161–180.

10. Plantié, M., and Crampes, M. Survey on social community detection. In Social
Media Retrieval. Springer, 2013, pp. 65–85.

11. Spencer, J. The giant component: The golden anniversary. Not. Am. Math. Soc.
401 (1999), 130–131.

12. Xie, J., Kelley, S., and Szymanski, B. K. Overlapping community detec-
tion in networks: the state of the art and comparative study. arXiv preprint
arXiv:1110.5813 (2011).

13. Yang, J., and Leskovec, J. Community-afliation graph model for overlapping
network community detection. In IEEE 12th International Conference on Data
Mining (2012).

14. Yang, J., and Leskovec, J. Structure and overlaps of communities in networks.
In ACM SIGKDD Conference on Knowledge Discovery and Data Mining (2012).

3 http://snap.stanford.edu/data/index.html

