
ISSN 0361�7688, Programming and Computer Software, 2015, Vol. 41, No. 4, pp. 197–208. © Pleiades Publishing, Ltd., 2015.
Original Russian Text © M.U. Mandrykin, A.V. Khoroshilov, 2015, published in Programmirovanie, 2015, Vol. 41, No. 4.

197

1 INTRODUCTION

There are many tools and techniques for static ver�
ification of C source code. Among them are deduction
techniques, that are based on translation of the origi�
nal C source code supplied with specifications of the
properties being verified into a set of logical formulas
whose validity is equivalent to the correctness of the
original program with respect to the specified proper�
ties. These logical formulas a.k.a. verification condi�
tions (VCs) or proof obligations can be proved valid
(discharged) by various tools that can be either com�
pletely automatic, e.g. SAT� and SMT solvers [1, 2]
(Z3, CVC3, CVC4, ALTERGO et al.) and saturation�
based provers (VAMPIRE, EPROVER et al.), or interac�
tive, e.g. COQ and PVS proof assistants.

Thus any deductive verification tool for C that aims
the most completely automatic verification should
somehow translate the semantics of the original code
and provided specifications into a set of VCs that the
existing state�of�the�art automatic theorem provers
are capable to discharge.

Meanwhile the basic features of the C program�
ming language significantly complicate such transla�
tion. First, C is an imperative programming language
and thus the implicit program state should be some�
how modeled in the resulting logical formulas. It can
be modeled in several ways usually involving theory of
arrays for representing the state of program memory.
Second, C assumes manual memory management,
which requires generation of additional memory safety
checks, corresponding to possible memory misman�
agements (premature deallocation, garbage, access

1 The article was translated by the authors.

violations and buffer overruns). Third, C is a low�level
language with generally untyped semantics, which can
substantially influence the choice of an appropriate
memory model.

Let’s assume the VC for the assertion check at line
10 (a[n] = 1) is required. The most straightforward and
also precise solution would be to make use of the low�
level memory model for constructing the correspond�
ing logical formula. In this model each variable in the
program memory is represented with a range of ele�
ments in the common logical byte array M indexed by
32�bit (or 64�bit) integer addresses. A logical array [2]
(as a logical type supported by SMT�solvers) is a total
map from the underlying set of the array index type to
the underlying set of its element type that is associated
with the corresponding pure (i.e. side�effect free) ter�
nary update operation ·[·←·] defined on triples of the
form (array, index, value). The result of the operation
is a new logical array of the same (index and element)
type, that differs from the original one on and only on
the specified index mapped to the new specified ele�
ment value (i.e. for any other distinct index the value
from the original array is retained). Logical formulas
can only constrain the values of logical arrays on cer�
tain indexes, while initially the values are treated as
non�deterministic. The value of an array M on index i
is further denoted as M[i]. For the array variable M
representing the program memory we introduce a
finite sequence of logical array constants M1, M2, …,
Mn corresponding to the states of program memory
resulting from several consecutive memory updates.
Assuming the variables a, b, c, d, e, n and m have 32�
bit addresses represented with constants a, b, c, d, e, n
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and m respectively, the required VC can be encoded
within the low�level memory model as follows:

M1 = M0[a ← M0[e]] ∧
M2 = M1[b ← M1[a]] ∧
M3 = M2[M2[b] +32 M2[n] ← 08] ∧
M4 = M3[M3[b] +32 M3[n] +32 132 ← 08] ∧
M5 = M4[M4[b] +32 M4[n] +32 232 ← 08] ∧
M6 = M5[M5[b] +32 M5[n] +32 332 ← 18] ∧
M7 = M2[M6[d] +32 M6[m] ← 08] ∧ . . . ∧
M10 = M5[M9[d] +32 M9[m] + 332 ← 28] ∧
M11 = M10[M10[c] ← 97] ∧

The low�level memory model allows very precise
bit�accurate modeling of C program semantics poten�
tially (with even more precise modeling of CPU regis�
ters and caches) achieving nearly full conformance
between the program model and the actual execution
of the program on a real physical machine. The logical
formulas involving both logical arrays and bit�vector
reasoning are often amenable to automatic satisfiabil�
ity checking with the state�of�the�art SMT solvers,
though the existing decision procedures for the theory
of logical arrays are generally incomplete [2] (i.e. the
corresponding tools can loop forever or terminate
without the satisfiability verdict). But even the sim�
plest example above demonstrates the redundancy and
nonoptimality of the low�level memory model. The
model is poorly scalable in practice and is not usually
used by deductive verification tools directly, but rather
after applying a number of substantial optimizations.

Existing Jessie Memory Model

It worth to be mentioned here that in this paper we
only consider logical formulas in first�order classical
logic with equality modulo several theories (such as
the theory of arrays, uninterpreted functions, bit vec�
tors, and linear integer/real arithmetic), i.e. so�called
SMT formulas. Alternative logics, including the ones
based on separation logic [3], are usually rather insuf�
ficiently supported by automatic satisfiability checkers
and therefore usually require significantly greater user
intervention to determine the satisfiability of the
resulting VCs. In the field of deductive verification the
techniques based on SMT formulas are still the most
often used in practice, particularly in the tools
ESC/JAVA [4], SPEC# [5], VCC [6], FRAMAC/JESSIE
[7, 8], FRAMAC/WP [7] and others.

The first, most prominent and obvious optimiza�
tion used in SMT formula construction is called pure
variables optimization, which consists in selective
treatment of program variables that are only addressed
by their names (while in general variables can also be

b a 4 b∨–≤ a 4+≥( ) …∧ ∧

e a 16–≤ e a 4+≥∨( ) … ∧∧

d d 16–≤ e d 16+≥∨( ) ⎭
⎪
⎬
⎪
⎫

 42  @@@@@@@.

addressed by pointers). In particular, the variables that
never occur as arguments to the addressing operation
(&), are often regarded as pure. This assumption is
sound if the program under consideration is memory�
safe (free of access violations and buffer overruns).
As pure variables can only be addressed by their
names, the corresponding access operations on these
variables can be easily statically separated from each
other and from accesses to other variables in program
memory. Therefore each such variable can be repre�
sented with a separate finite sequence v1, v2, …, vk of
constants rather than an index in the common array
sequence M1, …, Mn. This optimization alone allows
to decrease the number of inequalities (stating the dis�
jointness/separation of variables in program memory)
in the above example from 42 to 6, also reducing the
number of logical array constants (common memory
states) M1, …, Mn from 11 to 9.

The idea of separation for the common memory
array M applied to the pure variables can be general�
ized to arbitrary a priori separated (up to some static
approximation) memory regions. For that purpose we
can separate the program memory into a number of
disjoint sets of program variables, such that for any
particular pointer expression in the program source
code the unique corresponding set of program vari�
ables possibly addressed by that pointer can be deter�
mined once for all the states of the program execution
corresponding to the source code location of the
pointer. Thus we obtain a static approximation of pro�
gram memory separation. The resulting disjoint sets of
variables are called regions in direct analogy to the
regions introduced in [9, 10] as a tool for automatic
dynamic memory management without garbage col�
lector (region�based memory management). These
papers don’t suggest any concrete algorithm for mem�
ory region inference (although they provide corre�
sponding inexplicit inference rules), but the paper [11]
suggests a practical algorithmic approach, allowing to
compute context�sensitive (but flow�insensitive)
approximation of region�based program memory sep�
aration statically. This technique is based on fix�point
computation starting from the initial approximation
assigning each pointer variable in the program with its
own region and proceeding with unification of the
regions according to the set of several simple unifica�
tion rules. The result of the algorithm is a region label
assignment, matching each pointer expression in the
program with exactly one region label. To apply the
suggested technique to arbitrary C programs the
authors suggest using preliminary source code normal�
ization that basically includes elimination of address
operations (&) through retyping the addressed vari�
ables to pointers and reduction of the three C indirect
access operations (namely, *, [] and .) to the single
operation �> with the use of retyping, pointer arith�
metic and dummy single�field structures for simple
data types. After normalizing the sample annotated C
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program fragment in Fig. 1 we obtain the normalized
C program fragment shown in Fig. 2.

The separation of memory regions in the normal�
ized program allows to significantly simplify (reduce)
the earlier obtained VCs. In the given example, the
whole program memory can be separated into three
regions, namely: one common region assigned to
pointers a, b and e, one region for pointer d, and a
region for pointer ñ. By supplying each region with a
separated logical array and taking into account the
pure variables optimization considered above, we
obtain the following VC:

a1 = e0 ∧
b1 = a1 ∧
Ma, b, e, 1 = Ma, b, e, 0[b1 +32 n0 ← 08] ^ . . . ∧
Ma, b, e, 4 = Ma, b, e, 3[b1 +32 n0 +32 332 ← 18] ∧
Md, 1 = Md, 0[d0 +32 m0 ← 08] ∧ . . . ∧
Md, 4 = Md, 3[d0 +32 m0 +32 332 ← 28] ∧
Mc, 1 = Mc, 0[c0 ← 97]
This VC makes use of only 4 logical array sequences

for tracking the state of the corresponding distinct
memory regions, and the inequalities stating the dis�
jointness of memory addresses for different program
variables are absent from the VC altogether since they
rendered superfluous as a result of region�based mem�
ory separation.

Yet application of simple region�based memory
separation alone faces scalability issues on sufficiently
big input programs: In bigger C programs the memory
regions are often unified, which is especially notice�
able for function�local regions due to a large number
of function calls with different combinations of
pointer arguments. One solution for this scalability
issue is suggested in paper [12] introducing the notion
of polymorphic region, i.e. a region whose scope is
restricted to a single strongly connected component in
the function call graph of a program (i.e. a single func�
tion or several mutually recursive ones) and that is
treated as an extra function parameter substituted with
different region arguments at each call site. Polymor�
phic region separation is performed independently for
each strongly connected component, which signifi�
cantly facilitates the scalability of the overall approach.
As polymorphic regions are regarded as extra function

parameters of the corresponding functions, the callee
functions accept extra arguments, the other polymor�
phic regions of the caller functions. This, however,
leads to additional requirements expressed in the form
of additional function preconditions, because a caller
function can supply the same region as an argument
for two distinct parameter regions at the same call site
violating the separation assumptions made during the
separation analysis of the callee function’s strongly
connected component. In the above example, assum�
ing the variables d, e and c to be parameters of a func�
tion, those additional preconditions can be formu�
lated as follows:

(e0 ≤ d0 – 16 ∨ e0 ≥ d0 + 16) ∧
(e0 ≤ c0 – 16 ∨ a0 ≥ c0 + 4) ∧
(d0 ≤ c0 – 16 ∨ d0 ≥ c0 + 4)
The obtained optimized VCs can be simplified even

further if certain restrictions on the source code of the
analyzed programs are introduced. If it’s guaranteed
that in the source program aliasing between pointer
variables of different types never occurs, i.e. two point�
ers of different types can never address the same vari�
able, than the separation between regions correspond�
ing to pointers of different types can be assumed glo�
bally for the whole program thus further reducing
some function preconditions. In such assumptions it
seems natural to abandon the low�level byte�wise rep�
resentation of memory regions' logical arrays elements
and opt for a more efficient higher�level representa�
tion employing logical (unbounded) integral types and
modular arithmetic:

a1 = e0 ∧
b1 = a1 ∧
Ma, b, e, 1 = Ma, b, e, 0[(b1 + n0) mod 4294967296 ← 1] ∧
Md, 1 = Md, 0[(d0 + m0) mod 4294967296 ← 2] ∧
Mc, 1 = Mc, 0[c0 mod 4294967296 ← 97] ∧
e0 ≤ d0 – 4 ∨ e0 ≥ d0 + 4 (@@@@@@@).
As a result we end up with a high�level memory

model applicable to verification of programs involving
not only the simple�typed variables, but also arrays

Fig. 1. Sample annotated C code fragment.

Fig. 2. Normalized annotated C program fragment.
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and structures including support for prefix (hierarchi�
cal) type casts2 [15] and discriminated unions3.
The corresponding approaches are described in
[13, 14] and [15].

All the optimizations considered above are imple�
mented in the Jessie [16, 8] deductive verification tool.
As in practice the vast majority of C programs exploit
only a form of memory aliasing limited in a way that all
pointers are aligned (there is no pointers of any type
addressing any word inside a variable of that type other
than the first one) and the pointed variables are dis�
joint (they can be nested, but otherwise they don’t
intersect), and also, as claimed by some researchers
[17], prefix typecasts (including casts to/from the void
*) along with discriminated unions together constitute
up to 99% of all pointer type casts in most production
C codebases, the memory model implemented in
Jessie should predictably turn out to be appropriate
and efficient in practice.

Issues of the Existing Memory Model

Meanwhile some important fragments in operating
system kernels source code that serves as one of the
most promising fields of application for existing
deductive verification techniques remain largely disre�
garded by the model. Unlike the model used in VCC
[18] the Jessie memory model lacks support for oper�
ations on bit�fields and for pointer type reinterpreta�
tions. But at the same time these features are vital for
verification of Linux kernel modules, in particular the
ones implementing file systems and network proto�
cols, where a lot of low�level encoding/decoding oper�
ations involve reinterpretations of memory chunks
between arrays of bytes, integers and structures in var�
ious combinations.

The original thesis [8] describing the methods
underlining the current implementation of the Jessie
tool suggests exploiting the region inference (and
effect computation) techniques [19, 9, 11, 12] men�
tioned above together with a combination of high�level
mathematical and low�level bit�wise memory models,
each one restricted to the corresponding subset of
inferred memory regions. So the memory of the pro�
gram is divided into several disjoint parts a.k.a. regions
i.e. sets of memory locations such that any two point�
ers aliased necessarily belong to the same region. This
allows several different memory models to coexist in
the same verification framework and to be still used
independently for reasoning about properties of differ�
ent memory regions.

2 Up� and downcasts (also prefix or hierarchical casts) are casts
between two structure types, one of the structures (base struc�
ture) having the list of fields that forms a prefix of the list of
fields comprising the other (derived) structure.

3 Discriminated unions are unions whose field addresses are not
taken (directly or indirectly through the corresponding pointer
casts) and in which only the last field written should be subse�
quently read.

The weak point of this approach lies in the princi�
ples behind the state�of�the art automated theorem
provers (especially, those SMT�solvers based on
DPLLL [2, 1]). They usually implement each of the
supported logical theories separately and establish the
interaction between the theories by propagating dis�
junctions of predicates among which only equalities
are properly interpreted by all the theories involved
[2]. This implies that typically logical predicates or
functions involving application of several theories at
once, e.g. conversion of a mathematical integer to a
fixed�length bit�vector or vice versa, are either entirely
absent from the particular solver’s set of natively sup�
ported features or their support is very limited and
inefficient. Within such restrictions all the interaction
between the involved low�level and high�level memory
models is expressed through either quite sophisticated
inter�theory predicates or uninterpreted predicates
with the appropriate sets of axioms. In this case all the
additional tasks of specifying such predicates and pos�
sibly manually proving some of the resulting VCs (due
to the complexity of the predicates) lay upon the veri�
fication engineer. Besides the fact that the presence of
pointer aliasing can propagate bit�wise regions quite
far causing a significant part of memory locations to be
encoded as bit�vectors that are in general significantly
more complex to reason about (especially in case of
long bit vectors possibly resulting from some memory
reinterpretations between structure or union arrays).
Another ubiquitous case of spreading the bit�wise
encoding across the program is pointer arithmetic.
Whenever a pointer is added an offset expressed as a
bit�vector, the offsets added to this pointer (or its may�
aliases) in all other places are preferably encoded as
bit�vectors as well. In addition to that, bit�vectors were
still unsupported by the latest version of the Why3 [20]
verification platform targeted by the Jessie tool at the
time of writing this paper, and the implementation of
the bit�vector regions support in Jessie itself were still
mostly raw and incomplete.

Another shortcoming of the original Jessie memory
model was that its treatment of pointer shift operation
turned out to be incompatible with the corresponding
C counterpart in presence of prefix structure pointer
cast support. Initially the Jessie memory model aimed
supporting several input languages (at least Java with
JML, C with ACSL and OCaml with some analogous
specification language). So apparently in order to sim�
plify handling of Java (and OCaml) arrays, the seman�
tics of Jessie arrays was chosen to be correspondent to
that of Java arrays (or OCaml arrays of boxed values).
As a result, while in C shifting a pointer into an array
of derived structures (with longer list of fields)
becomes wrong after casting the pointer to the type of
a parent structure (with shorter list of fields), the orig�
inal Jessie intermediate language semantics lacked this
restriction (in compliance with Java arrays covariance)
and thus significantly limited the amount of C pro�
grams correctly translatable into the intermediate lan�
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guage (without a significant amount of additional
explicit checks).

So the decision finally came to modify and extend
the existing basic high�level and efficient Jessie mem�
ory model. In order to make the further presentation
of the memory model and its extension easy, we don’t
preset the full Jessie intermediate language, its syntax,
typing rules and semantics, that are fairly redundant,
complicated and not at all minimal. More thorough
presentation of the full language can be found in thesis
[8] and paper [22]. We rather present the intermediate
language, as well as the original and the suggested new
memory models in a significantly reduced (simplified)
form. The simplified intermediate language (SIL) we
present in the paper still allows us to emphasize the
basic aspects of the full language and show how it was
extended with partial support for low�level memory
access (pointer type reinterpretations), covering its
most important use cases such as encoding/decoding
operations and conversions between different byte
orderings.

The paper first introduces this simplified interme�
diate language (SIL), a small toy analogue to the real
Jessie, along with the corresponding high�level mem�
ory model. Then the extended simplified intermediate
language (ESIL) is introduced, which extends the SIL
(and its memory model) with intent to provide enough
support for some low�level pointer casts, while main�
taining all previous advantages of the model. The sug�
gested approach is extensible to structures with bit�
fields and interacts well with improvements made in
the existing implementation of the Jessie plugin, i.e.
bounded pointers, multiple inheritance hierarchies,
and region inference. So the extension part of the pre�
sented language and its memory model corresponds to
our contribution with regard to the full Jessie interme�
diate language and its implementation. The current
results of this implementation are mentioned in the
conclusion.

SIMPLIFIED INTERMEDIATE LANGUAGE

Abstract Syntax

The Jessie translator is the tool that stands in the
middle of the verification toolchain working sequen�
tially in the following order: FRAMAC frontend –
JESSIE plugin – JESSIE translator – Why3 IDE. The
translator accepts the input program as a single file in
its own specific input representation, the Jessie inter�
mediate language, which contains all the translation
units of the original program merged together along
with the specifications provided by the user. The Jessie
intermediate language is quite sophisticated and not at
all minimal since it’s designed to simplify the transla�
tion of the original C program into it preserving as
much of the program’s initial structure as possible
while performing a number of important transforma�
tions (or normalizations) primarily concerning simpli�

fication of the program’s memory layout (e.g. elimi�
nating nested structures and address taking opera�
tions). So in the paper we aren’t introducing the Jessie
intermediate language itself, but rather using its dra�
matically simplified counterpart capturing the basic
capabilities of the full language that refer to its mem�
ory model. The most important simplifications distin�
guishing SIL in relation to Jessie are the absence of
typing, region inference and reduced discriminated
union support. In practice, the existing region infer�
ence techniques implemented in Jessie are directly
applicable to the SIL as well. SIL only supports dis�
criminated unions whose fields have simple (i.e. non�
composite) types. This limitation can be relatively eas�
ily overcome by refining (and complicating) the
semantics of the corresponding strong update opera�
tions, i.e. the assignments to the union fields, by add�
ing the necessary subsidiary non�deterministic assign�
ments. Another option, suggested by this presentation,
is using the explicitly specified memory reinterpreta�
tion operations presented in the following sections.
The abstract syntax of this simplified intermediate lan�
guage (SIL) is presented in Fig. 3.

In this figure the following notation is assumed:
—v stands for an integer variable;
—n ∈ � is an integer value;
—* designates the non�determinate integer value.

This facility is included in the language in order to
simulate function calls, in particular their memory
footprint. Non�determinate value can be substituted
with an arbitrary integer value during evaluation, but it
naturally acquires precise semantics when the lan�
guage is analyzed using a deductive reasoning tech�
nique such as weakest precondition calculus [21];

—� stands for any binary operation on integer val�
ues;

—p stands for a pointer variable;
—f ∈ � is a unique structure field or union field

label from a finite set � of such labels (the filed labels
are unique throughout the whole program rather than
within the containing structure or union only);

—t ∈ � is a unique tag label4 of a structure, a union
or a field of a union from a finite set of tags �. The finite
sets of labels and tags share no common elements (so
the union fields are provided with two distinct labels
each, one label from � and one label from �;

—��  stands for any binary relation on integer val�
ues;

—� stands for any binary logical connective;
—The predicates omin(tp) �� tn, omax(tp) �� tn,

tag(tp) = t, tag(tp)  t and operators assume  and
assert  (they are marked with a star) only apply for
the analyzable part of the language, so they have no

4 In case of explicit (non�anonymous) and unique structure and
union tags, the tag labels can be identified with the tags them�
selves.

� p
p
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influence on its evaluation and so don’t have any eval�
uation semantics.

All terms, predicates and operators involving
pointers to unions or structures are provided in Fig. 3
with the corresponding short explanations on the right
(given in italics).

We assume the set � to be partially ordered with
respect to the partial order relation ⊆� × � . So the
partially ordered set � constitutes a bounded join�

�

semilattice with top element 	. The relation  corre�
sponds to inheritance (prefix) relation between struc�
tures which extends also to unions and union fields so
that (1) if the list of fields of any structure with tag t1

forms a prefix of the list of fields of any structure with
tag t2 we have t2  t1, and (2) for the fields of unions we
have tf  tu, where tf is the label of a field of the union
with tag label tu.

SIL doesn’t support array, structure or union
embedding (nesting). For that reason along with the
source C program normalization mentioned above
(and involving elimination of addressing operations
(&) and reducing all C memory access operations to
the only operation �> Jessie plugin also applies trans�
formations eliminating embedded structures, unions
and arrays. Generally, embedding is eliminated by
transforming embedded structures, arrays and unions
into their indirectly accessed, explicitly allocated and
deallocated counterparts. Thus every embedded vari�
able is automatically moved into dynamic memory
(heap). Also, as SIL (so as Jessie) supports composite
types (i.e. arrays, structures and unions) only through
heap pointers, all automatic (stack) composite vari�
able allocations are transformed into heap allocations
and deallocations as well. The embedding of a base
structure into a corresponding derived structure as the
first field is treated as a special case. In this case the list
of fields of the embedded (inner, base) structure is
prepended to the list of fields of the outer (derived)
structure, and the inheritance (prefix) relation  is
established between the structures so that the corre�
sponding hierarchical type casts become possible.
In SIL, due to its dynamically�typed semantics, the
prefix type casts can be omitted, but they are necessary
in Jessie intermediate language as in C.

The meaning of omin, omax and tag predicates is
explained in the next section presenting the pointer
and memory models of the SIL.

Memory Model

According to its original description [8], the Jessie
memory model is based on byte�level block memory
model, which is intended to model memory protec�
tion. In this model pointers are represented with tri�
ples (α, l, o), where α represents the absolute address
of a pointer i.e. the value that can be potentially
obtained by casting the pointer to the appropriate inte�
gral type (suppose an unsigned one for clarity), l is a
unique label of a memory block, which is ascribed to a
pointer at the point of allocation and remains invariant
under pointer shifts, and o is the offset of a pointer
from the beginning of its memory block l. The model
assumes that pointers that belong to different memory
blocks are always unequal, since this property is
ensured by the uniqueness of the block labels. How�
ever, the absolute addresses of two pointers from two
different memory blocks can be equal to each other,

�

�
�

�

integer term:

int. variable

int. value

non�det. int. value

bin. int. operation

dereference

pointer difference

pointer term:

pointer variable

null pointer

memory allocation

memory access

pointer shift

term:

pointer or int. term

predicate:

int. bin. relation

min. offset

max. offset

tag equals

tag is upper bounded by

logical connective

operators:

pointer equality

var. assignment

pointer assignment

field update

deallocation

assumption

assertion

operator sequence:

operator

sequence

Fig. 3. Abstract syntax of the simplified intermediate lan�
guage (SIL).



PROGRAMMING AND COMPUTER SOFTWARE  Vol. 41  No. 4  2015

HIGH�LEVEL MEMORY MODEL 203

including the cases with one or two invalidated point�
ers belonging to deallocated memory blocks (as shown
in Fig. 4).

Each memory block is ascribed with its current
length denoted by A[l] and varying during evaluation.
A pointer is considered valid if and only if its offset sat�
isfies the relations 0 ≤ o < A[l]. Only valid pointers can
be dereferenced so that a program can only read from
or write into the memory accessible through valid
pointers, which corresponds to memory allocated by
the OS (or memory management subsystem of the
kernel core) through the appropriate interfaces.
No distinction, however, is made by the model
between read�only and writable memory, static, stack
or heap�allocated memory or between user�space and
kernel�space memory. Pointer subtraction is only
allowed between pointers to the same memory block
and pointer comparison for equality is also allowed
between two arbitrary valid pointers (where the model
semantics matches that one of C).

However, as was mentioned in the introduction,
this memory model is not originally compatible with
both its support for hierarchical pointer casts and the
semantics of pointer shifts in the C programming lan�
guage. This incompatibility arises from the possibility
of dealing with unaligned pointers resulting from non�
zero shifts of pointers to derived structure array ele�
ments casted to one of the corresponding base struc�
ture types.

For that reason we prevent misaligned pointers in
our memory model by extending it with another
attribute ascribed to pointers themselves i.e. pointer
tag label denoted by T[(α, l, o)]. A tag label corre�
sponds to the precise runtime type of a structure or a
union field addressed by a pointer at the current point
of the program evaluation. These labels are only
changed as a result of allocation, deallocation or union
field assignment operators (a.k.a strong updates).
So they remain invariant under hierarchical pointer
casts that thus can be made entirely transparent in
SIL. Pointer shifting, on the contrary, must be guarded
by check of the corresponding pointer tag to prevent
alignment violation. So that’s the reason why the
pointer type tags are made explicit in the pointer shift
operation in SIL.

The transparency of hierarchical pointer casts
determines the need for runtime type checks at pointer
dereferences. These checks are avoided in the imple�
mentation, where explicit pointers casts are made
mandatory by static typing and corresponding checks
for hierarchical pointer casts are introduced.

The absence of misaligned pointers allows high�
level memory representation with a separately updat�
able logical array (“memory”) per each struc�
ture/union field [15, 22] as long as we refuse to main�
tain the original C language semantics in presence of
non�hierarchical pointer casts.

The abstract syntax of SIL introduced in the previ�
ous section doesn’t provide any pointer�to�integer
conversion functions, so from here onwards we omit
the absolute addresses α when referring to pointers (as
their absolute addresses thus have no effect on the
evaluation).

Semantics

SIL (just as JESSIE) is supposed to be executed on
an imaginary non�deterministic machine. All possible
executions of a program on such an imaginary
machine are restricted by the assumption operators
(assume) obtained by translating the ACSL annota�
tions provided by the user. Then the resulting set of all
possible executions is analyzed by generating and dis�
charging the Vcs corresponding to the preconditions of
the operations involved in the evaluation process as
well as the assertion operators (assert) obtained from
the provided annotations.

So the simplified intermediate language is devised
with intent to have easily analyzable semantics rather
than easily executable one (hence the point of trans�
lating the original C code into it). The semantics of the
intermediate language provides the VC generator and
thus also the theorem prover with efficient representa�
tion for most of the memory separation conditions by
translating all memory read and write operations into
select and store operations on distinct logical arrays,
one array per a structure/union field [15, 22].

The dynamic memory (heap) of the SIL program is
represented by the map M : 
 → �n ∪ �p, where �n =
{M : � → �}, and �p = {M : � → 
}, 
 = {(l, o)|l ∈ �,
o ∈ �} is the set of pointers, and L �  ∪ {0} is a
countable set of distinct (unique) memory block labels
including a special label for the null pointer.

However, the initial representation of mappings A
and T is not quite efficient for further analysis.
To make their representation significantly more effi�
cient the Jessie tool implementation applies a number
of important optimizations at the stage of Jessie�to�
Why3ML [20] translation.

We consider two most important of these optimiza�
tions: local encoding of memory block lengths making
the representation of the map A more efficient, and

li lj lk

0 1 0 0 1 2

lnlm
p = (a + 9, lk, 1)

(@)

a a+1 a+2

(@)

Fig. 4. Byte�level block memory model.
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partially axiomatic encoding of the map T for structure
tags.

First, we notice that we can only consider map�
pings in the map A for blocks that are accessible
through pointers, as other mappings don’t influence
evaluation. Then we can replace the map A : � → �
with the map A' : 
 → � such that ∀(l, o) ∈ 
 .A'[(l,
o)] = A[l]. Next we can notice that now all the three
mappings A, T and M are defined on the set 
. Thus
we can hide the internal structure of pointers as pairs
behind an abstract type by introducing a function o :

 → � : ∀(l, o) ∈ P.o((l, o)) = o. Then by substituting
for any pointer p the function o(p) and the map A'[p]
with two functions omin(�, p)= –o(p) and omax(�,
p) = A'[p] – o[p] – 1 we obtain the local encoding for
pointers. This encoding is called local because for ana�
lyzing a function that performs some operations on
pointers (e.g. shift, psub, acc, upd) it’s more efficient
to operate with inequalities on the minimal and maxi�
mal offsets of pointers than the identical inequalities
on their offsets and block lengths (e.g. omax(�, p) ≥ 0
vs. A[p] – o(p) – 1 ≥ 0). This encoding first appeared
in the C@aduceus deductive verification tool [22, 23]
and is also used in Jessie, where the functions omin
and omax are encoded as uninterpreted functions of
two arguments with the appropriate set of axioms.

Second, we notice that as we only allow discrimi�
nated unions as a special case of moderated unions5,
pointers to structures are never aliased with pointers to
unions. But for pointers to structures the following
invariant is always maintained: ∀p ∈ 
.∀i ∈ �.T[p] =
T[shift(p, T[p], i)]. This suggests replacing the map T
with a function tag(�, p) = T[p] for pointers to struc�
tures and a map Tu similar to the original T for unions.
Then the function tag(�, p) is encoded as an uninter�
preted function of two arguments with several neces�
sary axioms (including the mentioned invariant). This
significantly reduces function preconditions since
instead of requiring appropriate tag for each element
of the range of pointers accessed by a function we can
only require it for just one arbitrary pointer into the
same array.

EXTENDED SIMPLIFIED
INTERMEDIATE LANGUAGE

Motivation and Abstract Syntax

As was mentioned in the introduction, many real�
world C programs involving low�level reinterpreta�
tions of some memory regions, cannot be directly
expressed both in SIL described in previous sections
and in the original Jessie. Typical examples of such
reinterpretations are casts of structures to byte arrays

5 A moderated union in C is a union whose field addresses are not
taken, directly or indirectly through pointer type casts, or, in
other words, whose filed accesses are always mediated by (i.e.
done by involving) the union itself.

preceding their transferring through network inter�
faces and byte reorderings in integer variables per�
formed after receiving them from files or USB inter�
faces.

So in order to add the support for such code frag�
ments to the deductive verification tool we suggest
extending SIL with two new capabilities—memory
reinterpretation and memory block ripping.

The intuitive meaning of the former capability is
transforming a memory block allocated for one struc�
ture or union type into a memory block for another
such type provided that (1) both structure/union types
do not have pointer fields and that either (2a) the size
of the source type is a multiple of the size of the desti�
nation one (splitting inside a memory block) or that
(2b) besides the reverse of this multiplicity (now the
size of the destination type is a multiple), the size of
the original block is also a multiple of the size of the
destination type (joining inside a memory block).

The reinterpretation operation alone, however, is
still insufficient to represent the reinterpretation of a
byte array filled with two consecutive structures of
mutually non�divisible sizes into the two correspond�
ing structure pointers (due to the indivisibility of the
byte array size by the size of either structure).

Here we can apply the latter capability, whose intu�
itive meaning is splitting the original memory block
just before the reinterpretation into two continuous
parts—an accessible and a ghost one and then joining
these parts back together after the necessary memory
reinterpretations are done and the types of the parts
match again.

The rationale behind the second capability is sug�
gested by the ability to have ghost pointer variables that
can address (point to) some obscure memory blocks,
inaccessible by the original program, though almost
indistinct from the ordinary blocks in the translated
intermediate language program. We use the term
“memory block ripping” rather than “memory block
splitting”' because the latter term is rather associated
with the corresponding kind of memory reinterpreta�
tion operation. The term “ripping” also suggests the
essence of the operation that is ripping the temporarily
redundant part of a memory block into a separate
ghost memory block accessible through a ghost vari�
able and then “mending” this part back again in order
to restore the full capacity of the original memory
block.

The extension of the abstract syntax of SIL is
shown in Fig. 5. The extension introduces a new func�
tion cast, which is though not mandatory to syntacti�
cally place a pointer to one composite type in place
where a pointer to another arbitrary one is semanti�
cally required. The corresponding restriction can not
be enforced in ESIL due to its untyped semantics, but
the explicit cast is mandatory both in Jessie intermedi�
ate language and in C. In ESIL the use of the function
is needed for the resulting program not to get stuck at
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some of the subsequent pointer access operations (acc,
psub, shift, upd or free). Here the typing rules of C con�
siderably help by disallowing the corresponding
implicit low�level pointer casts in the original code.
In absence of the necessary typecasts or reinterpreta�
tion operations (rmem), the program in ESIL gets
stuck on one of the further operations which is mani�
fested by invalidity of the VC corresponding to the
operation precondition.

The function rip and the operations mend and
rmem correspond to the proposed memory “rip�
ping/mending” and “splitting/joining” operations.
The function rip accepts two arguments—a pointer
into the destined memory block, usually subject for
further joining, and a greater pointer into the same
memory block pointing at the offset, where the “odd”
(temporarily unnecessary, but hindering the join) part
of the block starts. The result of the function is a
(ghost) pointer to the start of a new memory block,
representing the detached ending part of the original
block. This pointer is intended to be saved in a ghost
variable for future use in the corresponding mend oper�
ator. The pointer into the original memory block (the
first argument) remains unchanged by the function.
This pointer then can be used in the following rmem
operator, which is analogous to cast except it reinter�
prets (modifies) the memory block and pointer
attributes (the A and T maps) as a side effect rather
than modifying the pointer. After the reinterpretation
the pointer obtained from the cast function becomes a
pointer into the new valid memory block and can be
used for whatever needed. The original memory block,
meanwhile, stays temporarily (or even permanently)
invalidated. The subsequent another rmem operator
can be used to swap back the validity of the two blocks
while simultaneously updating the corresponding
memory along with the block and pointer attributes.
Finally, the mend operator can be used to “stick back”
the original block from its accessible (and possibly
modified) and ghost parts.

So we extended the SIL presented in Fig. 3 with
two additional functions, cast and rip, and two opera�
tors, rmem and mend. The function cast expresses non�
hierarchical (reinterpretation) pointer casts, the oper�
ation rmem represents both possible memory block
reinterpretation operations—block joining and split�
ting (reinterpretation between types of equal sizes can
be regarded in both ways), while the function rip and
the operation mend correspond to memory ripping
and mending respectively.

Extended Memory Model

To clarify and formalize the semantics of the func�
tions cast and rip and the operations rmem and mend
we consider the appropriately extended memory
model. The memory model of SIL presented above is
extended with model functions and predicates allow�
ing to express the corresponding constraints.

To support memory reinterpretation we introduce a
new model function ϕ: � × � → �. The function is
defined on ordered pairs of structure, union and union
field tags in the following way:

—if the tags t1 and t2 satisfy the following require�
ments: (1) the size  of the first composite type,

union, or union field (including alignment padding)
with tag t1 is a multiple of the size of the second one
(  tagged with t2), (2) both t1 and t2 correspond to

either union fields or structures/unions without
pointer fields (this requirement is not satisfied, in par�
ticular, by the label 	), and (3) there is a logical pred�
icate (M, T, l, l ', m) representing the high�

level semantics of the low�level (i.e. bit�wise) equality
between the values of the fields of a structure or a
union field with tag t1 and the fields of a structure or a
union field with tag t2 (if either t1 or t2 is a union tag,
the corresponding predicate  can be safely

turned to identical truth as none of the union fields can
be accessed or updated before (correspondingly after)
such reinterpretation), then ϕ(t1, t2) = / ;

—if, instead of the second condition, the size if the
second structure or union field ( ) is a multiple of the

size of the first one ( ) and the two remaining condi�

tions are met, then ϕ(t1, t2) = –( / );

—ϕ(t1, t2) = 0, otherwise.

This predicate  can be defined only as

needed, e.g. for casts to and from dummy char struc�
tures, and left undefined for more complicated cases
such as casts between structures with different field
alignments.

The next model function π: � × � → �, is defined
on pairs of block labels and destination tags as illus�
trated by Fig. 6.

Here we use the isomorphism between the sets �
and  ∪ {0}. We supplement unique block labels with
tags from �. For allocation (alloc) operations that
assign unique labels to their corresponding memory
blocks these label tags must correspond to the tags

st1

st2

rmemt1 t2,

rmemt1 t2,

st1
st2

st2

st1

st2
st1

rmemt1 t2,

reinterpret cast

ripping

reinterpretation

mending

Fig. 5. Extension of the SIL abstract syntax.
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explicitly specified as arguments of the corresponding
operations. So a unique label lit (or li, t) with tag t can be
assigned only to a memory block allocated for an array
of structures or unions with the same tag t (a single
structure/union is a special case of array). The labels
are also grouped so that for each label li, t there is a

right�adjacent ghost label  and a collection of rein�
terpretation labels {li, t|t ∈ �}, where for any two labels
li, t ≠ lj, t ' holds given i ≠ j ∧ t ≠ t '. The function π maps a
label li, t to its corresponding reinterpretation label li, t '

so that π(li, t, t') = li, t '. Generally, there is no difference
between a memory bock obtained initially by actual
allocation and a block reinterpreted from another one
with a different tag by using the rmem operation.

The last function we introduce, ρ: � → � maps a
label li, t to its corresponding right�adjacent ghost label

 and is intended to be used in the rip function and
the mend operation.

With the three new functions ϕ, π and ρ it is possi�
ble to formalize the semantics of the new functions
cast and rip and the operations rmem and mend.

The semantics should preserve the invariant that
exactly the memory addressed by valid pointers in the
original program can be accessed in the corresponding
intermediate language program. Besides the evalua�
tion semantics, the operation rmem also has additional
implicit analyzable semantics. The operation has a
postcondition (M, T, l, l ', A[l]) that is treated

as an assume operator inserted just after the rmem
operation.

So the extension of the intermediate language with
block reinterpretation and ripping allows one to prove
the validity of some programs involving low�level mem�
ory access. However, the semantics of the extended sim�
plified intermediate language allows only ripping of the
rightmost part of a memory block (with largest
addresses), although in real�world kernel�space C
code storing three or more structures of arbitrary size
in one memory block is quite a common practice,

li t,'

li t,'

rmemt1 t2,

which cannot be expressed in ESIL with the semantics
defined this way. Fortunately, the local pointer encod�
ing described in the previous section (that is used for
the resulting axiomatic specification of the program
eventually generated by Jessie) lets us express both
cases of ripping, i.e. either the rightmost or the left�
most part of a memory block once at a time. With local
pointer encoding, the ESIL semantics enables one to
express the majority of real�world lower�level memory
operations such as encoding/decoding operations and
byte re�orderings frequently encountered, for instance,
in file systems and network device drivers.

CONCLUSION AND FUTURE WORK
In the paper we presented the simplified intermedi�

ate language (SIL), an analogue of the Jessie interme�
diate language, supplied with simultaneous support for
hierarchical pointer casts and discriminated unions.
The semantics of SIL is compatible with the semantics
of the C programming language, in particular with
regard to modeling of array accesses in presence of
hierarchical pointer casts. The language presented
served both as a concise summary of the concepts
underlying the original Jessie intermediate language
[8] and as a starting point for its further extension.
We presented the extensions of the language that
allow to express low�level pointer casts for some point�
ers to structures or unions without pointer fields.

From practical perspective these contributions
together allow significantly broader class of real�world
C kernel�space code samples to be translated into the
intermediate language in order to be analyzed and ver�
ified. Here a significant work for cleaning up the cur�
rent (modified) Jessie plugin implementation and
deductive verification of some considerable kernel�
space C codebase with it remains to be finished before
we can present some meaningful results. Currently, the
implementation of support for the presented rmem
operation in mostly finished, so that we can already
prove fragments involving byte reorderings, but not yet
some cases of encoding/decoding operations and buff�
ering.

From theoretical point of view, meanwhile, there
remains many important directions for future work.
On the one part, a rigorous formalization of the corre�
spondence between the intermediate language seman�
tics and that of the C programming language (at least
in some limited form) is still to be done. On the other
part, the formalization of the correspondence between
the intermediate language and its axiomatic represen�
tation eventually generated by the tool implementa�
tion is also a subject for further research.
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