
Fast Text Annotation with Linked Data

Viktor, Ivannikov
ISPRAS

Moscow, Russia

e-mail: ivan@ispras.ru

Denis, Turdakov
ISPRAS

Moscow, Russia

e-mail: turdakov@ispras.ru

Yaroslav, Nedumov
ISPRAS

Moscow, Russia

e-mail:
yaroslav.nedumov@ispras.ru

ABSTRACT
The paper describes a system for text annotation with
links to ontologies extracted from linked data. We show
that there are no principle differences between the well-
known wikification task and the task of text annotation
with linked data. In this paper, we discuss performance
issues and critical parts of annotators.

Keywords
Text Processing, Semantic Similarity, Word Sense Dis-
ambiguation, Semantic Annotation

1. INTRODUCTION
Ontologies represent knowledge as a set of concepts and
relationships between them. Automatic ontology ex-
traction from user-generated content and usage of ex-
tracted information in natural language processing (NLP)
applications became extremely popular in recent years.

There are two general ways for ontology extraction dif-
ferent in a way of deal with relationships between con-
cepts. Complex approach tries to build ontology with
defined types of relations between concepts, such as
”Part of” or ”is a” relation. This way requires com-
plex analysis of the content.

Another approach represents knowledge as linked data
where link only shows that concepts are related without
defining type of relation. This way is much more sim-
ple but yet powerful for semantic analysis of text. In
this paper we show how to apply linked data for such
analysis.

Wikipedia is a first and most popular user-generated
resource for building ontologies. There are number of
attempts to build systems for automatic annotation of
textual documents with links to Wikipedia or ontologies
extracted from Wikipedia [7, 9, 12, 13, 14, 17]. Process
of such annotation is called wikification and mentioned
system are known as wikifiers.

Documents marked in this way could be useful for var-
ious types of applications [5] such as semantic search
systems, recommender systems, classification and clus-
tering tasks, etc. In addition, it is popular to annotate
complex terms with links to Wikipedia articles with de-
scriptions of terms meaning. This wikification helps to
organize complex collections of documents.

Wikipedia has well-organized structure and this is the
reason of its popularity. Each regular article describes
one concept of real word. Articles are interconnected,
and link between articles means that corresponding con-
cepts are somehow related between each other. Utiliza-
tion of Wikipedia as a corpus allows gathering of statis-
tics extremely useful for many NLP tasks.

Growing number of open linked data [2] (IMDB, Gene
Ontology, DBLP, etc.) allows to create new domain-
specific ontologies. Therefore the task of wikification
transforms to the task of annotation of natural language
text with links to domain-specific ontologies [11, 15].

In the rest of the paper, we compare different approaches
for building fast annotators of this kind and show that
there are no principle differences between wikification
and linking to domain-specific ontology.

2. TASK DEFINITION
Assume the existence of an ontology of interrelated con-
cepts, c ∈ O. Relation between concepts is represented
by a link λ(c1, c2). Each concept c is associated with
descriptive information such as a main textual repre-
sentation (name), list of synonymous representations,
description of the concept, and statistical properties.

In general, the task is defined as follows. For a given
document d composed of tokens (words or punctuation
mark):

• Term Annotation: find a set of non-overlapping
non-partitioning sequences of tokens referred to
as terms, t ∈ d, and establish unambiguous con-
nection between meaning m of term and concept
c ∈ O or mark term with special symbol ζ that
means that the meaning of the term is not pre-
sented in the ontology.

• Key Terms Detection: from set of detected
terms select most representative one for a given
document subset and mark each term in this sub-
set as key term.

3. TERM ANNOTATION
In this section, we describe general architecture of sys-
tems that annotate text with links based on analysis
of existing systems. Most of annotators consist of three
main parts: knowledge base (KB), knowledge base man-
agement system (KBMS), and natural language pro-
cessing (NLP) part. Knowledge base contains ontology
and statistical features of concepts. KBMS provides the
mechanism for compact storing of KB and the interfaces



for effective working with it. NLP part contains algo-
rithms for processing of textual documents.

KBMS functionality usually can be represented as two-
level model. The first level deals with concepts iden-
tified by their IDs. Each concept has some attributes
(title, synonyms) and is linked to other concepts. Thus,
the first function of KBMS is to provide this information
about the concept (concepts’ attributes and results of
simple depth-first graph traversal). Another function of
KBMS is to compute semantic relatedness between con-
cepts with the aid of information about link structure
of ontology.

The second level of KBMS model deals with text repre-
sentations (terms). For each term it allows to get cor-
responded concepts and statistical properties (see sec-
tion 6 for details).

NLP part is intended for text processing. It detects
terms, disambiguates their senses, and detects key terms
for processed text. In addition, it usually contains com-
mon NLP algorithms such as sentence detector and POS
tagger that help to improve precision of main function.
We describe text processing in details below.

4. SEMANTIC RELATEDNESS
Semantic relatedness is a cornerstone of link annota-
tors. All approaches for semantic relatedness compu-
tation based on linked data can be divided into two
groups: ”local” and ”global”. Relatedness computa-
tion over normalized number of common neighbours is
widely used. Most known measures are cosine, Dice,
and Jaccard measures. They are defined as

rel(a, b) =
1

Θ
|N(a) ∩N(b)| ,

where Θ is a normalization coefficient that varies for
different measures.

Another measure appeared in publications is Google
Distance:

relGD(a, b) =

log(max(|N(a)| , |N(b)|))− log(|N(a) ∩N(b)|)
log(|W |)− log(min(|N(a)| , |N(b)|)) ,

where W is a number of nodes in the graph.

These measures use only local information about near-
est neighbours. This means that only second neighbours
can have non-zero relatedness.

Global approach for computation of the semantic re-
latedness uses recursive definition of relatedness. Most
interesting method is SimRank [6]. SimRank is based
on following preposition: two objects are similar if they
are referenced by similar objects. Base for recursion is
that object is similar to itself with maximal weight. For
the graph G(V,E), where V is a set of nodes and E is a
set of edges, for each node v, I(v) denotes a set of nodes
referenced to v. Then SimRank is defined as:

s(a, a) = 1,

s(a, b) =
C

|I(a)| |I(b)|

|I(a)|∑
i=1

|I(b)|∑
j=1

s(Ii(a), Ij(b)) ,

where C is damping factor, 0 < C < 1.

In spite of recursive methods seem very interesting they
are not applicable to huge graphs in practice due to their
high computation complexity. For example, complexity
of direct way for SimRank computation requires O(N4)
operation. In the recent publications several methods
with less computation complexity were proposed, but
they still can not be applied to huge graphs. We use
measures based on normalized number of nearest neigh-
bours.

Calculation of relatedness requires computation of the
size of nearest neighbours intersection. Thus, the best
representation of a node in the ontology’s graph is a
sorted array of all nearest neighbours. For such rep-
resentation computation complexity of one relatedness
function is O(N(a) +N(b)).

Calculation of relatedness is the most critical operation
for text processing. Pre-computation of relatedness can
significantly increase overall performance. However, due
to scale-free structure of user-generated linked data, the
number of non-zero similarities would be almost W 2,
where W is a number of nodes in graph.

However, we found that pre-computation of relatedness
for nodes that share common link can improve perfor-
mance without significant decrease of precision. Results
of comparing are discussed in section 8.

5. TERM DETECTION
Most common way for term detection is to find terms
presented both in text for processing and in KBMS.
These terms can consist of several words but they must
not overlap with each other. Fastest way to detect
such terms is to apply greedy algorithm. However, for
some cases this algorithm can provide wrong result.
For instance, there are two terms in Wikipedia’s dic-
tionary: ”French army” and ”Army officer”. And it
depends on context what term should be detected in
text ”. . . French army officer . . . ”. Thus, another way
is to detect both cases and then choose correct one at the
disambiguation step. We implemented both approaches
in the Texterra system and found that naive greedy ap-
proach performs comparably to second one, while being
more computationally efficient.

Dictionary based approach produces good coverage for
large ontologies such as Wikipedia-based one. However,
for small domain-specific ontologies it can not be suffi-
cient. Authors of [11] propose to use supervised term
detection algorithm and then bind detected terms with
concepts of ontology with the aid of several heuristics.
However, this approach is much more slower than pre-
vious two.

6. TERM SENSE DISAMBIGUATION
Several algorithms were proposed for choosing proper
meaning of term depending on the context. All of these
algorithms are based on semantic relatedness between
meanings of terms. Semantic relatedness shows how
related are two concepts of ontology and is computed
with the aid of ontology (see section 4).

Other features that are commonly used are following:

• Prior probability of a meaning for a given term
P (c|t).



• Probability of a synonym of the concept P (t|c).

• Prior probability that the term is a key term
P (t is a keyterm).

These features are pre-computed and are stored in the
knowledge base.

Structure of links allows easily estimate these probabil-
ities. Links of linked data usually consist of two parts:
caption and concept. Caption is a term that is shown to
user. Concept is article with description of concept that
link points to. For example, Wikipedia’s link ”[[Plat-
form (computing) | Platform]]” means that user sees
word ”Platform” in text and link from this term points
to article ”Platform (computing)”. Thus, required prob-
abilities can be estimated in following way.

P (c|t) = count(c,t)
count(t)

, where count(c, t) - number of links

with caption t and destination c. Denominator is a num-
ber of links with caption t.

P (t|c) = count(c,t)
count(c)

, where count(c) is a number of links

pointing to c.

Probability that the term is a key term is usually esti-
mated through probability that the term is a caption of
link.

P (t is a keyterm) = P (t ∈ Λ) = countdoc(t∈Λ)
countdoc(t)

,

that is fraction of documents where term was presented
as caption of link.

Algorithm that chooses most common sense (MCS) for
all terms is usually used as a baseline. This algorithm
doesn’t use any information about context. An oppo-
site approach is to choose meaning of term that is most
similar to context [17], where context consists of mean-
ings of nearest unambiguous terms. We will refer to
this approach as conformity disambiguation. Authors
of [13] combined Lesk algorithm and naive bayes clas-
sifier trained on Wikipedia. Finally, assuming orthogo-
nality of these methods, the authors used discrepancies
in the results as a sign of a potential error and ignored
such results. Milne and Witten [14] got better results
by using machine learning algorithms for choosing best
meaning between most common and most conformal.
Part of Wikipedia articles was employed as a training
corpus where meanings of terms were extracted from
links. Authors compared several algorithms and showed
that bagged C4.5 produces better results. Usage of se-
quence classifiers for this tasks was discussed in [16].

HMM classifier didn’t produce any sufficient improve-
ment in compare to baseline. Authors of the paper [16]
proposed generalization of HMM to the set of indepen-
dent markov chains. This algorithm produces signifi-
cantly better results. However, modification of Viterbi
algorithm that is used for decoding works much slower
than non-sequence classifiers.

For comparing purposes we implemented algorithm that
is based on maximum entropy classifier and ideas pro-
posed in [14]. Description of evaluation methods and
results are presented below.

7. KEY TERMS DETECTION

There are a lot of works about keyphrases detection. In
works [8, 3, 10] keyphrases are treated as simple parts
of text. Several features like length of phrase in words,
position of phrase in the text, frequency of phrase in
the text, and other more complex ones are combined by
hand [3] or by a machine learning classifier [8, 10] in
order to get the answer.

We propose another approach for key terms detection.
After disambiguation each term t in the text is linked
with unambiguous concept c. We propose to detect key
concepts and then use their representation in text as
key terms.

As we know the value of semantic relatedness between
concepts, we can use more precise methods together
with mentioned above. First of all we group all con-
cepts into semantically related clusters in order to de-
termine the main topic of the document [4]. Then for
each concept from the main topic, we calculate geomet-
rical mean of following features: concept frequency (a
number of concept representations in the document),
average number of words in all concept occurrences in
the document and then we take maximal link probabil-
ity for all concept occurrences in the document.

Then we sort concepts list and mark several concepts
from the top as key concepts for the document. We do
not use machine learning here because we want to be
domain independent and have not large enough domain
independent training set.

8. EVALUATION
In this section we discuss the evaluation of sense dis-
ambiguation and keyword extraction. As a testing cor-
pus we use collection of documents manually annotated
within WikifyMe project [1]. Users were inspired to
mark terms in plain text and select appropriate Wiki-
pedia article for description of meaning of each term.
After marking of all terms users selected several con-
cepts as key concepts. Thus testing set for evaluation
of both tasks was created. It contains 132 documents
with 7145 marked terms; whole size is 191 KB of plain
text.

In the table 1 results of comparing of F1 measure and
processing speed are presented for different combina-
tions of disambiguator, on-line and off-line computation
of relatedness. Each cell contains F1 measure and time
of processing of whole collection in milliseconds. As
we see GHMM-based disambiguator produces best re-
sults, however it is very slow. Maximum Entropy based
disambiguator showed the best ratio of precision and
performance. The reason is that for many cases, most
common sense is a correct answer and algorithm doesn’t
need to compute relatedness.

on-line relatedness pre-computed
computation relatedness

MCS 66.08 / 30280 66.08 / 26899
Conformity 67.66 / 39991 66.98 / 36270
GHMM 73.79 / 104848 72.74 / 76732
MaxEnt 73.17 / 32735 70.49 / 27985

Table 1. Comparing of disambiguators

Results for key term detection are presented in table 2.
As described in section 7 we take top-n concepts and
select their representations as key terms. Selection of



top 5 concepts produces best results.

Precision Recall F1

Top 3 40.71 29.68 34.33
Top 5 31.29 38.03 34.34
Top 7 26.61 45.27 33.52

Table 2. Key term detection

9. FUTURE WORK
Despite of growing number of open linked data some
specific domains will not be covered anyway, for in-
stance, internal terminology of a company. Creation of
ontology that describes business of particular company
is expensive task.

However in the model of linked data we can propose
automatic acquiring of knowledge base from collection
of documents that contains description of terminology.
As we showed, for creation of knowledge base we need
only concepts with descriptions that are interlinked be-
tween each other. However, it is possible to automati-
cally create linked data from textual description of con-
cept by using described annotators and automatically
extend existing knowledge base with new concepts.

REFERENCES
[1] Sergey Bartunov, Alexander Boldakov, and Denis

Turdakov. Wikifyme: Creating testbed for
wikifiers. In Proceedings of the Spring Researchers
Colloquium on Database and Information
Systems, Moscow, Russia, 2011, 2009.

[2] Christian Bizer, Tom Heath, and Tim
Berners-Lee. Linked data - the story so far. Int. J.
Semantic Web Inf. Syst, 5(3):1–22, 2009.

[3] Samhaa R. El-Beltagy and Ahmed Rafea.
Kp-miner: Participation in semeval-2. In
Proceedings of the 5th International Workshop on
Semantic Evaluation, SemEval ’10, pages
190–193, Stroudsburg, PA, USA, 2010.
Association for Computational Linguistics.

[4] Maria Grineva, Maxim Grinev, and Dmitry
Lizorkin. Extracting key terms from noisy and
multitheme documents. In Proceedings of the 18th
international conference on World wide web,
WWW ’09, pages 661–670, New York, NY, USA,
2009. ACM.

[5] Maria Grineva, Maxim Grinev, Dmitry Lizorkin,
Alexander Boldakov, Denis Turdakov, Andrey
Sysoev, and Alexander Kiyko. Blognoon:
exploring a topic in the blogosphere. In
Proceedings of the 20th international conference
companion on World wide web, WWW ’11, pages
213–216, New York, NY, USA, 2011. ACM.

[6] Glen Jeh and Jennifer Widom. Simrank: a
measure of structural-context similarity. In KDD,
pages 538–543. ACM, 2002.

[7] Sayali Kulkarni, Amit Singh, Ganesh
Ramakrishnan, and Soumen Chakrabarti.
Collective annotation of wikipedia entities in web
text. In Proceedings of the 15th ACM SIGKDD
international conference on Knowledge discovery
and data mining, KDD ’09, pages 457–466, New
York, NY, USA, 2009. ACM.

[8] Patrice Lopez and Laurent Romary. Humb:
Automatic key term extraction from scientific
articles in grobid. In Proceedings of the 5th
International Workshop on Semantic Evaluation,
SemEval ’10, pages 248–251, Stroudsburg, PA,
USA, 2010. Association for Computational
Linguistics.

[9] O. Medelyan, I. H. Witten, and D. Milne. Topic
indexing with Wikipedia. In 1st AAAI Workshop
on Wikipedia and Artificial Intelligence, 2008.

[10] Olena Medelyan, Eibe Frank, and Ian H. Witten.
Human-competitive tagging using automatic
keyphrase extraction. In Proceedings of the 2009
Conference on Empirical Methods in Natural
Language Processing: Volume 3 - Volume 3,
EMNLP ’09, pages 1318–1327, Stroudsburg, PA,
USA, 2009. Association for Computational
Linguistics.

[11] Gabor Melli and Martin Ester. Supervised
identification and linking of concept mentions to a
domain-specific ontology. In Proceedings of the
19th ACM international conference on
Information and knowledge management, CIKM
’10, pages 1717–1720, New York, NY, USA, 2010.
ACM.

[12] Rada Mihalcea. Using wikipedia for automatic
word sense disambiguation. In North American
Chapter of the Association for Computational
Linguistics (NAACL 2007), 2007.

[13] Rada Mihalcea and Andras Csomai. Wikify!:
linking documents to encyclopedic knowledge. In
Proceedings of the sixteenth ACM conference on
Conference on information and knowledge
management, CIKM ’07, pages 233–242, New
York, NY, USA, 2007. ACM.

[14] David Milne and Ian H. Witten. Learning to link
with wikipedia. In Proceeding of the 17th ACM
conference on Information and knowledge
management, CIKM ’08, pages 509–518, New
York, NY, USA, 2008. ACM.

[15] Delia Rusu, Blaz Fortuna, and Dunja Mladenic.
Automatically annotating text with linked open
data. In Christian Bizer, Tom Heath, Tim
Berners-Lee, and Michael Hausenblas, editors, 4th
Linked Data on the Web Workshop (LDOW
2011), 20th World Wide Web Conference (WWW
2011)., Hyderabad, India, 2011.

[16] Denis Turdakov and Dmitry Lizorkin. Hmm
expanded to multiple interleaved chains as a
model for word sense disambiguation. In
Proceedings of the 23rd Pacific Asia Conference
on Language, Information and Computation,
pages 549–558, Hong Kong, December 2009. City
University of Hong Kong.

[17] Denis Turdakov and Pavel Velikhov. Semantic
relatedness metric for wikipedia concepts based
on link analysis and its application to word sense
disambiguation. In Proceedings of the SYRCODIS
2008 Colloquium on Databases and Information
Systems, 2008.


