
Introducing Trigger Support for XML Database Systems ∗

c© Maxim Grinev
maxim@grinev.net

Maria Rekouts
rekouts@ispras.ru

Institute for System Programming of Russian Academy of Sciences

Abstract

There is a growing number of XML database
systems of different kinds now on the market.
XML DBMS vendors rushed to enrich their
products with more flexible and advanced fea-
tures to make them satisfy the requirements of
modern applications. And the time is ripe for
the database research community to study the
issues involved with extending XML DBMS
with capabilities analogous to those that are
popular in traditional DBMS, keeping in mind
that XML databases now become a widespread
means for storing and exchanging information
on the Web, and increasingly used in dynamic
applications such as e-commerce.

In this paper, being bound for the issues, we
provide a definition of triggers for XML based
on XQuery and a previously defined update lan-
guage, and methods to support triggers in XML
database systems.

1 Introduction
The concept of triggers itself originated from the early
times of relational database systems. Not long after the
idea of integrity constraints in relational databases ap-
peared, researchers recognized the importance of auto-
matic ”reactions” to constraint violations, the idea ex-
panded to the more general concept of triggers [12], also
now known as event-condition-action (ECA) rules, or ac-
tive rules. In database system, all users depend on the
correctness or validity of data. Integrity or validity of
data is specified by a set of semantic constraints or as-
sertions. Triggers may be used as extended constraints
to enforce validity.

The uses of triggers also occur in the context of ma-
terialization of views. An important aspect of the data
definition facility of a database system is the ability to
define alternative views of stored data. A view is a data
object that is derived from one or more existing data ob-
jects. Triggers may be used to materialize such views. In
particular, this approach was investigated in the System
R [12].

Nowadays active rules are often concerned as a mean
to support business logic of e-commerce applications [6].

∗ This work was partially supported by the grants of the Russian
Foundation for Basic Research No. 04-07-08003 and 05-07-90204.

Proceedings of the Spring Young Researcher’s Colloquium
on Database and Information Systems SYRCoDIS, St.-Petersburg,
Russia, 2005

Since such applications most often utilize XML data, the
active rules support is much wanted from the underlying
XML database systems.

While elaborating on the triggers for XML we con-
fronted the problems. First of all they concerned with ir-
regular and hierarchical nature of XML data that makes
impossible to simply adopt the concept of SQL triggers
[13]:

• Processing XML data implies manipulation with ar-
bitrarily large XML fragments. Hence, an update
language must provide the possibilities to update a
whole subtree of XML documents, i.e. the insertion
of ”content” may refer to an arbitrarily large XML
fragment, and likewise the deletion of a node may
cause the dropping of an arbitrarily large XML frag-
ment. Such possibilities are provided in the Sedna
update language [1], concerned in this paper, and in
other well-known proposals of update extension of
XQuery [7]. In contrast, SQL language supports up-
dates operations targeted to tuples of a given table.
Such a ”bulk” nature of update primitives causes the
question: does a new XML fragment that is inserted
contains a data that matches any triggers available
in the system by the moment?

• Practically, an update language for XML specifies
the data that are to be updated by means of XPath
[10] (or XQuery [4] as more complicated way).
For triggers, to determine the data associated with
given trigger XPath is normally used. So, we have
XPath/XQuery expression representing data that are
to be updated and XPath expression representing
data associated with trigger. The problem is that
analyzing these two expressions at compile time it
is impossible to know if the trigger needs to be trig-
gered under given update statement, because the re-
sult of an XPath expression usually depends on data,
but data are not available at compile time. Thus,
triggers must be processed at the time when update
statement is actually executed (i.e. at run-time).
And, as in practice most likely there is an arbitrar-
ily large number of trigger, such evaluation must be
carried out in an efficient way.

1.1 Outline

The paper is organized as follows. To give a more illus-
trative overview of the problem we consider an example
in Section 1.2. In Section 2 we give our vision of trig-
gers for XML by providing syntax and noting the main
points of semantics of triggers. In Section 3 we provide

methods to support triggers in XML DBMS. Section 4
proposes a brief survey of a related work. Section 5 con-
cludes the paper.

1.2 A First Glance at XML Triggers

This example is borrowed from [14], except some mod-
ifications that were brought in to illustrate our methods
better.

Let us assume a scenario based on the following
lib.xml document, that belongs to an XML database
of a university library:

<library>
...
<shelf nr="45">
<book_count>2</book_count>
<book id="AO97">
<author>J. Acute</author>
<author>J. Obtuse</author>
<title>Triangle Inequalities </title>
<year>1973</year>
</book>
<book id="So98">
<author>A. Sound</author>
<title>Automated Reasoning</title>
<year>1990</year>
</book>

</shelf>
...
<box nr="02">
<book id="XW89">
<author>Michel Foucault</author>
<title>The Order of Things</title>
<year>1966</year>
</book>
...

</box>
...
<authorIndex>
<authorEntry>J. Acute</authorEntry>
<authorEntry>J. Obtuse</authorEntry>
<authorEntry>Michel Foucault</authorEntry>
...

</authorIndex>
</library>

The library automatically maintains an index of all au-
thors whose books are published before 1980. The index
is a part of the library document, whose complete DTD
is:

<!ELEMENT lib (shelf+, box+, authorIndex)>
<!ELEMENT shelf (book_count, book*)>
<!ATTLIST shelf nr #REQUIRED>
<!ELEMENT book_count (#PCDATA)>
<!ELEMENT book (author+, title, year)>
<!ATTLIST book id #REQUIRED>
<!ELEMENT author (#PCDATA)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT authorIndex (authorEntry*)>
<!ELEMENT authroEntry (name)>
<!ELEMENT name (#PCDATA)>

Suppose triggers are responsible to guarantee the cor-
rectness of the index. We do not provide full set of trig-
gers needed to guarantee the correctness as it can involve
a reader into an unnecessary complexity. Let us consider
only two of them:

Trigger tr1 is triggered when any book that was pub-
lished before 1980 is replaced. If a new book is published
before 1980 and there are no authors of this book in the
author’ index then new author entry for this author is in-
serted into the index.

CREATE TRIGGER tr1
AFTER REPLACE
OF document("lib.xml")//book[year<1980]
FOR EACH NODE
LET $AuthorNotInList :=

(if (NEW_NODE/year<1980)
then for $n in NEW_NODE/author

where empty(document("lib.xml")
/library/authorIndex/
authorEntry[name=$n])

return $n
else ())

WHEN (not(empty($AuthorNotInList)))
DO (UPDATE

insert
for $NewAuthor in $AuthorNotInList
return <authorEntry>

<name>$NewAuthor</name>
<authorEntry>

into document("lib.xml")/library/authorIndex)

Trigger tr2 is triggered when any book that was pub-
lished before 1980 is deleted. If there are no other
books that were published before 1980 by this author
then his/her entry is deleted from the index.

CREATE TRIGGER tr2
AFTER DELETE OF document("lib.xml")//book[year<1980]

/author
FOR EACH NODE
WHEN (empty(document("lib.xml")//

book[year<1980]
[author/text()=OLD_NODE/text()]))

DO (UPDATE
delete document("lib.xml")//

authorEntry[name=OLD_NODE/text()])

Trigger tr3 has event UPDATE-CONTENTwhich means
that it is triggered when any descendant of element
shelf with attribute nr equal 45 is updated. Then the
number of books on the shelf is re-counted.

CREATE TRIGGER tr3
AFTER UPDATE-CONTENT OF document("lib.xml")/library

/shelf[@nr=45]
FOR EACH NODE
DO (UPDATE

replace document("lib.xml")//shelf[@nr=45]
/book_count

as $x
with
<book_count>
{count(document("lib.xml")//shelf[@nr=45]/book)}
</book_count>
)

An example of update to the library is the replace-
ment of book which id is ”AO97” from the shelf number
45 with another book which year of publishing is before
1980. Here is corresponding update statement s0:

UPDATE
replace document("lib.xml")/library/shelf[@nr=45]/

book[@id="AO97"]
as $b
with <book id="{$b/@id}">

<author>S. Kuznetsov</author>
<title>Database Systems</title>
<year>1979</year>

</book>

This replace statement causes the consideration of all
of the three triggers: tr1 is associated exactly with the
same node that is replaced and the triggering operation

�����������	�
�������
����������

��
����������

��
����������

Figure 1: Triggering operations of the triggers triggered
by the given update operation with given update/trigger-
path length

is REPLACE; tr2 is associated with the data that is de-
scendant of the replaced node and its triggering opera-
tion is DELETE; tr3 is associated with a node that is an
ancestor of the replaced node and its triggering opera-
tion is UPDATE-CONTENT. In this paper we answer the
question which of the triggers are triggered by the given
update statement and how are the triggered triggers exe-
cuted along with the update statement.

The paper provides the following important contribu-
tions:

• We define triggers for XML by providing its syntax
and semantics that is close to SQL triggers seman-
tics except the issues involved with the problems de-
scribed above.

• We provide universal method to support such trig-
gers in XML DBMS.

• We provide method to support triggers efficiently
under the restriction: in update statements, data to
be updated is specified in XPath (not an arbitrarily
XQuery expression). The method represents com-
bined execution of update statement and eligible
triggers and uses previously built merged execution
plan.

2 XML Triggers Definition
An XML trigger consists of four components: the trig-
gering operation, the triggering granularity, the trigger
condition and the trigger action. Consistent with the ter-
minology of [15], a trigger is triggered when one of its
triggering operations occur, it is being considered when
its action is performed. When the trigger consideration
starts, it is also de-triggered. The syntax of a trigger def-
inition is the following:

CREATE TRIGGER trigger-name
(BEFORE|AFTER)
(INSERT|DELETE|REPLACE|UPDATE-CONTENT)+
OF XPathExpression (,XPathExpression)*

[FOR EACH (NODE|STATEMENT)]
[XQuery-Let-Clause]
[WHEN XQuery-Clause]
DO XQuery-UpdateOp

• The CREATE TRIGGER clause is used to define a
new XML trigger, with the specified name.

• The BEFORE/AFTER clause expresses the triggering
time relative to the update statement.

• Each trigger is associated with a set of update oper-
ations (INSERT, DELETE, REPLACE), adopted from
the update extension of XQuery [1], and it can be
also associated with UPDATE-CONTENT that is not a
member of [1]. UPDATE-CONTENT is introduced by
us. Trigger with this triggering operation associated
with some node is triggered, when any descendants
of this node are updated.

• The operation is relative to elements that match an
XPath expression specified after the OF keyword,
i.e. a step-by-step path descending the hierarchy of
documents. One or more predicates (XPath filters)
are allowed in the steps to eliminate nodes that fail
to satisfy given conditions.

• The optional clause FOR EACH NODE/STATEMENT
expresses the trigger granularity. A statement-level
trigger executes once for each set of nodes ex-
tracted by evaluating the XPath expressions men-
tioned above, while a node-level trigger executes
once for each of those nodes. Based on the trigger
granularity, it is possible to mention in the trigger
the transition variables:

– If the trigger is node-level, variables
OLD_NODE and NEW_NODE denote the af-
fected XML element in its before and after
state.

– If the trigger is statement-level, variables
OLD_NODES and NEW_NODES denote the se-
quence of affected XML elements in their be-
fore and after state.

• An optional XQuery-Let-Clause is used to define
XQuery variables whose scope covers both the con-
dition and the action of the trigger.

• The WHEN clause represents the trigger condition,
and can be an arbitrarily expression legal in the
XQuery where clause. If omitted, a trigger condi-
tion that specifies WHEN true() is implicit.

• The action is expressed by means of the DO clause
and can be an arbitrary complex update operation.

For a complete syntax of XQuery refer to [4]. For the
syntax of the update language, refer to [10].

Below in the paper under update path we mean an
XQuery/XPath expression that is the part of an update
statement and specifies data that are to be updated. Under
trigger path we mean an XPath expression that spec-
ifies the data associated with the given trigger (XPath ex-
pression appearing after OF in a trigger definition).

Figure 1 illustrates different cases of positional rela-
tionship between nodes addressed by update path and
nodes addressed be trigger path.

Figure 2 provides the triggering operations. For each
cell of the table only triggers with triggering operations
from this cell can be triggered by the specified update
operation with given trigger path vs. update path length.

update operation

u
p
d

a
te

 v
s
.
tr

ig
g

e
r

p
a

th
 l
e

n
g

th
D el ete I ns ert R epl ac e

� � � � � � � � � � 	 � �
 � � � � � � � � � 	 � 	 � �

� � � � � � � � � � 	 � �

 � � � � � � � � 	 � 	 � �

� � � � � � � � 	 � 	 � �
 � � � � � � � � � � � 	 � �

��

� � � � � � � � 	 � 	 � �
 � � � � � � � � � � � 	 � �
 � �

��� � � � �

��� � � � �

��	 � � � � � � � � � � � �

��	 � � � � � � � � � � � �

��� � � � �

� � � � � �

��	 � � � � � � � � � � � �

��	 � � � � � � � � � � � �

��� � � � � � � � � � � �

��� � � � � � ��� 	 � � � �

��	 � � � � � � � � � � � � � � � � � � �

��	 � � � � � ��� � � � � �

Figure 2: Triggering operations of the triggers triggered
by the given update operation with given update/trigger
path length

3 XML Trigger Support Methods
3.1 Database System Requirements

Traditionally, to achieve maximal efficiency, a trigger
support method is tightly bound with the architecture of
a particular database system and cannot be regarded in
isolation from the architecture. Methods proposed in this
paper were initially designed to efficiently support trig-
gers in Sedna XML database system [3]. As a conse-
quence, the methods are based on features intrinsic to
Sedna. Nevertheless, to make our methods useful for
broader class of XML database systems, we elaborate
our solution to make them depended only of those Sed-
nas features which are essential to these methods. More-
over we consider these features in the most common way
to make them free of Sedna-specific particularities. Be-
low is an overview of such essential features.

We assume that a system supports the XQuery lan-
guage and an update language based on XQuery and its
data model [1]. There is no standard update language
proposed by W3C. Examples of this paper are given
in the Sedna update language [1] that is very closed to
that proposed in [18]. In addition to operations compar-
ing nodes according to their document order, we assume
support for operations that allows comparing nodes in
ancestor-descendant order. The both types of compari-
son operations are implemented in Sedna using advanced
numbering scheme as described in [3]. The universal
method specified in Section 3.2 strongly relies on the lat-
ter comparison operations.

Optimized method described in Section 3.3 exploits
the following two advanced features.

The first one is support for descriptive schema (also
referred to as DataGuide [19]). In contrast to prescriptive
schema that is known in advance and is usually specified
in DTD or XML Schema, descriptive schema is dynam-
ically generated (and increasingly maintained) from the
data and presents a concise and accurate structure sum-
mary of these data. Formally speaking, every path of the
document has exactly one path in the descriptive schema,
and every path of the descriptive schema is a path of the
document. As it follows from the definition, descriptive
schema for XML data represented in the XQuery data
model is always a tree. In the optimized algorithm, de-
scriptive schema is used for compile-time analysis and
simplification of XPath expressions. Using descriptive
schema instead of prescriptive one gives the following
advantages: (1) descriptive schema is more accurate then

prescriptive one; (2) it allows us to perform compile-
time simplification of XPath expressions when prescrip-
tive schema is not available.

The second advanced feature is an extension to the
standard XQuery execution model. In the extended exe-
cution model items obtained as an intermediate result of
execution may be annotated with some metadata. Anno-
tations are used to mark nodes for which triggers might
be triggered later during the update execution process.
There is also a set of predefined operations for dealing
with annotations. The specification of the annotations
and operations will be introduced in Section 3.3. Here
we only notice that this extension is orthogonal to the
XQuery execution model in a sense that marked items
are just common items for standard XQuery operations.

Using extensions to the standard XQuery execution
model requires us to turn to implementation-level details
to describe our methods. We need to define a query logi-
cal plan that supports XQuery and the extension as well.
The logical plan used in this paper is very close to that
used in Sedna and defined formally in [20]. The exhaus-
tive definition of the plan is not the goal of the paper we
will describe it to the extent that should be sufficient to
understand methods proposed in this paper. The logical
plan includes operations to represent all kinds of XQuery
expressions such as XPath expressions, FLWRs, etc. For
the purposes of this paper we need only to describe log-
ical plan for XPath expressions. XPath allows traversing
an XML tree in the directions determined by axes. The
logical plan for an XPath expression is a composition of
operations each of which implements traverse by an axis.
For example, the logical plan for the following XPath ex-
pression

doc("foo.xml")/library//book/@id

is as follows

attribute(descendent(child(doc("foo.xml"),
elem(library)),elem(book)),id)

where child and descendent are operations imple-
menting the child and descendent-or-self axes respec-
tively; elem(library), elem(book), id are represen-
tations of the corresponding node tests.

XPath predicates are represented in logical plan using
the select operation that takes a sequence to be filtered
and the predicate represented as a function of one param-
eter. select applies the function to each element of the
sequence and returns a new sequence containing items
for which the function application results to true. For
example, the following XPath expression

doc("foo.xml")/library/shelf[@nr=45]

is represented as follows

select(child(child(doc("foo.xml"),elem(library)),
elem(shelf)),f(x|child(x,elem(@nr)=45))))

The features essential to our methods such as support
for descriptive schema and advanced numbering scheme
are not Sedna-specific and supported by a number of sys-
tems. The mechanism for marking nodes during query
execution, though not known to be used in other systems,
can be easily implemented due to its property of orthog-
onality to the standard XQuery execution model.

3.2 Universal Method

The method provided below is a straighforward one. It
consists in preliminary evaluation of the update path and
trigger paths and identification of the nodes associated
with triggers among those affected by given update state-
ment.

The basic steps of this method are the following:

• Evaluate update-path expression. Thus, we have af-
fected nodes- a set of nodes that are to be updated.

• For INSERT and REPLACE statements, construct a
new fragment of data.

• Expanded path is a path-expression that excludes
ambiguities: ’//’, ’*’. Using descriptive scheme and
the result of evaluation from the previous step build
all possible expanded paths without predicates.

• For a set of expanded update-paths and trigger-paths
pick out the triggers that are probably triggered by
the update statement (this procedure is described in
detail in the 3.3 step 1: searching for probable trig-
gers).

• For each trigger picked out on the previous step
evaluate its trigger path expressions. From the result
set of nodes, applying ancestor-descendant compar-
ison operations introduced in Section 3.1, pick out
those that are:

– coinciding with some of affected nodes or

– the descendants of some of the affected nodes
or

– the ancestors of some of the affected nodes

• For each node and its associated trigger pick out the
nodes and their associated trigger according to Fig-
ure 2. Thus, we have got a set of nodes affected
by the update statement on which some triggers are
triggered.

• Evaluate the update statement and consider triggers
on the nodes determined on previous step.

This method does not impose any restrictions on up-
date path, i.e. it can be an arbitrary XQuery expression.
But, obviously it has significant disadvantages: the pre-
liminary identification of the nodes that match both up-
date statement and some trigger may lead to working
with a great number of triggers that appear to be not con-
sidered while given update statement.

Hence, in practice the method that excludes such an
inefficiency is strongly needed. Below we provide trig-
gers support method, simplifying the problem by intro-
ducing the restriction: in update statements XPath ex-
pressions are used (instead of arbitrary XQuery expres-
sions) for determining the data to be updated.

3.3 Optimized Method for XPath-based Update
Statements

Below we provide a three-step algorithm to support trig-
gers efficiently. The effectiveness is attained thanks to
the building of the specific execution plan that allows

identifying the eligible triggers and marks their associ-
ated data at the run-time of an update statement execu-
tion.

Each step is a sufficiently complicated procedure that
can be considered as a separate algorithm, thus, we try to
describe it in full detail and carry out the step operations
for our example given in Section 1.2. So, we have an
update operation and a list of triggers.

3.3.1 Step 1: Searching for Probable Triggers

Probable triggers are triggers that can be probably trig-
gered while the given update statement. The operations
of this step are carried out on triggering operations, trig-
ger path expressions, update operation and update path
expression.

1. Parent-expanded path is an XPath expression
rewritten in a way that it excludes ’..’ (parent axes).
Build parent-expanded paths from update-path and
each trigger-path by means of rewriting these path
expressions to avoid ’..’ in the path. A set of rewrit-
ing rules for XPath expressions aimed at avoiding
’..’ is proposed in [11].

In our example we do not have ’..’ in update path
and trigger paths. So, we do not have to rewrite up-
date path and trigger paths. Parent-expanded paths
look as follows:

parent-expanded-upd-pth =
document("lib.xml")/library/shelf[@nr=45]

/book[@id="AO97"]
parent-expanded-tr1-pth =
document("lib.xml")//book[year<1980]
parent-expanded-tr2-pth =
document("lib.xml")//book[year<1980]/author

2. Expanded path is a path expression that excludes
ambiguities: ’//’, ’*’. Each of these ambiguities can
be expanded using descriptive scheme. For exam-
ple take ’//’: by means of descriptive scheme tree
traversal we can obtain a set of paths that match
’//’. Build expanded paths from update path and
each trigger path by getting rid of the ambiguities
using descriptive scheme.

expanded-upd-pth =
document("lib.xml")/library/shelf[@nr=45]
/book[@id="AO97"]
expanded-tr1-pth =
{document("lib.xml")/library/shelf

/book[year<1980],
document("lib.xml")/library/box
/book[year<1980]}

expanded-tr2-pth =
{document("lib.xml")/library/shelf

/book[year<1980]/author,
document("lib.xml")/library/box
/book[year<1980]/author}

Thus, now for each trigger we have a set of ex-
panded trigger paths associated with it.

3. Now pick out the probable triggers by means of
following two procedures. Only triggers that are
picked out in the first procedure below will be con-
sidered in the second procedure.

• For each trigger and for each expanded trigger
path compare the names of the elements (and
document function parameter) on each step of
path with the corresponding names (names on
the same steps of path) in expanded update
path until one of the paths is ended. If on
some step names are not equal this trigger is
not triggered by the considered update oper-
ation. If on all steps of these two expanded
paths corresponding names are equal (no mat-
ter if one of the paths is shorter) pick out this
expanded trigger path and its associated trig-
ger (consider it in the next procedure).

In our example we carry out this procedure for
two sets of expanded trigger paths that both
consist of two expanded trigger paths. For tr1
we pick out

expanded-tr1-pth =
document("lib.xml")/library/shelf
/book[year<1980]

For tr2 we pick out

expanded-tr2-pth =
document("lib.xml")/library/shelf
/book[year<1980]/author

The other two expanded trigger pathes

expanded-tr1-pth =
document("lib.xml")/library/box
/book[year<1980]

expanded-tr2-pth =
document("lib.xml")/library/box
/book[year<1980]/author

were not picked out because they have names
box at the third step of path, but expanded up-
date path has shelf.

• The table on Figure 2 provides the triggering
operations. For each cell of table only triggers
with triggering operations from this cell can
be triggered by the specified update operation
with given trigger path vs. update path length.
For each expanded trigger path according to
the table pick out only those expanded trigger
paths and its trigger that have associated trig-
gering operations provided in the table.

In our example for tr1 we have expanded up-
date path and expanded trigger path of tr1
of equal length and triggering operation is
REPLACE. So, according to the table we pick
out this expanded trigger path and its associ-
ated trigger. For tr2 we have expanded trig-
ger path longer than expanded update path and
triggering operation is DELETE. According to
the table this expanded trigger path and its
trigger is also suitable to pick out.

Thus, we have a list of triggers that can be probably
triggered by the given update operation. For each prob-
able trigger we have pick out a set of expanded trigger
paths that address data on which this trigger can be prob-
ably triggered. Pass to the Step 2.

3.3.2 Step 2: Building Merged Execution Plan

The operation of this step are carried out on expanded
update path and expanded trigger paths that were pick
out on the previous step.

On this step for expanded update path and for each
trigger path we build merged execution plan. Merged
execution plan is a logical plan for execution expanded
update path expression taking into account predicates
from expanded trigger path expression. Merged execu-
tion plan is constructed in a way that as the result of its
execution we retrieve sequence of nodes that are to be up-
dated and identify those nodes in the sequence on which
trigger is triggered by the given update operation. Such a
sequence with identified nodes we call marked sequence.
To mark nodes we use the facilities of extended XQuery
execution model described in Section 3.1.

For marking nodes we introduce two
logical operations: mark1 and mark2.
mark1(unmarked_seq, predicate, trigger_name)
— takes unmarked sequence of nodes and marks (with
trigger_name) those nodes that satisty the predicate.
mark2(marked_seq, predicate, trigger_name)
— takes marked sequence of nodes and for each marked
node (that was marked with trigger_name) checks
the predicate. If marked node satisfies the predicate it
remains to be marked, if it does not satifies the predicate
it is unmarked.

Thus, to build merged execution plan follow the next
instructions:

1. Compare the lengths of expanded trigger paths and
update path. If the lengths are not equal divide all
of the expanded paths except the shortest one into
two parts: common expanded path and a tail ex-
panded path. For each expanded path, except the
shortest one, common expanded path is a first part
of expanded path of the same length as the shortest
expanded path, tail expanded path is the rest of the
expanded path. The shortest expanded path is di-
vided into common expanded path that is equal to
the shortest expanded path and tail expanded path
that is empty.

In our example expanded-tr2-pth is longer than
expanded-update-pth, so we get

common-expanded-upd-pth =
document("lib.xml")/library/shelf[@nr=45]
/book[@id="AO97"]

tail-expanded-upd-pth = ’’
common-expanded-tr1-pth =
document("lib.xml")/library/shelf
/book[year<1980]

tail-expanded-tr1-pth = ’’
common-expanded-tr2-pth =
document("lib.xml")/library/box
/book[year<1980]

tail-expanded-tr2-pth = /author

2. For expanded update path build logical plan by
means of operations defined in [].

select(child(select(child(child(
doc("lib.xml"),elem(library)),
elem(shelf)),f(s | attribute(s,nr)=45)),
elem(book)),f(b|attribute(b,id)="AO97"))

��� � � � � � � � �
� � � � 	
 � � �

� ��
������

������� �����

����� �����

�������������
�������������

� � � � � ���"! e
$ % & ' () ' * + , # $ % & ' () - . +/# $ % & ' () ' * + 0 # $ % & ' () - . + # $ % & ' () ' * + 1 # $ % & ' () - . +

� � � �

e

e

e

e

� � � �

2 354 6�7

$ 8 9 # - 9 ' $�: %
' $;�. < * 9 * =
> . 9 ? $

� � � �

� � � �

� � � �

 � @"
 	"� A @ �
 B C � � D

2 354 6�7

2�E

2�E

� � � �

 � @
 	 � A @ �
 B C � F B 	
 D G
� � H �"C D

 � @"
 	"� A @ �
 B C � � D

� � � �

� � � �

Figure 3: Table for evaluating OLD and NEW variables

3. Each predicate from expanded trigger path must be
inserted into the logical plan for their correspond-
ing elements by means of logical operations mark1
or mark2. For the first predicate starting from the
end of the expanded trigger path mark1 must be in-
serted, for the rest of the elements mark2 must be
inserted.

Thus, for our example we build the following:

mark1(mark1(select(child(select(child(child(
doc("lib.xml"),elem(library)),elem(shelf)),
f(s|attribute(s,nr)=45)),elem(book)),
f(b|attribute(b,id)="AO97")),"tr1"),"tr2")

Thus, having passed through this step we obtain
merged execution plan. Pass to the final step 3.

3.3.3 Step 3: Combined Execution of Update and
Triggers

On this step we provide the procedure for combined exe-
cution of update statement and one or more triggers that
is triggered by this update statement in an intuitive lan-
guage.

begin
for each $i in eval(merged_exec_plan)
{
let $what := eval_what(update_tail($i));
let $where := eval_where(update_tail($i));
begin
trigger_func ($i, "before");
update_op ($what, $where);
trigger_function ($i, "after");
end;

}
end;

Function trigger_func executes triggers on marked
nodes according to the time variable: BEFORE or AFTER.
Function returns nothing.

function trigger_func(node $i, string $time)
begin

if (marked($i)) then
for each $trigger in

{triggers with which $i is marked}
{
if(trigger_time($trigger) == $time)
then
{
let $old := <determine by the table>
let $new := <determine by the table>
if <trigger_when_clase($old, $new)>
then <trigger_action($old, $new)>
}
}

end;

function eval(plan) - evaluates merged plan,
builded on the step 2, returns marked sequence of nodes.

function eval_what(update path) - If up-
date statement is an insert, function constructs data that is
inserted. If update statement is a replace, function con-
structs data to replace with. Functions returns variable
$what bound to the constructed data. In case of delete
$what is unspecified.

function eval_where(update_path) - returns
a sequence of nodes that are to be updated by means of
evaluation of update_path.

function update_op($what, $where) - ex-
ecutes update statement. Function returns void.
function trigger_time(trigger) - returns
trigger time: before or after.

Our method has the following advantages:

1. During update execution the triggeres that are not
triggered by the update are excluded, thus, re-
dundant processing of not triggered triggeres is
avoided. The triggeres exclusion is carried out by
means of update path and rule path comparison us-
ing descriptive schema and, after that, by means of
incorporating the evaluation of rule path predicates
into the update path execution.

2. All triggered triggeres are processed together along
with the update execution, thus, there is no need to
consider each triggere separately.

However, we are aware of a disadvantage: the method
strongly relies on the fact that update and trigger paths
are an XPath expressions. The method needs modifica-
tions to be suitable for XQuery expressions that address
data in update statements.

4 Related Work
Active rules to enforce the correctness of update oper-
ations and to automatically maintain views of data has
been extensively studied in database systems [5]. Many
research projects provided substantial contributions to
the field of active databases (among others, Starburst [9],
Hipac [16], Sentinel [17], and IDEA [8]).

[22] presents implementation techniques of rules in
Version 2 of POSTGRES (in particular, tuple level pro-
cessing of rules deep in the executor) that we partially
adopted while elaborating on method proposed in this
paper.

As for the works specifically focused on triggers for
XML, we point out [14], [21]. [14] proposes Active
XQuery - an active language for XML repositories pre-
sented as an extension of XQuery. The authors propose
the syntax of Active XQuery and its semantics by de-
scribing an algorithm for support triggers and a sketchy
system architecture. The algorithm consists in expand-
ing bulk update statements into a collection of equivalent
statements, each one relative to a smaller fragment. This,
as authors expect, simplifies trigger consideration, but in
our opinion, the problem what triggers are triggered by
the given update statement remains unsolved.

Secondly, authors claim their approach leads to a sep-
aration between the two system components: trigger sub-
system and query engine. But at the same time they note
that update statement expansion requires accessing the

data affected by the update statement. That confirms our
assertion that complete trigger processing is impossible
at compile-time, that is the trigger processing requires
tight integration of trigger subsystem with query engine.

[21] investigates ECA rules on XML of the form sim-
ilar to ours. The paper provides techniques for statical
analysis of the triggering and activation dependencies be-
tween rules - the issue that we do not address in this pa-
per. The proposed techniques can be a good supplement
for our method.

5 Conclusion and Future Work
In this paper we proposed the definition of XML triggers
and methods to support XML triggers in XML database
systems. Methods described in this paper are being pro-
totyped in the Sedna XML database system.

In many implementations of relational database sys-
tems triggers have been successfully used to support in-
tegrity constraints. In future work we will analyse the
trigger capabilities in order to support different kinds of
integrity constraints for XML databases.

References
[1] Sedna Programmer’s Guide. MODIS ISP

RAS, http://www.modis.ispras.ru/Development/
sedna.htm

[2] Extesible Markup Language (XML) 1.0,
W3C Recomendation. 2nd edition (2000),
http://www.w3.org/TR/2000/REC-xml-20001006

[3] M. Grinev, A. Fomichev, S. Kuznetsov, K. An-
tipin, A. Boldakov, D. Lizorkin, L. Novak, M.
Rekouts, P. Pleshachkov, ”Sedna: A Native XML
DBMS”, Submitted to International Workshop on
XQuery Implementation, Experience and Perspec-
tives (XIME-P), 2004.

[4] XQuery 1.0: An XML Query Language. W3C
Working Draft. 29 October 2004.

[5] S. Ceri, R.J. Cochrane and J. Widom. Practical Ap-
plications of Triggers and Constraints: Successes
and Lingering Issues. Invited Paper. In Proc. of the
26th VLDB, El Cairo, Egypt, September 2000.

[6] A. Bonifati, S. Ceri and S. Paraboschi. Active Rules
for XML: A New Paradigm for E-Services. In Proc.
of TES Workshop, VLDB 2000, El Cairo, Egypt,
September 2000.

[7] I. Tatarinov, Z. G. Ives, A. Y. Halevey, D. S. Weld.
Updating XML. In Proc. of SIGMOD 2001, Santa
Barbara, California, May 2001.

[8] S. Ceri, P. Fraternali. The IDEA Methodology. Se-
ries on Database Systems and Applications, Addi-
son Wesley Publisher Ltd., May 1997.

[9] J. Widom. The Starburst Active Database Rules
System. In IEEE TKDE, 8(4):583-595, August
1996.

[10] XML Path Language (XPath) Specification.
W3C Recomendation, 16 November 1999,
http://www.w3.org/TR/xpath.

[11] D. Olteanu, H. Meuss, T. Furche, F. Bry. XPath:
Looking Forward. EDBT 2002 Workshops, LNCS
2490, pp. 109-127.

[12] K. P. Eswaran. Aspects of a Trigger Subsystem
in an Integrated Database System. IBM Research
Laboratory. San Jose.

[13] R. Cochrane, K. G. Kulkarni and N. Medonica Mat-
tos. Active Database Features in SQL3. In N. Paton
(ed.) Active Rules in Database Systems, pages 197-
219, Springer-Verlag, 1999.

[14] A. Bonifati, D. Braga, A. Campi, S. Ceri. Active
XQuery. In Proc. of the 18th International Confer-
ence on Data Engineering (ICDE’02).

[15] J. Widom and S. Ceri (editors). Active Database
Systems. Morgan Kauffmann Publishers, San Fran-
cisco (CA), 1996.

[16] U. Dayal, A. P. Buchmann and S. Chakravarthy.
The HiPAC Project. In Active Database Systems,
Morgan Kauffmann, pages 177-205, 1996.

[17] S. Chakravarthy, E. Anwar, and L. Maugis. De-
sign and implamantation of active capability for
an object-oriented database. Technical Report UF-
CIS-TR-93-001, University of Florida, January
1993.

[18] P. Lehti. Design and Implementation of a Data Ma-
nipulation Language. Technische Universitt Darm-
stadt Technical Report No. KOM-D-149. August,
2001.

[19] R. Goldman, J. Widom. DataGuides: Enabling
Query Formulation and Optimization in Semistruc-
tured Databases. VLDB 1997: 436-445.

[20] M. Grinev, P. Pleshachkov. Rewriting-based Opti-
mization for XQuery Transformational Queries. In
Proc. of IDEAS, Montreal, Canada. 2005.

[21] J. Bailey et al. An Event-Condition-Action Lan-
guage for XML. In Proc. of the WWW2002, 2002.

[22] M. Stonebraker, A. Jhingran et al. On Rules, Pro-
cedures, Caching and Views in Data Base Systems.
In Proc, of SIGMOD Conference, 1990.

