Java Specification Extension for Automated Test
Development

Igor B. Bourdonov, Alexey V. Demakov, Andrew A. Jarov,
Alexander S. Kossatchev, Victor V. Kuliamin, Alexander K. Petrenko, and
Sergey V. Zelenov

Institute for System Programming of Russian Academy of Sciences (ISPRAS),
B. Communisticheskaya, 25, Moscow, Russia
{igor ,demakov, jandrew,kos,kuliamin,petrenko, zelenov}@ispras .ru
http://www.ispras.ru/ RedVerst/

Abstract. The article presents the advantages of JQva, a specification
extension of the Java language, intended for use in automated test devel-
opment. The approach presented includes constraints specification, au-
tomatic oracle generation, usage of FSM (Finite State Machine) model
and algebraic specifications for test sequence generation, and specifica-
tion abstraction management. This work stems from the ISPRAS results
of academic research and industrial application of formal techniques [1].

1 Introduction

The last decade has shown that the industrial use of formal methods became
an important new trend in software development. Testing techniques based on
formal specifications occupy a significant position among the most useful appli-
cations of formal methods. However, several projects carried out by the Red Verst
group [3,12] on the base of the RAISE Specification Language (RSL) [6] showed
that the use of specification languages like RSL, VDM or Z, which are unusual
for common software engineer, is a serious obstacle for wide application of such
techniques in industrial software production. First, the specification language
and the programming language of the target system often has different seman-
tics and may even use different paradigms, e.g., one can be functional and the
other can be object-oriented, so a special mapping technique must be used for
each pair of specification and target language. Second, only developers having
special skills and education can efficiently use a specification language. The pos-
sible solution of this problem is the use of specification extensions of widely used
programming languages.

This article presents J@Qva — a new specification extension of Java language.
Several specification extensions of programming languages and Java in particular
already exist. ADL [5, 7] and iContract [8,9] are the most known of them. A few
extensions have been used in industrial projects. Why we invent a new one?

Our experience obtained in several telecommunication software verification
projects shows that the formal testing method used in industry should not only



allow automated test generation but also possess features such as clear mod-
ularization, suitable abstraction level management, separate specification and
test design, and the support of test coverage estimation based on several crite-
ria [14]. These subjects did not receive sufficient attention in ADL and iContract
languages and test development technologies based on them. The absence of inte-
grated solution explains the limited use of specification based methods in general
and these languages and related tools particularly.

Every industrial test development technology should provide the answers on
the following three questions.

— How to determine whether the component of the target system behaves
correctly or not?

— How to determine the set of test cases, which makes the test complete in the
sense that any additional test case can not add any important information?
And how to estimate the results of the test, which does not contain all of
these test cases for some reasons?

— How to organize the sequence of target operations calls during the test, the
test sequence, to obtain the necessary test cases in the most effective way?

The first problem is usually solved with the help of the component’s oracle,
which can be generated from the specification of the component. Although oracle
generation techniques are known (see, for example, [3-5]), they are not widely
used in industrial projects. KVEST project [3] performed by our group is the
largest example of such a project in the European formal methods database [2].
We do not consider the issues of automated oracle generation in this paper to
comply with size restrictions. We refer the interested reader to the previously
mentioned works [3-5].

The solution of the second problem is very important for the industry. Usu-
ally the solution is based on test coverage criterion, which gives the numerical
measure of the test effectiveness. Coverage criteria based on the structure of the
target code are widely known and used in the industry, but they are not suffi-
cient. Such criteria show what part of target code is touched by the test. The
important issue is also what part of functionality is touched by it. This problem
can be solved with the help of specification based coverage criteria.

The third problem mentioned above is addressed by FSM based testing tech-
nique used in our approach called UniTesK technology (see [11] for details). The
approach uses FSM model of the unit under test. Such a model is developed on
the base of the coverage criterion chosen to obtain. Then, the FSM developed
is traversed, and, so, the target coverage is achieved. We call the description of
this model the test scenario. Test scenarios directly deal with test design while
specifications describe the abstract functionality of target system.

2 Key Features of JQva Approach

In this section we present the goals of JQva design and J@va key features, explain
their advantages, and compare them with ADL and iContract.



During the design of J@va language we tried to preserve the main features
of our test development method, which is based on several previous successful
projects (see [3]). These features are as follows.

— Automatic generation of test oracles on the base of specifications presented
as pre- and postconditions of target operations.

— The possibility to define test coverage metrics and automatic tracking of
coverage obtained during the test.

— Flexible FSM based testing mechanism.

— Dynamic test optimization for the target coverage criterion.

Along with that we must simplify and clarify the method to make it appli-
cable in the software industry, not only in the research community.

Below we pay more attention to features not supported or supported in-
sufficiently by J@va contenders. In particular, we do not consider the general
software contract specification approach used in all mentioned languages [8,13]
and methods to specify exceptional behavior. Parallel processing specification
and testing methods are also out of the scope of this article.

Specification of object state. JQva specifications are structured similar to Java
code. The specification of the behavior of some component is presented as a
specification class, which can have attributes that determine the model state,
invariants representing the consistency constraints on the state of an object of
this class, and specification methods representing the specifications of operations
of the target component. Specification method can have pre- and postcondition.
In ADL and iContract specifications are also presented as pre- and postcondi-
tions, but they have no special constructs for state consistency constraints. The
same effect can be obtained only by including such constraints into pre- and
postconditions of all class methods.

Axioms and algebraic specifications. JQva provides constructs to express arbi-
trary properties of the combined behavior of target methods in an algebraic
specification fashion. The semantics of JQva axioms and algebraic specifications
is an adaptation of the semantics of RSL ones [6]. Axioms and algebraic spec-
ifications serve as a source for test scenarios development — they are viewed as
additional transitions in the FSM testing model. During testing we call the cor-
responding oracle for each method call in an axiom and then check the global
axiom constraint. Similar constructs can be found only in specification languages
and are absent in specification extensions as ADL and iContract.

Test coverage description. This is an essential feature for testing and software
quality evaluation. Test coverage analysis also helps to optimize the test se-
quence dynamically by filtering the generated test cases, because usually there
is no need to perform a test case that does not add anything to the coverage
already obtained. Each coverage element can have only one corresponding test
case. The coverage consisting of domains of different behavior, called the specifi-
cation branch coverage, can be derived automatically from the JQ@va postcondi-
tion structure. J@va also has several special constructs for explicit test coverage



description. The explicit coverage description and functionality coverage deriva-
tion allow providing fully automatic test coverage metrics construction and test
coverage analysis. Neither ADL nor iContract has facilities for test coverage
description and analysis.

Abstraction level management. The ability to describe system on different ab-
straction levels is very important both in forward and reverse engineering of
complex systems. The support of abstraction level changing allows developing
really implementation-independent specifications, whether we follow top-down
design or bottom-up reverse engineering strategy. In J@va, specifications and
source code are fully separated. Their interaction is provided by a special bind-
ing code. This code performs synchronization of the model object state with
the implementation object state and translates a call of model method into a
sequence of implementation methods invocations. It is necessary, because test
sequence is defined on the model level in our method. This approach allows
using one specification with several source code components and vice versa, it
also ensures the modularity of specifications and makes possible their reuse. No
other of known Java specification extensions provides such a feature. Larch [10]
provides the infrastructure the most similar to the J@va one but supports only
two-level hierarchy.

Test oracle generation. This is a standard feature of specification extensions
intended to be used for test development. J@va, as ADL and iContract, supports
automatic generation of test oracles from the specifications.

Test scenarios. Test scenarios provide the test designer with a powerful tool
for test development. The scenarios can be either completely user-written or
generated on the base of once written templates and some parameters specified
by test designer. In general, a JQva scenario defines its own FSM model of the
target system, called the testing model. A scenario defines the state class for this
model and the transitions, which must be described in terms of sequences of
target method calls. The testing model should represent a FSM, which can be
obtained from the FSM representing the target system by removing some states
and transitions, combining a sequence of transitions into one transition and
subsequent factorization. One can find details of this approach, some methods
and algorithms of testing model construction in [11], where they are formulated
in terms of FSM state graph properties.

In a more simple case, test scenario represents the sequence of tested op-
eration calls that can lead to some verdict on their combined work. The test
constructed from such a scenario executes the stated sequence and assigns the
verdict; it also checks the results of each operation with the help of the opera-
tion’s oracle.

J@va allows the use in scenarios such constructions as iterations, nonde-
terministic choice and serialization. Iterations help to organize test case genera-
tion for one target operation. J@va test scenario is represented as a class with



special methods — so-called scenario methods, which represent the transitions of
the model.

Among existing Java extensions, only ADL provides some constructs for test
case generation. However, complex tests, e.g. for a class as a whole, have to be
written entirely in the target programming language. An essential shortcoming
of this approach is the lack of state-oriented testing support that forces the test
designer to spend considerable effort to ensure the necessary test coverage.

Open OO wverification suite architecture. The verification suite consists of speci-
fications, test scenarios, binding code, and Java classes generated from the spec-
ifications and the test scenarios. The set of classes and relations between these
classes and between verification classes and target Java classes are well defined.
The architecture is described in UML and is easy to understand by any soft-
ware engineer having experience in design and development using Java language.
The openness of the architecture does not mean necessity of the generated code
customization for optimization or other purposes. There are other well-defined
flexible facilities for fitting the verification suite. However the openness signifi-
cantly facilitates the understanding and the use of the technology as a whole.
ADL and iContract users could read (and reverse engineer) generated code,
however the structure of generated test harness is considered a private issue of
ADL/iContract translator and can be changed at any time.

Example of J@ua specifications. Here we give an example of J@va specifications
for bounded stack class with non-null elements. This example demonstrates some
of the features itemized above.

specification package ru.ispras.redverst.se.java.examples.stack;
import java.util.Vector;

class StackSpecification {
static public int MAX_SIZE = 2048;
public Vector items = new Vector (MAX_SIZE); // model state

// object intergity constraint
invariant I1()
{
return items.size() >= 0 && items.size() <= MAX_SIZE;
}

// specification of pop() operation
specification public synchronized Object pop()
updates items.? // changes data available through items field
{
pre { return items.size() !'= 0; }
post

{



branch "Single branch"; // defines single coverage element
Vector old_items = items.clone();

// method identifier refers to the result of operation
0old_items.addElement (pop) ;

// @<expression> denotes the value of expression in pre-state
return old_items.equals(@items.clone());

X

3

// specification of push() operation
specification synchronized void push(Object obj)
reads obj, updates items.?
{
pre { return obj != null &% items.size() !'= MAX_SIZE; }
post
{
branch "Sinlge branch";
Vector new_items = Q@items.clone();
new_items.addElement (obj);
return items.equals(new_items);

// algebraic specifications
equivalence synchronized Object push_pop(Object obj)
{
pre { return items.size() != MAX_SIZE; }
alternative { push(obj); return pop(); }
alternative { return obj; }

}

equivalence synchronized void pop_push() {
pre { return items.size() != 0; }
alternative { push(pop()); return; }
alternative { return; }
}
}

3 Conclusion

To become applicable in industrial software production, an automated test de-
velopment technology must support a set of features that constitute something
like a critical mass. The critical mass should be not too huge to be introduced
in real-life software engineering and at the same time it should be sufficient for
usual needs of software engineers. The J@va tries to achieve this goal. More de-



tailed description of J@va and J@va based technology are presented on our web
site [1].

References

http://www.ispras.ru/ "RedVerst/

2. http://www.fmeurope.org/databases/fmadb088.html

11.

12.

13.

14

I. Bourdonov, A. Kossatchev, A. Petrenko, and D. Galter. KVEST: Automated
Generation of Test Suites from Formal Specifications. FM’99: Formal Methods.
LNCS, volume 1708, Springer-Verlag, 1999, pp. 608-621.

. D. Peters, D. Parnas. Using Test Oracles Generated from Program Documentation.

IEEE Transactions on Software Engineering, 24(3):161-173, 1998.

M. Obayashi, H. Kubota, S. P. McCarron, L. Mallet. The Assertion Based Testing
Tool for OOP: ADL2, available via http://adl.xopen.org/exgr/icse/icse98.htm
The RAISE Language Group. The RAISE Specification Language. Prentice Hall
Europe, 1992.

http://adl.xopen.org

R. Kramer. iContract — The Java Design by Contract Tool. // 4-th conference on
OO technology and systems (COOTS), 1998.
http://www.reliable-systems.com/tools/iContract/iContract.htm

. J. Guttag et al. The Larch Family of Specification Languages. // IEEE Software,

Vol. 2, No. 5 (September 1985), pp. 24-36.

I. Bourdonov, A. Kossatchev, V. Kuliamin. Using FSM for Program Testing.
Programming and Computer Software, Official English Translation of Program-
marovanie, No. 2, 2000.

A. Petrenko, I. Bourdonov, A. Kossatchev, and V. Kuliamin. Experiences in us-
ing testing tools and technology in real-life applications. Proceedings of SETT’01,
India, Pune, 2001.

B. Meyer. Object-Oriented Software Construction. Second Edition, Prentice Hall,
Upper Saddle River, New Jersey, 1997.

A. K. Petrenko. Specification Based Testing: Towards Practice. In this transactions.



