
1 INTRODUCTION
The STEP is a family of emerging international
Standards for the Exchange of Product Model Data
developed by the ISO Technical Committee 184 “In-
dustrial automation systems and integration” (ISO
1994). The STEP provides standardized mechanisms
to specify information models using the EXPRESS
language as well as to exchange and to share model-
driven data in the ways neutral to potential software
platforms and applications. Since such data are usu-
ally generated and shared by different applications,
some integrity constraints may be violated, data con-
sistency may be falsified and application interopera-
bility may be destroyed. Therefore, STEP-compliant
applications and distributed systems must incorpo-
rate some mechanisms to ensure that integrity con-
straints are always satisfied and the shared data are
consistent and meaningful for all the stakeholders
involved in joint multidisciplinary projects.

The tasks of integrity enforcement attracted much
effort in the area of database management systems,
particularly in the deductive and relational database
communities (Pacheco 1997). The issues of integrity
checking and maintenance of object-oriented data
were also investigated (Mayol & Teniente 1999), but
in some restrictions imposed on the information
models, integrity constraints and update operators,
not enabling expansion of the results into the verifi-
cation tasks relating to general EXPRESS schemata.

In the paper the approach to verification of product
model data is developed and discussed. The general
approach encompasses all the variety of data and con-
straints assumed by EXPRESS information modeling
language. In particular, it allows such constraints as
referential integrity, cardinality constraints, attribute
domain and object domain constraints, uniqueness
and global rules. The approach provides for efficient
solutions to verify product model data both com-
pletely and incrementally under single and multiple
updates caused by insertion, deletion, and modifica-
tion operations. Complete verification is usually em-
ployed to guarantee consistency of the information
accumulated in persistent data stores or exchanged
between interoperable software applications. Incre-
mental verification allows to manage the information
consistency more effectively if the data updates have
local and latent character. In particular, this is the case
if common multidisciplinary data are shared among
separate software applications involved in distributed
collaborative transactions (Ramamritham & Chrysan-
this 1997).

The approach implementation issues are also of
the paper subject. The presented methods are ori-
ented on effective static analysis of EXPRESS speci-
fications, compilation of optimized codes for the in-
tegrity checking and maintaining procedures and
their highly efficient runtime execution.

Realization of the complete verification is rather
straightforward. It is based on translation of con-
straint predicates given by declarative specifications

Efficient verification of product model data: an approach and an analysis

V.A. Semenov, A.A. Bazhan, S.V. Morozov & O.A. Tarlapan
Institute for System Programming of the RAS, Moscow, Russia

ABSTRACT: In the paper an approach to verification of product model data is developed and discussed. The
general approach encompasses all the variety of data and constraints assumed by EXPRESS language and
provides for efficient solutions to verify product model data both completely and incrementally under single
and multiple updates caused by insertion, deletion, and modification operations. The implementation methods
are also of the paper subject. The methods are oriented on static analysis of specifications, compilation of op-
timized codes for the integrity checking and maintaining procedures and their efficient runtime execution. In
the paper a performance analysis is conducted to compare the developed OpenSTEP Checker application with
available similar programs and to form some qualitative criteria for efficient verification of product model
data in various application contexts. The results are given in conformity to IFC standard that is of principal
importance for achieving semantic interoperability in the architecture, engineering, and construction.

C
o
n
st

ru
ct

io
n
 I

n
fo

rm
at

ic
s

D
ig

it
al

 L
ib

ra
ry

 h
tt

p
:/

/i
tc

.s
ci

x.
n
et

http://itc.scix.net
http://itc.scix.net

of information schema into some imperative lan-
guage and corresponding execution environment.

Realization of the incremental verification is
more sophisticated as it must guarantee acceptable
localization of all the potential violations caused by
possible data updates. The fundamental means of the
developed incremental method are reconstructed de-
pendency and inference graphs permitting to interre-
late EXPRESS constraints and possible data updates
in pre-compile time and to significantly reduce the
search space for the integrity checking procedures
executed at runtime (Semenov et al. 2004b).

Being realized in a strong way, the incremental
verification enables to detect potential violations
without performing costly evaluations of all the con-
straints imposed by an information schema. Never-
theless, it requires additional expenses on analysis of
established inference relations between constraints
and updates and may result in lower total efficiency.
In the paper a performance analysis is conducted to
compare the developed OpenSTEP Checker applica-
tion with functionally similar programs and to form
some qualitative criteria for efficient verification of
product model data in various application contexts.
The results of analysis are given in conformity to
emerging IFC standard (IAI 1999) that is of princi-
pal importance for achieving semantic interoperabil-
ity of software applications in the architecture, engi-
neering, construction, and facility management
industry domains.

2 OBJECT-ORIENTED METAMODEL

2.1 Formal model
So, we define an object-oriented data schema as a
structure SSSS RuleFuncAttrTS ,,,,p= with the
following meaning:
− SS

D
S

D
S CTTT ∪∪= — a set of data types of

the information schema consisting of basic types
S

DT mapped into basic semantic domain D, de-
rived types S

DT mapped into multi-valued con-
strained semantic domain D , and object types

SC ;
− p — a partial order on ST reflecting the gener-

alization/specialization relations induced to em-
ploy an inclusion polymorphism;

− SAttr — a set of attributes and constants. Each
attribute SC Attra ∈ defined by the object type C
is represented by a pair of operation signatures

TCaC a: , CTCaC a×: for functions ac-
cessing the attribute value of the type T. Defining
an attribute SC Attra ∈ of the type C ′ establishes
an association relation between the object types

CC ′, with the corresponding role Ca ;
− SFunc — a set of imperative methods

SFuncf ∈ with a generic signature
mn TTTTf ′′ ,,,,: 11 KaK , where the input and

output data types nTT ,,1 K , Sm TTT ∈′′ ,,1 K may

be basic, derived or object types. For schema
functions SFuncf ∈ the signature is reduced to

TTTf n ′aK,,: 1 . Derived attributes of objects
SC Funcf ∈ can be represented by the special-

ized signature TCfC ′a: ;
− SRule — a set of semantic rules SRuler ∈ im-

posing integrity constraints upon object-oriented
data. They may limit the number, kind and or-
ganization of objects as well as impose relation-
ships among their states. The rules are repre-
sented by the predicate signature

logicalTTr n aK,,: 1 . Depending on data types
Sn TTT ∈,,1 K of the schema the scope of the

rules may be expanded into separate data, object
instances and whole object populations.
In a way quite similar to the algebraic specifica-

tion approach (Richters & Gogolla 1998), we pro-
vide a signature =ΣS ∪Ω∪Ω S

D
S

D
ST ,,(p

)SSS RuleFuncAttr ∪∪ , where S
DΩ , S

DΩ are sets
of operations defined on basic and complex derived
types. The signature formed by such way describes
all of the types and the operations belonging to the
information schema S as well as contains the initial
set of syntactic elements upon which the expressions

)|}({ ST TTvarExpr ∈ with variables indexed by the
types can be defined.

A set of interrelated objects defined by the infor-
mation schema S with attribute values and associa-
tions established among them constitutes the state of
an object-oriented model SM . In conformity with
our discussion, SM is a product model data defined
by some information schema S.

A named subset of objects of the model SM re-
lating to the same type SCC ∈ is referred to by ob-
ject population SMp ⊂ . Let SCpC ∈)(is an object
type assigned to the population p of the model SM .
The set of all the objects of the model SM belong-
ing to the same type SCC ∈ is called by type extent

),(CMext S . Obviously that if the types SCC ∈1 ,
SCC ∈2 , and 21 CC p , then the subset relation

),(),(21 CMextCMext SS ⊆ takes place for the de-
rived type extents. Moreover, for any population p
of the model SM such as CpC p)(, the relation

),(CMextp S⊆ is always true.
For the purposes of clarity we explain further the

introduced formalism and consider shortly syntax
and semantics of the EXPRESS language that is of
great importance for specification of arbitrary prod-
uct model schemas using the general object-oriented
notation.

2.2 EXPRESS data model
EXPRESS introduces basic data types {Real, Integer,
Number, Boolean, Logical, String, Binary} DT⊆ of
usual semantics. Complex types DT and object types
C are defined using {Bag, Set, List, Array, Enumera-
tion, Select, Defined} and {Entity} declarations corre-
spondingly. These metatype constructions permit to C

o
n
st

ru
ct

io
n
 I

n
fo

rm
at

ic
s

D
ig

it
al

 L
ib

ra
ry

 h
tt

p
:/

/i
tc

.s
ci

x.
n
et

http://itc.scix.net
http://itc.scix.net

define different sorts of aggregates, enumerations, se-
lections, classified objects as well as to derive nested
data types with hierarchically imposed constraint sets
from already defined ones.

Simple data types are Boolean, Logical, Number
(including particular subtypes Real and Integer),
String, and Binary. Interpretation of the simple types
is usual, but we extend each set with a special value
? denoting the undefined value. A type DTT ∈ is
mapped to a semantic domain D by a function

DTI a: as follows: I (Boolean) = {true, false}
}{?∪ , I (Logical) = {true, false, unknown} }{?∪ , I

(Real) = R }{?∪ , I (Integer) = Z }{?∪ , I (String) =
}{* ?A ∪ , where A is a finite alphabet, *A is a set

of all sequences over the alphabet A , and I (Binary)
= }{}1,0{ * ?∪ . The String and Binary variables may
have fixed or varying sizes with limits defined by
corresponding derived types.

Repertoire and semantics of the operations de-
fined on the simple types is well understood. These
are arithmetic operations on numeric operands of
Number, Real, Integer types and standard mathe-
matical functions; translation of the numbers into
string representation and backwards; logical opera-
tions on operands of Logical or Boolean types; con-
catenation, pattern matching, indexing, subset opera-
tions on String and Binary operands as well as
comparison operations defined for all the simple
types. Some operations have the same overloaded
name symbol and can be distinguished only by look-
ing at their argument types.

Constructed types that may be either enumeration
or selection data types extend the set of basic types.
The domain of an enumeration type Enumeration is
given by an ordered set of values represented by
unique names ==)),,1,((nianEnumeratioI i K

}{},,1,{ * ?niAai ∪=∈ K . The literal values of the
enumeration type are referred to as enumeration
items. Ordering of the enumeration items results in
comparison operations.

A selection data type Select defines a derived
type represented by a list of the other underlying
types. The selection instance is an instance of one of
the types specified in the selective list. Therefore the
selection data type is a generalization of its underly-
ing types and its value domain is the union of the
underlying type domains ==)),,1,((niTSelectI i K

}{)()(1 ?TITI n ∪∪∪K .
A Defined data type is an user extension to the

standard data types available in EXPRESS excepting
that it enables to define additional semantic con-
straints imposed upon specified data. Therefore the
defined type is always a concretization of its under-
lying type and its value domain =))((TDefinedI

}{)(?TI ∪ .
Object types are defined by declaring their ex-

plicit, inverse, derived attributes and local rules.
Generalization relations between object types are es-
tablished via simple and multiple inheritance

mechanisms. The inherited object type shares all the
attributes and rules encapsulated by its parent super-
types, but can redefine them by specializing attribute
types and imposing more restricted semantic con-
straints upon object states.

On object types the following common operators
are defined. The relational operators = and <> are
intended to compare the real states of objects.
Unlike deep comparison operators, the operators :=:
and :<>: permit to identify objects themselves. For a
given object the function rolesof returns a list of
qualified names of associations in which it takes
part. The function usedin returns a set of objects
connected with a given object via an association
given by its qualified name. Availability of these
functions in the language repertoire makes possible
the navigation over object-oriented models via asso-
ciations in both directions.

Multi-valued expressions in EXPRESS are de-
scribed by aggregation metatypes Array, List, Bag,
and Set. So, Array data type is a fixed-size structure
where indexing of the elements is essential. Option-
ally, arrays can admit that not all of the elements
have a value. List data type represents an ordered
collection of like elements. A list can hold any num-
ber of elements allowing or, optionally, not allowing
their duplication. Bag data type is a collection of
elements in which order is not relevant and duplica-
tion is allowed. And, finally, Set is a collection of
elements in which order is not relevant and where
duplicate elements are not allowed. The number of
elements in lists, bags, sets may vary, depending on
their limit specifications.

Set operators +, -, * are defined to union, to dif-
ference, and to intersect collections of compatible
types 1T , 2T . Relational operators, including subset
and superset operators <=, >=, are intended to es-
tablish relations of equality and generality between
collections. Pairs of relational operators =, <> and
:=:, :<>: are semantically equivalent for all the ag-
gregation data types except for aggregates of objects
with differences pointed above. The membership
operators value_in and in test a given element for
membership in an aggregate by value and instance
equivalence. The query expression evaluates a logi-
cal condition individually against each element of an
aggregate and returns an aggregate containing the
elements for which the logical expression evaluates
true. The indexing operator [] extracts a single ele-
ment from an aggregate. Operations sizeof, hiindex,
loindex, hibound, lobound return the number of ele-
ments in an aggregate, the upper and the lower indi-
ces of array elements, the upper and the lower
bounds of lists, bags, sets correspondingly. The in-
sert and remove operations are defined additionally
to simplify manipulations with lists.

Aggregation, selection, and defined types may be
nested allowing the construction of more complex
multidimensional structures that cannot be avoided C

o
n
st

ru
ct

io
n
 I

n
fo

rm
at

ic
s

D
ig

it
al

 L
ib

ra
ry

 h
tt

p
:/

/i
tc

.s
ci

x.
n
et

http://itc.scix.net
http://itc.scix.net

in such non-trivial information models as STEP ap-
plication protocols (ISO 1994).

EXPRESS provides for predefined abstract data
types Generic, Aggregate, BagOfGeneric, SetOf-
Generic, ListOfGeneric, ArrayOfGeneric that can be
used to specify functional methods in generic man-
ner. Being defined on Generic type some operators
can be applied also to any data. These are the func-
tion exists that tests whether a given variable has de-
fined state, the function nvl that returns alternative
value if a variable is in undefined state, and the
function typeof that forms the set of all type names
the given value belongs to.

2.3 EXPRESS constraint model
In addition to declarative part, the EXPRESS lan-
guage provides for imperative constructions neces-
sary to specify the integrity constraints imposed
upon object-oriented data. The semantic constraints
are defined in the form of rules that can be condi-
tionally categorized into three groups.

The first group is related to rules defined for
separate data items and imposed upon them:
− limited width of Stringdata∈ , Binarydata∈ :

,)(ndatalength ≤ 0>n for strings and binaries
of varying length or ,)(ndatalength = 0>n for
data of fixed length;

− limited number of elements in aggregates:
)()()(aggrhiboundaggrsizeofaggrlobound ≤≤

for lists, bags, and sets ∪∈ ricListOfGeneaggr
icSetOfGenericBagOfGener ∪ , and

=)(aggrsizeof 1)()(+− aggrloindexaggrhiindex
for arrays ericArrayOfGenaggr ∈ ;

− nonidentity of elements in unique aggregates:
][::][jaggriaggr ≠ for all indices such as ji ≠

and)(,,1, aggrsizeofji K= in sets and unique
lists ricListOfGeneicSetOfGeneraggr ∪∈ , and

)(,),(, aggrhiindexaggrloindexji K= in unique
arrays ericArrayOfGenaggr ∈ ;

− defined elements in non-optional arrays
ericArrayOfGenaggr ∈ : Trueiaggrexists =])[(,

where)(,),(aggrhiindexaggrloindexi K= ;
− domain rules for a defined data type

)(TDefineddata∈ : niTruedatarulei ,,1,)(K== ,
where the rules irule are given by logical expres-
sions. The value domain of the defined type De-
fined(T) is formed as a domain of the underlying
type T except for the values violating at least one
rule.
The second group consists of the rules assumed

or defined by separate object types and shared by
their instances. The following constraints are cov-
ered by this group:
− type compatibility of object attributes and as-

signed values Cobjvalaobj ∈= ,. :
),.((_ aobjtypeinvalue Truevaltypeof =))(. The

types must be equivalent or the attribute type
must generalize the value type;

− required values of non-optional attributes of ob-
jects Cobj∈ : Trueaobjexists i =).(, ni ,,1K= ;

− limited cardinality of inverse associations
bCaC qpnm .. 2

}:{}:{
1 ⎯⎯⎯⎯ →⎯ in objects 2Cobj∈ :

qbobjsizeofp ≤≤).(. If an inverse attribute is
specified as a set of objects, an uniqueness con-
straint][.::][. jbobjibobj ≠ for all the indices such
as ji ≠ ,).(,,1, bobjsizeofji K= is additionally
imposed upon the objects participating in such
associations;

− nonidentity of value sets for unique attributes
kaaC ,...,. 1 : 11 .::. aobjaobj ji ≠ or … or

kjki aobjaobj .::. ≠ for),(, CMextobjobj Sji ∈ ,
ji ≠ , i.e. no two objects of the model cannot

share the same set of unique attribute values;
− domain rules for objects Cobj∈ : =)(objrulei

True , ni ,,1K= , where the rules irule are given
by some logical expressions. The inspected object
belongs to value domain if all the domain rules
predefined by its types are satisfied. These con-
straints are used to bound the values of individual
attributes and their combinations for separate ob-
jects and their groups.
Finally, the third category of constraints available

in the EXPRESS language is global rules:
niTrueCMextCMextrule kSSi KK ,1,)),(,),,((1 ==

where the rules irule are given by some logical
functions with factual parameters being correspond-
ing object type extents. These rules are defined im-
mediately by an information schema and enable in-
terrelate the states of whole object populations.

Notice that the result of verification of any rule is
logical one meaning that the constraint may be as-
serted, unknown or violated. According to the
EXPRESS semantics only violated constraints are in-
terpreted as not conforming to the schema. Therefore
to be valid the model must contain all valid objects
and also satisfy all the uniqueness and global rules
with asserted or unknown status. To be valid the ob-
ject must satisfy all the attribute constraints and do-
main rules with asserted or unknown status too.

3 VERIFICATION

There are two typical statements of verification
problems in conformity to STEP-driven product
model data. First one is the complete verification
that consists in checking of all the data within an ob-
ject-oriented model SM in strong correspondence
with all the rules formalized and enumerated below.
The second one is the incremental verification rea-
soning from local and latent character of possible
updates in the model SM .

The single updates may be object deletion
)(objdelete , SMobj ′∈ , object modification mod-

ify(obj), SS MMobj ′′′∈ , and object insertion
)(objinsert , SMobj ′′∈ , where SM ′ , SM ′′ — preced-

ing and current states of the model. Multiple updates C
o
n
st

ru
ct

io
n
 I

n
fo

rm
at

ic
s

D
ig

it
al

 L
ib

ra
ry

 h
tt

p
:/

/i
tc

.s
ci

x.
n
et

http://itc.scix.net
http://itc.scix.net

are compositions of the single updates. Often, being
occurred within transactions, the updates have par-
tial character, which may be effectively exploited for
localization of potential violations without perform-
ing costly evaluations of all the constraints for the
model. Because of complete verification of complex
large-scale product model data is a computationally
expensive task, the incremental approach may result
in higher efficiency and makes the consistency en-
forcement policy to be applicable in some practice-
important cases.

3.1 Complete verification
Complete verification is rather straightforward and
can be conducted using the following transparent al-
gorithm:

for each Object in Model
 for each Attribute of Object
 Check AttributeRule (Object, Attribute)
 for each domain Rule of Object
 Check DomainRule (Object, Rule)
for each uniqueness Rule defined for type C
 Check UniquenessRule (ext(Model,C), Rule)
for each global Rule defined for types C1,…,Ck
 Check GlobalRule (ext(Model,C1),…,ext(Model,Ck),Rule)

It is suggested that the algorithm logs the errors
pointing out what rules are violated and for which
attributes, objects and type extents. In the first exter-
nal loop all the constraints related to separate object
attributes and object domains are checked. The next
loop realizes checking of uniqueness rules defined
for some object types. To evaluate the rules the cor-
responding type extents have to be extracted from
the inspected model. In the third loop the algorithm
checks all global rules with factual parameters being
proper type extents of the model.

3.2 Incremental verification
Here we outdraw the developed method for incre-
mental verification of data defined by the EXPRESS
schemata. The method takes into account all variety
of the constraints available in EXPRESS and ex-
ploits the introduced concepts of dependency and in-
ference graphs. In more details the method is pre-
sented and described in our work (Semenov et al.
2004b).

First of all, to effectively analyze data dependen-
cies, transitions between model populations should
be defined. Every transition either direct or associa-
tive one realizes some relation between the popula-
tions and produces some transition function that be-
ing evaluated makes the states of the interrelated
populations to be consistent. A direct transition

DRr ∈ ,)(: jippr ji ≠→ realizes a subset relation
between object populations of compatible types so
as if)()(ji pCpC p then ji pp ⊂ and if

)()(ji pCpC f then ji pp ⊃ . Every associative
transition ARr∈ , ji ppr →: (possibly, i = j) real-

izes some association relation defined by the schema
for the corresponding object types)(ipC and

)(jpC in explicit or implicit way. In particular, if a
transition realizes an association role, then the rela-
tion takes form ji prolepUse ⊂),(, where

),(rolepUse i is a set of all the objects associated
with the population objects ip by the role.

A production function for the direct transition
DRr ∈ , ji ppr →: can be defined as

ijj pobjpp ∈∪=′)()(| jpCobjC p . For the asso-
ciative transition ARr∈ , ji ppr →: a production
function is formed as),(rpUseobjpp ijj ∈∪=′

)()(| jpCobjC p .
The transitions can be inverted. A production

function of the inverted direct transition DRr∈ ,
ij ppr →: is given by jii pobjpp ∈∪=′

)()(| ipCobjC p . For the inverted associative tran-
sition ARr ∈ , ij ppr →: a production function can
be formed as),(rpUsedinobjpp jii ∈∪=′

)()(| ipCobjC p , where),(rolepUsedin j is a set of
all the objects with which the population objects jp
are associated by the role. Being applied twice, the
inversion operation returns the transition in its origi-
nal state.

Let S is an information schema, P is a set of
populations with prescribed types SCPC ∈)(and at-
tribute subsets SAttrPA ∈)(, and AD RRR U= is a
set of direct and associative transitions between
populations P. We call the structure RAPAG ,,
where populations P are represented by vertices, at-
tributes A — by marks assigned to vertices, transi-
tions R — by directed edges incident to correspond-
ing population vertices by attributive graph for the
schema S.

Navigation graph RAVUPNG ,,,, is like an at-
tributive graph RAVUPAG ,,∪∪ , where some
population vertices U and V are interpreted as
sources and sinks. In the used graphic notation the
source vertices are marked by incoming edges, the
sink vertices — by outgoing edges. For the naviga-
tion graph the operations of inversion, composition,
and reduction can be constructively defined. In par-
ticular, inversion of the navigation graph results in
inversion of all the transitions R and changing places
of all the source and sink vertices U, V.

The navigation graph ARVUPNG ,,,, for the
schema S gives a declarative query in SM . Parame-
ters of the query are initial states SMu ⊂ of the
source populations U, and the result is the states

SMv ⊂ of the sink populations V such as all the
transition relations are satisfied. The query can be
evaluated by means of production functions applied
to all transitions of the graph until the population
states are not updated.

Although navigation graphs allow cycles, the
definition of the query is constructive as it guaran-
tees determinism: the query processing routine is
always finished for a finite number of evaluations of
production functions and the query result does not C

o
n
st

ru
ct

io
n
 I

n
fo

rm
at

ic
s

D
ig

it
al

 L
ib

ra
ry

 h
tt

p
:/

/i
tc

.s
ci

x.
n
et

http://itc.scix.net
http://itc.scix.net

depend on the way how the transitions were serial-
ized.

The introduced navigation graphs and queries
have an important application for analysis of data
dependencies caused by imposed constraints. For
this purpose a dependency graph

ARVUPDG f ,,,, can be constructed for each
method SFf ∈ of the schema S.

The method dependency graph is a navigation
graph that can be constructed for any method of the
schema like procedure, function, derived attribute,
domain or global rules in accordance with some
formal procedure. The procedure assumes that for-
mal and factual parameters of the method, local vari-
ables, regular path expressions having object-related
types correspond to the graph vertices P, U, V. At
that, local variables and regular expressions are rep-
resented by the vertices P, input parameters and fac-
tual output parameters of called methods — by the
sources U, output parameters and factual input pa-
rameters of called methods — by the sinks V. The
object-related types mean here object types, aggre-
gates of objects, selections of objects, and proper
nested derived types.

Attribute subsets A are formed and prescribed to
corresponding vertices P, U, V, if attributes of all the
other types are used in the method expressions hav-
ing object-related types. Transitions in the depend-
ency graph correspond to operations of type casting,
set-theoretic operations, calls of methods, and also
to separate terms in regular path expressions. For
brevity we omit the details and address to the men-
tioned work, where the procedure has been com-
pletely described.

The schema dependency graph
FARVUPDGS ,,,,, is a graph composed of the

dependency graphs ARVUPDG f ,,,, constructed
for all the methods SFf ∈ of the schema S. As a re-
sult of the composition all the elements belonging to
the particular dependency graphs are marked by the
method identifiers F and method calls are resolved
in the following way. The sinks being factual input
parameters of called methods are connected via di-
rect transitions with sources being formal parameters
of these methods. The sinks being formal output pa-
rameters of called methods are connected via direct
transitions with sources being factual parameters of
the methods. At that, all the sources not participating
in method calls resolution and being sources of veri-
fication rules are remaining sources, and all the
other vertices are becoming sinks (at more detailed
consideration additional categorization of vertices is
possible and may be useful).

Being navigation graph and defining queries in
the inspected model, the schema dependency graph
can be applied to localize the model objects that
would participate in verification of separate rules.
For this purpose the sources of the analyzed rule

SFf ∈ have to be initialized by the model objects

and a query based on the schema dependency graph
has to be evaluated. The result of the query will in-
clude all the model objects potentially participating
in verification of the rule. Indeed, taking into ac-
count static associative and subset relations between
object populations and omitting conditional state-
ments, the method and schema dependency graphs
result in extended querying and guarantee localiza-
tion of all the objects participating in the rule verifi-
cation.

The graph FARVUPIGS ,,,,, inverted to the
schema dependency graph FARVUPDGS ,,,,, is
called by inference graph.

By construction the inference graph enables to
localize rules that might be violated as a conse-
quence of some updates occurring in the model. To
form a navigation query the sources of the inference
graph have to be initialized by modified objects. The
result of the query evaluation is the model objects
accumulated in sinks. Each non-empty sink popula-
tion gives both objects and assigned rule SFf ∈ that
might be violated through modifications. It is essen-
tial that violations may occur only if some attributes
and associations of the modified objects have been
changed. The formed attribute subsets A and the
constructed transitions R are just those metadata that
permit to conduct such analysis. Navigation over the
inspected model using the inference graph extends
the sets of objects and rules that could be disturbed
and, therefore, it guarantees localization of all the
rule violations.

Using the assertions above, algorithms for incre-
mental verification can be proposed. Here we pre-
sent the algorithm applicable to single and multiple
updates of all kinds. Modification operations are
represented as a succession of the deletion and inser-
tion operations.

construct scheme inference graph (SIG)
for each DELETED Object in Model
 for each Attribute’ in RolesOf(Object)
 for each not deleted Object’ in UsedIn(Object, Attribute’)
 Add AttributeRule(Object’, Attribute’) to Check List
 for each not deleted Object’ in Use(Object, Attribute)
 for each Attribute’ of Object’ inverse to Attribute
 Add AttributeRule(Object’, Attribute’) to Check List
 for each Source vertex in SIG such as
 Type(Object) in TypeOf(Source)
 Add Object to Source populations
evaluate query
for each Sink vertex in SIG
 for each Object’ in Sink populations with assigned Rule
 if (Rule is domain) then
 Add DomainRule(Rule, Object’) to Check List
 if (Rule is unique) and (Rule is not in CheckList) then
 Add UniquenessRule(Rule) to Check List
 if (Rule is global) and (Rule is not in CheckList) then
 Add GlobalRule(Rule) to Check List
delete DELETED Objects from Model

insert INSERTED Objects in Model
for each INSERTED Object in Model
 for each Attribute of Object C

o
n
st

ru
ct

io
n
 I

n
fo

rm
at

ic
s

D
ig

it
al

 L
ib

ra
ry

 h
tt

p
:/

/i
tc

.s
ci

x.
n
et

http://itc.scix.net
http://itc.scix.net

 Add AttributeRule (Object, Attribute) to Check List
 for each not inserted Object’ in Use(Object, Attribute)
 for each Attribute’ in Object’ inverse to Attribute
 Add AttributeRule(Object’, Attribute’) to Check List
 for each Source vertex in SIG such as
 Type(Object) in TypeOf(Source)
 Add Object to Source populations
evaluate query
for each Sink vertex in SIG
 for each Object’ in Sink populations with assigned Rule
 if (Rule is domain) then
 Add DomainRule(Rule, Object’) to Check List
 if (Rule is unique) and (Rule is not in CheckList) then
 Add UniquenessRule(Rule) to Check List
 if (Rule is global) and (Rule is not in CheckList) then
 Add GlobalRule(Rule) to Check List

for each Rule(Rule, Object, Attribute) in Check List
 if (Rule is attribute) then
 Check AttributeRule (Object, Attribute)
 if (Rule is domain) then
 Check DomainRule (Object, Rule)
 if (Rule is uniqueness defined for type C) then
 Check UniquenessRule (ext(Model,C), Rule)
 if (Rule is global defined for types C1,…,Ck) then
 Check GlobalRule (ext(Model,C1),…,
 ext(Model,Ck),Rule)

At the first phase the algorithm produces a list of
rules that might be violated and have to be subjected
to subsequent verification. Elements of the list are
triples containing attribute, object, and rule. The list
is formed of attribute rules for the inserted objects,
cardinality attribute rules for the objects directly as-
sociated with the deleted and inserted objects as well
as from domain, global and uniqueness rules local-
ized by means of navigational querying. The queries
based on the schema inference graph are initialized
and evaluated twice: for localization of potential
violations caused by deleted objects, then for local-
ization of violations caused by inserted objects.

At the second phase the algorithm verifies suspi-
cious rules that are extracted from the list, evaluated,
and logged if some disturbances have been detected.

4 IMPLEMENTATION AND ANALYSIS

The presented approach to verification of STEP-
driven product model data provides for implementa-
tion methods based on static analysis of the informa-
tion schema specified at the EXPRESS language,
compilation of executable codes for the integrity
checking and maintaining procedures and their
highly efficient runtime execution.

We foresee significant potential of the approach
presented to verify such complex high-scale product
data like those of defined by Industry Foundation
Classes (IFC). This information standard is devel-
oped by International Alliance for Interoperability in
conformity to architecture, engineering, construc-
tion, and facility management (IAI 1999). Signifi-
cant resources consumed to control the data consis-

tency are one of crucial points of available product
data management technologies and solutions.

We consider three basic aspects and methods to
increase efficiency of data integrity checking and
maintaining procedures in accordance with the pre-
sented approach. These methods have been realized
in OpenSTEP Checker: an application built on the
general-purpose software platform by ISP RAS (Se-
menov et al. 2004a).

The first aspect is to exploit so-called early bind-
ing formation and implementation of data access in-
terfaces taking into account particular information
schemas. It enables to access product data and to
evaluate the schema methods (rule predicates, de-
rived attributes, functions, and procedures) with
more speed than in the usage of late binding realiza-
tions. This advantage is achieved because execution
of precompiled imperative instructions is always
more efficient than their interpretation.

The second aspect is optimized implementation
of the schema methods taking into account of pecu-
liarities of the EXPRESS language. As our experi-
ence proves, the performance of the verification pro-
cedures can be increased by optimization of:
 queries given by object identifiers, inverse asso-

ciations, and subtyping relations;
 operations on arithmetic and logical operands

with extended (unknown) states;
 identity comparison operations;
 methods of recalculated derived attributes.

The third aspect is to take advantage of local and
latent character of the model updates peculiar to
transaction processing. The algorithm presented
above enables to effectively control and maintain
data consistency during user sessions. Its realization
can be combined with two mentioned methods.

To estimate operational costs IFC2x files were
used as timing benchmarks for some available veri-
fication programs, namely: OpenSTEP Checker, If-
cObjCounter v.1.1 by Forschungszentrum Karlsruhe
GmbH, Institute for Applied Computer Science
(http://www.iai.fzk.de), Express Engine v.3.1.4 de-
veloped within an open source project
(http://sourceforge.net/projects/exp-engine), and Ex-
press Data Manager v.4.080 by EPM Technology
AS (http://www.epmtech.jotne.com). Timing meas-
urements were made with data sets generated by
CAD systems and ranging in size from 1000 up to
100,000 objects. Complete verification option was
checked for all the explored applications. Costs to
load data from STEP files were ignored, only verifi-
cation costs were measured. Because of some pro-
grams didn’t provide built-in CPU timing capabili-
ties, all times were measured using a stop-watch.

The programs exhibited acceptable)log(NNO
growth characteristic. An asymptotic performance of
the IfcObjCounter was significantly slower, so we
were unable to complete measurements on data sets
with more than 50,000 objects. Its)(2NO extreme C

o
n
st

ru
ct

io
n
 I

n
fo

rm
at

ic
s

D
ig

it
al

 L
ib

ra
ry

 h
tt

p
:/

/i
tc

.s
ci

x.
n
et

http://itc.scix.net
http://itc.scix.net

behavior and a higher degree complexity might be
explained by insufficient optimization of underlying
verification algorithms and operations. In particular,
verification of uniqueness rules resulted in reduction
of the total performance more than 50 times even on
small data sets.

Being based on Common LISP, the Express En-
gine demonstrated much slower characteristics com-
pared with the OpenSTEP Checker. The conducted
measurements showed average 30 times perform-
ance losses. It may be caused by slow speed of in-
terpretation of LISP instructions and possible
complication of implementation of verification
programs against applications directly running in
execution environments.

The Express Data Manager is quite balanced in-
terpretation system that proceeds with arbitrary data
and attended schemas both loaded at runtime. Nev-
ertheless, it yields the pas to the OpenSTEP Checker
that employs early binding method to pre-compile
widely used EXPRESS schemas and to link the cor-
responding libraries to the target application dy-
namically. This method enabled to increase per-
formance of the program more than 3 times.

Thus, the OpenSTEP Checker is the fastest appli-
cation among the considered ones. Another advan-
tage is a capability to verify the data in an incre-
mental way. As such analysis is connected with
additional expenses on evaluation of navigation que-
ries, a priori quantitative criteria for the final effi-
ciency have to be established. To estimate potential
benefits of the incremental verification and to estab-
lish such criteria, special experiments have been per-
formed. The experiments simulated series of short
transactions each of which consisted of single object
modification. The whole series covered all the ob-
jects contained in the inspected models. The total
and averaged (related to the model size) CPU times
of incremental analysis and verification were meas-
ured.

The experiments detected that the averaged time
is roughly proportional to the time required for com-
plete verification of the model. For the selected
benchmarks this factor varied approximately from
0.001 up to 0.002. Therefore on short transactions
covering a few random objects the averaged per-
formance speedup amounts to hundreds and thou-
sands times. At that, if the transactions include the
updated objects participating in a few uniqueness or
global rules, the speedup may be drastically reduced
up to 10-25. On the other part, the conducted ex-
periments showed that being applied to long transac-
tions covering all the model objects, the incremental
analysis might require the CPU resources 3-6 times
exceeding the complete verification time. It means
that the threshold value for fraction of updated ob-
jects at that the incremental method gives benefits
may be varied widely enough. Nevertheless, if the
fraction of object updates in the model is less than

15 percentages, the usage of the incremental method
is quite motivated in most cases.

5 CONCLUSIONS

Thus, the approach to efficient verification of STEP-
driven product model data has been presented. The
approach combines ideas of exploiting early binding
implementation of data access interfaces, deep opti-
mization of verification programs and alternative us-
age of complete and incremental methods. The con-
ducted timing experiments showed that the
efficiency of the consistency checking and maintain-
ing procedures can be significantly increased and the
presented approach to efficient verification is realiz-
able and quite marketable. The demo version of the
OpenSTEP Checker can be downloaded from the
project site www.ispras.ru/~step.

The presented work is supported by the Russian
Foundation for Basic Research (grant 04-01-00527)
and the Russian Science Support Foundation.

REFERENCES

IAI 1999. IFC Technical Guide, International Alliance for In-
teroperability, <http://www.iai.org.uk/documentation/
IFC_2x_Technical_Guide.pdf>

ISO 1994. ISO 10303: 1994, Industrial automation systems
and integration — Product data representation and ex-
change.

Mayol, E. & Teniente, E. 1999. A survey of current methods
for integrity constraint maintenance and view updating. Ad-
vances in Conceptual Modeling: ER '99 Workshops on evo-
lution and change in data management, Reverse engineer-
ing in information systems, and the world wide web and
conceptual modeling, Paris, France, November 15–18,
1999: 62-73.

Pacheco, M. A. 1997. Dynamic integrity constraints definition
and enforcement in databases: a classification framework.
Proceedings of the IFIP TC-11 Working Group 11.5 First
working conference on integrity and internal control in in-
formation systems, Zürich, Switzerland, December 1997:
65-87.

Ramamritham, K. & Chrysanthis, P. 1997. Executive briefing:
advances in concurrency control and transaction process-
ing. IEEE Computer Society Press.

Richters, M. & Gogolla, M. 1998. On formalizing the UML
object constraint language OCL. In Tok-Wang Ling (ed.),
Proceedings of ER’98 — 17th International conference on
conceptual modeling, LNCS 1507: 449-464. Berlin:
Springer.

Semenov, V.A., Bazhan, A.A., Morozov, S.V. 2004a. Distrib-
uted STEP-compliant platform for multi-modal collabora-
tion in architecture, engineering and construction. Proceed-
ings of X international conference on computing in civil
and building engineering, Weimar, June 02–04 2004: 318-
319.

Semenov, V.A., Morozov, S.V., Tarlapan, O.A. 2004b. Incre-
mental verification of object-oriented data using constraint
specifications. In V.P. Ivannikov (ed.), Proceedings of In-
stitute for System Programming 8(2): 21-52. Moscow: ISP
RAS.

C
o
n
st

ru
ct

io
n
 I

n
fo

rm
at

ic
s

D
ig

it
al

 L
ib

ra
ry

 h
tt

p
:/

/i
tc

.s
ci

x.
n
et

http://itc.scix.net
http://itc.scix.net

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

