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Abstract—Functional testing of complex hardware and software 
systems has long been recognized as an immensely computer-
intensive task. Consisting of a huge number of interacting 
components, computer systems are hard to be verified due to the 
well-known fundamental problem – combinatorial state 
explosion. One of the ways to overcome the complexity is to use 
abstract models for generating test sequences and checking 
design correctness. However, models of really complex systems 
are complex themselves, which leads to enormously long test 
sequences (tests are usually targeted at covering all model states 
reachable from the initial one). In this paper, we suggest a 
method for high-performance generation and execution of model-
based tests based on the distributed exploration of a system’s 
graph model. The key feature of the method is that 
parallelization is done dynamically and fully transparently for a 
user. 
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I.  INTRODUCTION 
Many researchers are familiar with the term high-

performance computing designating a branch of knowledge 
about using supercomputers and computer clusters to solve 
advanced computation problems [1]. The term is mostly 
associated with the computing used for scientific research or 
computational science (modeling of physical processes, 
materials, structures, and so on). However, when designing 
complex hardware and software systems (hereinafter referred 
to as computer systems or systems for short), especially when 
analyzing and verifying them, one also needs to solve very 
computer-intensive problems. Generally, these problems come 
to exploration of a system’s state space and testing some 
properties of a system. 

To denote testing methods concerned with the use of 
supercomputers and computer clusters, we introduce a term 
high-performance testing. Within the scope of this paper, a 
particular kind of testing (namely, functional testing) is 
considered. Functional testing checks that a target system 
(SUT, system under test) correctly implements all the functions 
stated in the specification not examining the internal structure 
of the system (source code) [2]. It should be noted that for 
hardware designs functional testing is usually performed not 
for a finished product (chip or circuit board), but for a 
simulation model described in a special hardware description 

language (HDL) and is known as simulation-based verification 
or pre-silicon verification [3]. 

Many manufactures of complex hardware and software 
systems (like microprocessors and operating systems) use a lot 
of computational resources for functional testing of their 
designs. The most usable approach to test execution is to run 
independent tests on separate computers (a computer can 
execute several tests, but one test cannot be executed on two or 
more computers in parallel). The approach works well for 
relatively small test batches, but it, obviously, fails to handle 
huge tasks. The only known exception is random-based tests, 
where several instances of the same test system are executed 
concurrently. Trying to diversify tests sequences, different 
instances of a system use different seeds of the random number 
generator [4]. 

When testing complex systems with immense state spaces, 
one needs very long test sequences to cover different states. 
Theoretically, random tests can solve the problem, but it can 
take significant amount of time (first, some states are highly 
improbable and, second, there is duplication of actions among 
different instances of a test system). The natural solution is to 
use graph or automaton models1 and generate test sequences 
by exploring (traversing) those models [5-7]. However, 
existing graph-based testing tools do not support parallelization 
and therefore are almost inapplicable to test really complex 
computer systems. If a state graph is known, one can compute 
a set of paths covering all the transitions and then use those 
paths as goals for the test system’s instances. However, a 
transition relation is often unknown and constructed during 
state graph exploration [6]. 

In this paper, we suggest a method for parallel generation 
and execution of tests based on the distributed graph 
exploration. The main advantage of the method is that 
parallelization is performed fully automatically and 
transparently. A test system is developed in the same way as it 
is done for execution on a single computer. The only parameter 
has to be set when starting a distributed test system is the 
number of computers to run the system onto. It should be noted 
that in the suggested approach a test system’s processes are not 
independent ones – they communicate with each other sharing 
information on what part of the graph model has been 
traversed. The method and developed tools extend the 

                                                           
1 Hereinafter, we do not distinguish between graph and automaton models 
assuming that graphs describe transition relations (state spaces). 



UniTESK technology [8,9] and allow verifying systems with 
millions of model states. 

The rest of the paper is organized as follows. Section 2 
reviews the related work addressing parallelization of 
functional tests for computer systems. Section 3 describes the 
suggested method based on distributed graph exploration; it 
considers a test system’s architecture and process 
synchronization issues. Section 4 describes applications of the 
approach to functional testing of real-life systems; this section 
comprises results on parallelization efficiency with respect to 
the number of computers. Section 5 concludes the paper and 
outlines directions of our future research and development. 

II. RELATED WORK 
First of all, it should be noted that we do not know works 

investigating parallelization of test generation and execution by 
means of distribution graph exploration. There are lots of 
papers on application of graph and automaton models to 
functional testing (see [5-7] for example), which consider 
algorithms and methods for generating test sequences, but do 
not touch upon the issues of tests parallelization. 

As we have said before, practical approaches to high-
performance testing are based on simultaneous execution of 
independent or random-based tests on a number of computers. 
In the latter case, an interesting problem arises. One needs to 
diversify pseudorandom values being generated among all 
instances of a test system. This problem is usually referred to 
as parallel pseudorandom number generation and is solved by 
splitting a long-period stream of random numbers into a set of 
parallel substreams or by parameterization of a generator to 
produce several independent full-period streams [4]. 

Our work is based on the UniTESK test system architecture 
described in [8,9]. The architecture identifies basic components 
of a test system including Traverser (Test Engine), Test 
Scenario (Test Action Iterator), and Test Oracle. Traverser 
encapsulates an algorithm for exploring a wide class of 
directed labeled graphs (some of the algorithms are considered 
in [10,11]). Test Scenario defines a graph in an implicit form. It 
provides functions for calculating a current node (state) and for 
iterating the outgoing arcs (transitions). Test Oracle checks 
whether SUT’s behavior relating to arc traversal (test action) is 
correct. 

Distributed graph-based testing (and our approach in 
particular) has much in common with exploration of indoor 
environment by a team of mobile robots (agents) [12,13]. 
Whenever robots have to solve a common task, they need to 
coordinate their actions to carry out the task efficiently and to 
avoid interferences between robots [13]. This problem is also 
relevant for distributed test systems. Multiple processes should 
be synchronized to avoid duplication of arc traversals. In [13], 
an effective coordination strategy is suggested to better 
distribute robots over environment and to avoid redundant 
work. The strategy we use is much simpler, but it allows 
achieving almost linear speedup when testing a system on 
multiple interconnected computers. 

In papers [14] and [15], effective breadth-first-search 
algorithms for exploring very large graphs on advanced multi-
core processors are proposed. In the experimental evaluation 
they have proved that their algorithms running on 4-socket 

Intel®’s Nehalem-EX is 2.4 times faster than a Cray XMT™ 
with 128 processors [15]. The tests have also shown linear 
speedups when using multiple processing units [14]. As 
opposed to these works, trying to produce as portable system as 
possible we do not use processor-specific optimizations. 

Theoretical aspects of the distributed graph exploration can 
be found in [16,17] and other papers. The first article describes 
algorithms to compute spanning trees in undirected networks. 
In [17], a deterministic algorithm that constructs a map of the 
simple undirected graph by multiple agents, elects a leader 
among them, and provides a unique labeling of the nodes is 
suggested. 

III. SUGGESTED METHOD 
According to the UniTESK technology, SUT is modeled by 

a finite state machine (FSM). A test system explores a state 
graph of that FSM model, applies test actions corresponding to 
the graph’s arcs and analyses correctness of SUT’s behavior. 
The thing is that graph models of complex systems are of a 
huge size, and therefore test execution on a single computer 
takes too much time. 

As a way to improve test execution performance we have 
chosen tests parallelization on computer clusters and have set 
the task to extend the UniTESK technology by means of 
distributed test execution on computer clusters. The main 
requirement we have formulated is that changes in test 
execution should not affect test development. It means that all 
tests (including those ones that have been developed earlier) 
can be executed on a single computer as well as on a number of 
interconnected computers. 

 

Figure 1. Test system architecture for execution on a single computer 

Test system architecture for execution on a single computer 
is shown on Fig. 1. A library subsystem Model Graph Storage 
manages information about a known part of a model graph. 
Another library subsystem, Traverser, fills up the storage when 
exploring a model graph. Main Test Loop is an active part of 
the test system. It takes Test Scenario (which is an implicit 
description of a model graph) as an input and uses Traverser to 
explore the graph by finding paths to uncovered arcs. When 
traversing the model graph, Main Test Loop applies test actions 
and analyses SUT’s reactions. 

The key idea used for parallel test execution is that 
Traverser’s algorithm remains almost the same if there are 
additional sources for filling up the model graph storage. It is 
enough to start test system processes (each containing a test 
system’s instance and SUT) on computer cluster’s nodes and 
provide exchange of information about traversed arcs of the 



model graph between all of the processes. We have developed 
a new library subsystem, called Synchronizer, that is 
responsible for information exchange. Modified test system 
architecture is shown on Fig. 2. 

 

Figure 2. Test system architecture for execution on a computer cluster’s node 

A model graph’s arc traversed by one test system process 
will be known to all other processes and they will not traverse 
it by themselves wasting no time to duplicate work that has 
been already done. Performance improvement is possible only 
under the following conditions: 

• It should be more profitable for a process to receive 
information about traversed arcs from other processes 
than traversing them by process itself. In other words, 
exchange of information about traversed arcs should be 
significantly faster than local traversing. 

• Among information about traversed arcs received from 
other processes should not be many arcs already known 
by a process. 

Small change in traversal algorithm has been made to 
satisfy the second condition. In case of single execution, a 
Traverser’s choice of the next untraversed arc was 
deterministic. For parallel execution it means that starting from 
the initial node all Traversers will go through the same arc, and 
further they will also make the same decisions sending each 
other a lot of useless information and thus violating the second 
condition. Therefore, the choice of the next untraversed arc has 
been made dependent on index of a process (all processes are 
numerated) producing different variations of the traversal 
order. 

A synchronization protocol for exchanging graph 
information should provide delivery of each new message 
about a traversed arc to each process and preferably only once 
(to reduce network traffic). Such protocol has been developed. 
Synchronizers of different instances of a test system establish 
one-way point-to-point connections to each other. A topology 
can be arbitrary while the oriented graph of the test system 
channels (communication graph) is strongly connected (to 
ensure delivery of messages from any process to any other in 
the same order and without losses). 

Each test system process does synchronization regularly. It 
is initiated by incoming messages, by new arcs traversed 
locally or on timeout. The synchronization algorithm is as 
follows: 

1. Synchronizer receives all incoming network messages 
and asks Traverser for local update – a set of new arcs 
traversed by the process since the time of the latest 
synchronization. Let R (received) be a set of arcs in the 

received messages, S (sent) be a set of arcs that have 
been already sent via the outgoing connections of the 
process and N (new) be a local update. 

2. A set of new arcs received from other processes 
R\(S∪N) is added to Model Graph Storage. 

3. A message containing a set of arcs (R∪N)\S is sent via 
all outgoing connections. 

4. A set of sent arcs is updated: S := S∪R∪N. 
It is obvious that this synchronization protocol guarantees 

that a message about any traversed arc will be transferred 
through each connection only once. Therefore, if messages 
about some traversed arc have been received from every 
ingoing connection, that arc may be removed from the set S, 
because all other processes already know about it. 

Maximal time required for all processes to receive a 
message about an arc traversed by some process is proportional 
to a diameter of the communication graph. The polar variations 
are “all-to-all” and “ring” topologies. Choosing optimal 
topology of communication graphs is beyond the scope of this 
paper. However, we have experimented with some topologies; 
our results are described in the next section. 

Parallelization considerably speedups test execution, but 
there are huge tests taking much time even in case of parallel 
execution. A capability to temporarily interrupt test execution 
makes testing more convenient. This facility is implemented by 
logging all outcoming network messages by one or more 
processes of a test system. When execution continues after 
interruption, all processes start from the initial state as usual. 
At the same time, those processes that have logs resend the 
logged messages to the other processes. It is obviously much 
faster than test reexecution. Moreover, it increases reliability of 
the system. 

Further specialization of test system processes is possible. 
Some processes may be targeted at resource-intensive tasks, for 
example, they may be intended for searching a path in a graph 
from a given node to a node that has untraversed outgoing arcs. 
It lowers CPU and memory requirements for other processes – 
they may store not a whole graph but only neighborhoods of 
their current nodes. A light-weight process works 
independently from the bigger ones when there are untraversed 
arcs in the current state, but if it fails to find a path by itself, it 
delegates the task to one of the dedicated processes. 

Another promising optimization is using different graph 
exploration strategies with central coordination. For example, if 
there are two arcs going out from the initial node – the first one 
leads to a big loop with only one arc from each node, while the 
second one leads to the root of a tree with many arcs from each 
node. With our current strategy about half of processes will go 
via the first arc through the big loop without any profit. With 
central coordination it is possible to pause all processes except 
two and decide where to direct them after the first two explore 
the neighbor nodes. Such optimizations have much sense if it is 
known that a model graph has a specific structure. 

IV. EXPERIMENTAL RESULTS 
The approach described above has been applied to parallel 

functional testing of various hardware designs. Depending on 
the design complexity and testing purposes, model graphs 



include from thousands to millions of nodes and up to several 
millions of arcs. Test execution has been performed on 1-150 
computers (Intel® Core™2 Quad Q9400, 2.66GHz; 4GB 
RAM) running the Linux operating system and networked via 
Ethernet. Table I shows the tests classification depending on 
the number of arcs in a model graph and indicates the amount 
of resources required for test execution (number of computers 
and time). 

TABLE I.  COMPLEXITY-BASED TESTS CLASSIFICATION  

Test complexity Number of arcs in 
a model graph 

Number of 
computers 

Execution 
time, min. 

Simple tests < 10000 1 < 30 
Medium tests 10000 - 100000 1-10 < 30 
Complex tests 100000 - 1000000 10-100 < 30 
Huge tests > 1000000 > 50 > 60 

 

The analytical estimation of the method effectiveness is 
difficult, because many factors should be taken into account 
(message passing time, communication topology, and others). 
We have conducted a number of experiments and have 
measured the parallelization efficiency K(n)=T(1)/(n·T(n)), 
where T(n) is time of test execution on n computers. 

The experiments show that if a communication topology is 
chosen correctly, the parallelization efficiency exceeds 0.8. 
There should be however a few comments. First, experiments 
have been performed on multi-core microprocessors enabling 
Synchronizer not to take computational resources from 
Traverser. Second, we have tried two topologies for different 
numbers of computers. (“ring” for 8 or less computers and 
“two-dimensional torus” for 9 or more computers). These two 
options are enough for 100-150 computers, but for effective 
parallelization on a larger number of machines it might require 
other topologies (“three-dimensional torus”, “hypercube”, etc.). 

TABLE II.  PARALLELIZATION OF A MEDIUM TEST 

Number of 
computers Topology Execution 

time, min. 
Parallelization 

efficiency 
1 — 95.2 1 
9 Ring 11.8 0.9 
9 Torus 3×3 10.9 0.97 
16 Ring 6.7 0.89 
16 Torus 4×4 6.2 0.96 
25 Ring 4.4 0.87 
25 Torus 5×5 4.0 0.95 

 

Tables II and III show the results of tests execution. The 
first table shows execution time and parallelization efficiency 
for a test of medium complexity (18 227 nodes and 109 362 
arcs). The second table corresponds to a complex test (84 561 
nodes and 338 244 arcs). 

TABLE III.  PARALLELIZATION OF A COMPLEX TEST 

Number of 
computers Topology Execution 

time, min. 
Parallelization 

efficiency 
1 — 803.3 1 

81 Ring 12.2 0.81 
81 Torus 9×9 11.4 0.87 
100 Ring 10.2 0.79 
100 Torus 10×10 9.5 0.85 

V. CONCLUSION 
In the paper, the extension of the UniTESK technology by 

means of parallel test execution on computer clusters is 
described. An important feature of the suggested method is that 
parallelization is done dynamically without using static 
information on a SUT’s transition relation (structure of a model 
graph). From an engineer’s point of view, it is not more 
difficult to work with a distributed test system than to use a 
single-computer one (additional input data are number of 
computers to run the system onto and, optionally, a network 
topology). The approach significantly speeds up test execution 
shrinking bug detection time and accelerating the design 
process in whole. In the future we are planning to make the 
tools even more flexible. For instance, we are going to support 
dynamic reconfiguration of a test system’s topology (e.g. run-
time changing of a number of computers executing the test 
system) and to support computer systems with shared memory 
(in this case, more efficient implementation of the 
synchronizers is possible as well as graph storage sharing). 
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