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The paper presents the experience of the authors in model based testing of safety critical real-time
control logic software. It describes specifics of the corresponding industrial settings and discusses
technical details of usage of UniTESK model based testing technology in these settings. Finally, we
discuss possible future directions of safety critical software development processes and a place of
model based testing techniques in it.

1 Introduction

Role of safety critical systems in our life is increasing at a rapid pace. The distinctive characteristic of
such systems is that their failure can be very dangerous for people or environment. As a result, devel-
opment of safety critical systems is usually regulated by government agencies according to appropriate
safety certification standards (e.g. DO-178B for avionics, BS EN 50128 for railways, IEC 60880 for
nuclear, IEC 61508 for industry, IEC 62304 for medical devices). Requirements of these specifications
make development and verification of safety critical software noticeably different from traditional pro-
cesses.

The key differences that had an influence on our experience of model based testing development are
as follows:

• requirement and architecture documents are carefully developed and maintained up to date;
• there is a need for requirements based testing including explicit requirements traceability;
• there is a need for source code coverage measurements depending on criticality level of a compo-

nent under test;
• tool qualification is required including tools used to automate verification processes.

Other important elements of the standards such as safety analysis affect our work to a very little
degree.

Usually requirement documents consist of two levels: HLR (high level requirements) and LLR (low
level requirements). HLR describe what is expected behavior of a component. LLR and software design
documents provide sufficiently detailed description how to implement HLR. LLR based tests covers
source code well even in terms of advanced source code coverage metrics such as MC/DC [1] because
source code is usually very close to LLR. Compliance between LLR and HLR is mostly verified using
manual formal inspections. One more HLR verification technique is system-level tests based on HLR.

It is well known that model based testing works well when high quality testing is required. There
are specialized model based testing technologies for real-time systems based on explicit automata defi-
nition, e.g. RT Tester [2], UPPAAL-TRON [3], Timed-TorX [4] and TTG [5]. On the other hand, there
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are model based functional testing technologies such as SpecExplorer [6] and UniTESK [8] that auto-
mates test sequence generation from implicitly defined automaton models. If advanced test coverage is
needed and model automata are rather complex, these approaches are more efficient than manual test
development. In comparison with explicit automata definition, the implicit one is less tend to lose clar-
ity and accuracy when the complexity of the functionality under test increases because the increase in
complexity results in the growth of the number of states and transitions in the automaton model of the
SUT (system under test). Information about usage of these approaches in the domain of real time safety
critical software is very limited, so we present our experience regarding usage of UniTESK model based
testing technology to real time systems with rather complex functionality.

The rest of the paper is organized as follows. Section 2 gives a short informal description of real
time logic control subsystems. Section 3 briefly describes the key ideas of the UniTESK model based
testing technology. Section 4 provides technical details of our usage of UniTESK technology for testing
of safety critical real time logic control subsystems. Finally section 5 outlines future works and possible
improvements in development processes of safety critical software.

2 Real-time logic control subsystems

In this section we give a short informal description of the object under test and its environment, i.e. the
target real-time logic control subsystem and the whole architecture of the RTES (real time embedded
system) software respectively. We also provide a simple example of an iron automatic shut-off control
subsystem. This subsystem is used in the subsequent sections to illustrate the most complicated aspects
of our testing approach for control subsystems of RTES.

The RTES software consists of a number of subsystems. The responsibility of control subsystems
includes analysis of the input data, decision making on the RTES reaction and generation of the output
data needed to perform the reaction. Other subsystems are not limited but usually include subsystems
that produce the input data for control subsystems and subsystems that process the output data produced
by control subsystems. As a rule, subsystems producing the input data for control subsystems usually
process the output data of some sensors and subsystems processing the output data produced by control
subsystems usually perform the reaction of the RTES.

The subsystems being part of the RTES software are supposed to be called in the global control loop,
i.e. they are subsequently called on each turn of the loop. The next turn of the control loop does not
begin after the last subsystem has finished its work, but it starts after a certain period of time has expired.
Let us refer to a turn of the control loop as a cycle and to the period of time after which the next cycle
begins as the cycle period. The total execution time of all the subsystems on each cycle may not exceed
the established cycle period for the RTES, otherwise the behavior of the RTES software is considered to
be incorrect.

Control subsystems of RTES consist of a number of decision making algorithms. The base part of a
decision making algorithm consists of a scheme of branch instructions which can often be very complex.
Figure 1 contains a simple iron automatic shut-off control subsystem. The names move and position are
the input parameters of the subsystem. The parameter move takes the value of 1 if the iron movement
sensor detected that the iron has been moved since the beginning of the current cycle; otherwise the
parameter takes the value of 0. The parameter position takes the value of 1 if the iron position sensor
detected that the iron is in the vertical position on the current cycle; otherwise the parameter takes the
value of 0. The name heating is the only output parameter of the subsystem. The value of 0 of this
parameter prevents the iron sole from being heated; the value of 1 allows it to be heated.
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Figure 1: Flow-chart of iron automatic shut-off control subsystem
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Control subsystems of RTES use internal state variables to save data between cycles. Some state
variables may be accessible for reading to other subsystems, some may not. The iron automatic shut-off
control subsystem is simple. It does not have any state variables.

The key feature in designing of decision making logic in control subsystems of RTES is the possibil-
ity to build conditions in branch instructions on the basis of the notion of time. An example of a temporal
condition is a Boolean formula which is required to be true for a period of time. Two such temporal con-
ditions are used in the flow chart in figure 1. The condition (!move&&!position,60) evaluates to true if
the Boolean formula (!move&&!position) has evaluated to true for 60 seconds.

How does a control subsystem of RTES calculate that a Boolean formula keeps the value of true for
a period of time? Let system time be the period of time passed since the start of the RTES execution.
The value of the system time is fixed by the kernel of the RTES in the beginning of each cycle and
remains fixed for all the subsystems of the RTES during the cycle period. The system time being constant
during the cycle period is a natural architectural decision usually taken in the software design stage as
it introduces determinism into the behavior of the RTES software. To calculate that a Boolean formula
keeps the value of true for a period of time, the control subsystem evaluates the value of the Boolean
formula on each cycle and using the system time accumulates the time interval during which the Boolean
formula keeps the value of true from cycle to cycle.

3 UniTESK technology

In this section we briefly describe the UniTESK testing approach for software systems which provide a
synchronous interface [8]. An interface is considered to be synchronous if the next stimulus may only
be applied after the reaction to the previous one has been received. The notions of the stimulus and the
reaction are parts of the UniTESK terminology. Real life examples of a stimulus applied to the SUT are
a method call or a form submission. Examples of a reaction of the SUT include the return value of a
method call or a web page reload.

The SUT is considered as a black box in UniTESK and is supposed to provide a number of interface
functions to access its functionality. The SUT may have an internal state. A call to an interface function
with a set of values of the parameters is considered as an application of a stimulus to the SUT. It can
result in a change in the internal state of the SUT and if the called interface function specifies the return
value, it is returned and is considered as a reaction.

Figure 2 contains the universal UniTESK test system architecture. Test engine is a library compo-
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Figure 2: UniTESK test system architecture

nent which implements a traversal algorithm for the abstract automaton. Information which can only
be supplied by the tester is concentrated in three components: oracle, mediator and test sequence iter-
ator. Compact formal descriptions are proposed for these components: specification, mediator and test
scenario accordingly. The formal descriptions are developed in programming languages which extend
industrial programming languages with a number of syntactic constructions. Those are the specification
extensions of C and Java programming languages.1

Functional requirements are formalized in specifications from which oracles are generated. Oracles
check the reactions of the SUT to the applied stimuli. The requirements specification technique used
in UniTESK is based on the well-known Design by contract method [9]. The state of the specification
models the state of the SUT. State invariants represent requirements to which all the specification states
obtained during the execution of the test system must satisfy. The specification declares a specification
function for each interface function being tested. The parameters of a specification function model the
parameters of the corresponding interface function. The requirements to the behavior of the interface
function are formalized in the corresponding specification function in the form of a precondition and
postcondition of the interface function call. The specification also formulates a coverage criterion on the
basis of the structure of the formalized requirements [10].

The precondition describes legal calls to the interface function on the basis of the current state of
the specification and the parameter values of the specification function. A specification stimulus in
UniTESK is a call to a specification function. It results in the check of the precondition. Violation of the
precondition indicates that the test system tried to perform an illegal call to the interface function. Before
checking the postcondition, the test system saves the current specification state and calls the mediator
function with the set of values of the specification function parameters.

The formal description called mediator is intended to bind a specification to the SUT and must
contain a mediator function for each specification function in specification. The signature and the type
of the return value of the mediator function must be identical to those of the corresponding specification
function. The mediator function transforms the specification representation of the input parameters of
the interface function into the representation of the SUT, calls the interface function, transforms the
return value of the interface function call into the representation of the specification, synchronizes the
specification state with the state of the SUT and returns the specification representation of the return
value. The specification representation of the return value is considered in the postcondition of the
specification function as the return value of the specification function and is called specification reaction.

After the mediator function call has completed, the test system initiates the check of the postcondition

1The renunciation of specification extensions in favor of natural language constructs becomes a new trend in the evolution of
UniTESK. The number of supported languages is growing. C++ and Python implementations of UniTESK are now available.
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of the specification function. The specification reaction and the specification state after the call to the
interface function are verified in the postcondition on the basis of the values of the input parameters of
the specification function and so called the pre-state of the specification, i.e. the specification state at the
time of the specification function call, which we know was preliminary saved.

The test scenario formalizes a model of the SUT in the form of the abstract automaton. The abstract
automaton is used to automatically generate a sequence of test actions. The test scenario describes the
abstract automaton implicitly. The base part of the test scenario consists of the following functions: a
number of scenario functions, the initialization function, the state generation function, and the finaliza-
tion function. A scenario function is responsible for organization of calls to specification functions. A
simple case implies the development of one scenario function for each specification function. Although
one scenario function may perform a number of calls to specification functions, one scenario function is
considered to describe one test action from the point of view of the test scenario, i.e. a call to a scenario
function is considered to perform one test action.2

The abstract automaton of the SUT is being dynamically constructed during the execution of the test
scenario. The initialization function moves the SUT and its specification into their initial states which
must certainly be synchronized. After the initialization function has finished its execution, the state
generation function is called. This function generates a state of the abstract automaton on the basis of
the current state of the specification and/or the SUT. The test engine component either performs a test
action which is defined for the current state of the abstract automaton and has not been performed yet or
it performs an action defined for the current state to get to a state for which a test action is defined and has
not been performed yet. Let the test engine applies a test action which has not been performed yet. A new
transition is created from the state where the test action has been performed. The transition is marked
with the test action performed.3 The state of the SUT might change because of the test action. The state
generation function is called to generate the end state for the transition. Construction of the test sequence
terminates when the test engine has performed all the test actions defined for all the states reached during
the execution of the test scenario. The finalization function is called at the end of the testing process.
This function performs any actions related to the end of the testing process. For instance, it can release
the allocated resources.

The main goal of the test scenario developer is to specify a set of states of the abstract automaton and
a number of test actions for each state so that if the test system performs all the test actions, the target
coverage criteria will be satisfied. The test scenario developer has to take into account some restrictions
that the test engine component imposes on the abstract automaton. Although the abstract automaton
is being dynamically constructed during the execution of the test scenario, the restrictions are imposed
on the final abstract automaton. There are two main implementations of the test engine: a test engine
that can traverse deterministic abstract automata [11] and a test engine that can traverse nondeterministic
abstract automata [12]. The test engine for deterministic abstract automata demands the final abstract au-
tomaton to be finite, deterministic and strongly connected. The test engine for nondeterministic abstract
automata demands the final automaton to be finite and to contain a deterministic, strongly connected,
total, spanning subautomaton.

2If a scenario function contains some iteration statements, it generally describes a number of test actions for each state of
the abstract automaton.

3If the scenario function being called does not contain any iteration statements, the transition is marked with the name of
the scenario function; otherwise the transition is marked with the name of the scenario function complemented with the set of
values of all the iteration variables.
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Figure 3: Test system architecture for CSUT

4 Application of UniTESK for real-time logic control subsystems

The original UniTESK test system architecture undergoes some changes when applied to control sub-
systems of RTES. In this section we describe those changes and some features in the implementations of
the individual architectural components.

4.1 Test system architecture

Software and hardware resources are often limited in the computer system on which the software of
RTES must run. Running resource consuming test system components on the target computer system is
impossible therefore the test system should be implemented as a separate program in order that it may be
run on a separate computer system. The architecture of the test system for functional testing of control
subsystems of RTES is represented in figure 3. It is composed of two programs which communicate syn-
chronously. The software of RTES with two injected subsystems named set-mediator and get-mediator
is in the figure 3 on the left. The main part of the test system is on the right. We will further refer to it
simply as the test system.

The whole composition operates in the following way. At the beginning of each cycle, the test system
generates a set of values for the input parameters of the CSUT (control subsystem under test). The
mediator component sends the generated set of parameter values to the set-mediator subsystem which
initializes the input parameters of the CSUT with them. After the CSUT has finished its execution, the
get-mediator subsystem reads the values of the output parameters and accessible state variables of the
CSUT, gets the system time at the current cycle and transfers all the data to the mediator component.
The test system verifies the behavior of the CSUT at the current cycle and the whole composition goes
on to the next cycle.

Requirements are formalized in UniTESK in the form of a precondition and a postcondition as im-
plicit specification. Meanwhile, LLR usually transform inputs to outputs explicitly. Development of an
explicit behavioral model from LLR is easier than development of an implicit model therefore a new
component named model is introduced into the test system architecture which implements the behav-
ioral model of the CSUT explicitly. More precisely, the model is intended to produce reference values
for the input parameters and the state variables of the CSUT at each cycle on the basis of the state and
the input parameters of the CSUT in the model representation. The postcondition uses the referenced
values produced by the model to compare them with the values produced by the CSUT.

4.2 Model

The model is intended to represent LLR in a formal way. Such a representation usually preserves the
structure of the branch instructions fixed in LLR. Each decision control algorithm from LLR is mapped
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to a separate function. One function is designed to be the entry point to the model. Let us call it interface
function of the model. A model representation is developed for the input and output parameters and state
variables of the CSUT. The input parameters in the model representation become part of the input param-
eters of the interface function of the model. The output parameters in the model representation become
part of the output parameters of the interface function. The state variables in the model representation
become part of both the input and output parameters of the interface function.

The input parameters and state variables of the CSUT in the model representation are not enough
to evaluate temporal conditions in the model therefore the arguments of the interface function of the
model must be complemented with some new parameters. By way of example, let us design a model
representation for the temporal conditions used in the iron automatic shut-off control subsystem and
complement the arguments of the interface function with parameters that would be enough to evaluate
the modeled conditions. Here are the temporal conditions in the flow-chart of the iron automatic shut-off
control subsystem:

1. (!move&&!position,60) = (!move,60)&&(!position,60);
2. (!move&&position,15∗60) = (!move,15∗60)&&(position,15∗60).
The list of different temporal predicates assigned to a unique identifier where each predicate is a

member of a temporal condition:
1. move eq f t1 = (!move,60);
2. position eq f t1 = (!position,60);
3. move eq f t2 = (!move,15∗60);
4. position eq t t2 = (position,15∗60).
Listing 1 represents a structure type which combines the identifiers of the temporal predicates. The

arguments of the interface function of the model must be complemented with a parameter of this type.
Let us call this parameter time f lags.

Listing 1: Structure type combining identifiers of temporal predicates
t y p e d e f s t r u c t {

bool m o v e e q f t 1 ;
bool m o v e e q f t 2 ;
bool p o s i t i o n e q f t 1 ;
bool p o s i t i o n e q t t 2 ;

} t t i m e f l a g s ;

Listing 2 represents the source code of the model for the iron automatic shut-off control subsystem.
The two temporal conditions are formalized on the basis of the identifiers of the temporal predicates. The
value for the parameter time f lags is calculated by the mediator component on the basis of the previous
interactions with the CSUT. This question is discussed later.

Listing 2: Model for iron automatic shut-off control subsystem
bool model ( bool p o s i t i o n , t t i m e f l a g s t i m e f l a g s ){

i f ( p o s i t i o n )
i f ( t i m e f l a g s . m o v e e q f t 2 && t i m e f l a g s . p o s i t i o n e q t t 2 )

re turn f a l s e ;
e l s e re turn t r u e ;

e l s e
i f ( t i m e f l a g s . m o v e e q f t 1 && t i m e f l a g s . p o s i t i o n e q f t 1 )

re turn f a l s e ;
e l s e re turn t r u e ;

}



Y. Gerlits & A. Khoroshilov 137

4.3 Specification

The specification contains only one specification function because control subsystems of RTES are con-
sidered to provide one interface function. The input and output parameters of the CSUT in the model
representation become the input and output parameters of the specification function accordingly. The
state of the specification includes the state variables of the CSUT in the model representation. If temporal
conditions are used in the branch instructions of the CSUT, the state of the specification is complemented
with variables of the data types designed to evaluate the temporal conditions in the model.

Let us consider the postcondition of the specification function. At first, the interface function of the
model is called to get referenced values for the output parameters and state variables of the CSUT in
the model representation. Those parameters of the interface function of the model which correspond
to the state variables of the CSUT get the pre-values of their counterparts in the specification state.
Those parameters which correspond to temporal conditions get the post-values of their counterparts in
the specification state. The verdict in the postcondition is returned on the basis of the compare of the
output parameters and the state variables of the CSUT in the model representation with their referenced
counterparts calculated by the model. Listing 3 contains the specification for the iron automatic shut-off
control subsystem.

Listing 3: Specification for iron automatic shut-off control subsystem
t t i m e f l a g s t i m e f l a g s ;
s p e c i f i c a t i o n bool spec ( bool move , bool p o s i t i o n ) w r i t e s t i m e f l a g s {

pos t { re turn spec == model ( p o s i t i o n , t i m e f l a g s ) ; }
}

Some part of HLR can be represented in UniTESK tests as data invariants and extra checks in post-
conditions. It allows providing verification of HLR using the same LLR-based module-level tests.

UniTESK provides a number of coverage criteria on the basis of the structure of the requirements
formalized in specifications [10]. When UniTESK is applied for control subsystems of RTES, it is less
labor intensive to measure the coverage of the source code of the model. One can easily use a structural
coverage metric based on the control flow graph like the branch coverage, condition coverage, modified
condition decision coverage and etc [1, 13].

4.4 Mediators

The previous section describes internals of the specification for control subsystems of RTES. In this
section we consider the mediator component for this specification and refine the communication protocol
between the mediators.

4.4.1 Communication protocol between mediators

The central part of the mediator is a single mediator function, the signature of which is determined by the
signature of the specification function. The mediator function transforms the model representation of the
input parameters of the CSUT into the representation of the CSUT, sends the values of the transformed
parameters to the set-mediator subsystem and goes to the idle mode where it waits for the values of
the output parameters and state variables of the CSUT and the system time at the current cycle. At
each cycle the set-mediator subsystem starts and finishes its execution before the control subsystem has
started. At first the set-mediator subsystem goes to the idle mode where it waits for values of the input
parameters of the CSUT. After the values have been received, the set-mediator subsystem initializes
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the input parameters of the CSUT with them and finishes its execution. After the control subsystem
has finished its execution, the get-mediator subsystem starts. At first it reads the values of the output
parameters and accessible state variables of the CSUT. It also reads the value of the system time at the
current cycle or calculates it. The get-mediator subsystem sends all the collected data to the mediator
component and finishes its execution. The mediator function receives the data sent by the get-mediator
subsystem. The values of the output parameters of the CSUT are transformed into the representation of
the model. They will be returned as the return value of the mediator function at the end of its execution.
Before doing this the mediator function starts to synchronize the specification state with the state of the
CSUT.

4.4.2 Synchronization of specification state with implementation state

The state variables of the CSUT received from the get-mediator subsystem are transformed into the rep-
resentation of the model. After that they are assigned to the specification state variables which model the
state variables of the CSUT. Some state variables of the CSUT may not be accessible for reading to other
subsystems including the get-mediator subsystem. The model representation for the inaccessible state
variables is evaluated according to the principle of working with the hidden state, i.e. in the assumption
that the CSUT operates without errors in compliance with the specification.

The mediator component should also calculate values for the specification state variables used to
model temporal conditions. By way of example, listing 4 contains an algorithm which evaluates the
temporal predicate (p ==VAL,T ). The mediator function is supposed to execute the algorithm at each
cycle. The algorithm uses the following labels: p is an input parameter of the CSUT, VAL is a value of
p, T is a time interval during which p should preserve VAL, sys time is the system time at the current
cycle, p sys time is the system time since which p has preserved VAL or -1 if p is not equal to VAL.

Listing 4: Algorithm evaluates temporal predicate
i n t p s y s t i m e = −1;
i n t get p eq VAL T ( i n t p , i n t VAL, i n t T , i n t s y s t i m e , i n t ∗ p s y s t i m e ){

i f ( p != VAL) {∗ p s y s t i m e = −1; re turn 0 ;}
e l s e {

i f (∗ p s y s t i m e == −1) ∗ p s y s t i m e = s y s t i m e ;
i f ( s y s t i m e ∗ p s y s t i m e >= T ) re turn 1 ;
e l s e re turn 0 ;

}
}

4.4.3 Control of cycle period

The set-mediator subsystem goes to the idle mode at the first step of its execution. Being in the idle mode
it is waiting for values for the input parameters of the CSUT. It is not ruled out that this delay becomes
too long at a cycle so that the total time of all subsystems execution will exceed the cycle period. In this
case the behavior of the RTES software is considered incorrect by reason which does not depend on the
RTES software. Let us propose two solutions for the problem specified.

The first solution is the following. The cycle period can be increased so that the total time of all
subsystems execution would not exceed the cycle period. In order to enhance the accuracy of the method,
the test system might control that the total time does not exceed the cycle period at each cycle. The test
system will indicate at the end of the testing process whether this condition has hold or not. If it has hold,
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the tester may start to analyze the test reports produced. If the condition has not hold, the cycle period
must be increased.

The second solution requires that the RTES software implements two features: the streaming mode
and the system time accessible for writing to subsystems. The streaming mode makes the next cycle
start immediately after the last subsystem has finished its execution. The streaming mode implies that
the cycle period is not controlled and the subsystems may exceed it without any reaction of the RTES
engine. The RTES software usually implements the streaming mode as it is required to easy debug the
RTES software or it can be implemented exclusively to facilitate testing. If the system time is accessible
for writing, one can implement a subsystem which starts at the beginning of each cycle and sets the
system time at the current cycle to the sum of the system time at the previous cycle and the cycle period.
From one hand, the two features can be used to simulate usual conditions of operation when each cycle
starts right after the cycle period has expired. On the other hand, the total time of all subsystems execution
cannot exceed the cycle period.

4.5 Test scenario

Development of test scenarios is seemed to be the most complicated task. Let us explain it in this section
by an example, i.e. by developing principal parts of a test scenario for the iron automatic shut-off control
subsystem. At first, the target coverage criterion should be established. Let it be the branch coverage of
the model. The main goal of the test scenario developer consists in designing such an abstract automaton,
traversal of which by the test engine satisfies the target coverage criterion.

4.5.1 States of abstract automaton

If the number of possible states of the specification is not high, i.e. several hundreds, the state generation
function of the test scenario may take the current state of the specification as the state of the abstract
automaton. If the number of possible states of the specification is dramatically high or even infinite, the
approach of state generalization is used in UniTESK to construct the states of the abstract automaton.
According to this approach the states of the specification are partitioned into equivalence classes which
are used as the states of the abstract automaton. A universal method called coverage-targeted reduction
of the model [14] is used to design generalized states of the abstract automaton and test actions in sce-
nario functions so that the traversal of the abstract automaton would satisfy the target coverage criterion.
This method has already been applied in case of coverage criteria on the basis of the structure of the
requirements in the specification. Here we give an example of its use in case of a structural criterion on
the basis of the control flow graph, i.e. the target branch coverage of the model.

At the first step, a set of test cases is extracted. This set of test cases should satisfy the target
coverage criterion. Using the flow-chart of the iron automatic shut-off control subsystem, one can find
that the following test cases satisfy the branch coverage of the model:

1. position&&(!move&&position,15∗60);
2. position&&!(!move&&position,15∗60);
3. !position&&(!move&&!position,60);
4. !position&&!(!move&&!position,60).

At the second step the test cases are considered as conditions which cut out subregions in the space
of both possible states of the specification and possible values of the input parameters of the specification
function:
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Figure 4: Generalized states of abstract automaton

1. position&&move eq f t2&&position eq t t2;
2. position&&!(move eq f t2&&position eq t t2);
3. !position&&move eq f t1&&position eq f t1;
4. !position&&!(move eq f t1&&position eq f t1).

At the third step the subregions are projected on the space of possible states of the specification. Each
projection extracts a subspace of states in which the corresponding test case is able to occur. In other
words, a set of values for the input parameters may be found which covers the test case in each state from
the projection. The conditions extracted at the previous step are projected on the following subspaces of
states:

1. move eq f t2&&position eq t t2;
2. !(move eq f t2&&position eq t t2);
3. move eq f t1&&position eq f t1;
4. !(move eq f t1&&position eq f t1).

The projections may have nonempty intersections. In other words, there are states in which several
test cases may be covered depending on the values of the input parameters. At the fourth step all different
intersections of the projections are taken. Figure 4 outlines this operation on the projections obtained
at the previous step. The intersections are numbered from 5 to 7. The final set of generalized states
partitions the whole space of states into equivalence classes because two calls to the specification function
in different states from the same generalized state result in the same set of test cases being covered.

The state generation function must not explicitly take different intersections of the projections on
the space of states. The current state of the specification and the set of conditions which specify the
projections are enough to build the generalized state of the abstract automaton by returning the vector
(α1,α2, . . . ,αn) ∈ {0,1} : αi = 1 if the specification state belongs to projection i; otherwise αi = 0.

Extraction of conditions which specify the projections of test cases to the state space of the speci-
fication may be a really complicated task. Long-term experience in development of test scenarios for
software systems of different classes was investigated in the paper [15]. An interesting idea consists in
extracting states of the abstract automaton on the basis of the data structures which model the state of the
SUT in the specification. The paper describes some approaches to development of test scenarios. Each
approach is based on a widely used data structure. The approaches are represented in the form of design
patterns. The statistics collected during that research conforms that the collected patterns are used in
more than 80% of the test scenarios investigated.

4.5.2 Test actions

Let the states of the abstract automaton have been developed with the method of coverage-targeted reduc-
tion of the model. The method of coverage-targeted reduction of the model describes the way in which
the test actions in scenario functions must be defined. The test actions are considered as the equivalence
classes of calls to the specification function by the target coverage criterion. In other words, one test
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action corresponds to a set of calls to the specification function where each call covers the same coverage
item selected by the coverage criterion.

Any alternative method of defining test actions must result in the target coverage criterion satisfied.
Having this in mind, we recommend developing scenario functions of two types. Scenario functions of
type 1 make reachable states of the abstract automaton needed to satisfy the target coverage criterion.
Scenario functions of type 2 iterate values of the parameters of the specification function in each state
to maximize the value of the target coverage metric. This approach is effective in practice and is more
intuitive.

4.5.3 Restrictions imposed by test engine

We have focused so far on the problem of designing such an abstract automaton, traversal of which would
satisfy the target coverage criterion. It is not the only problem which usually appears during development
of test scenarios. Restrictions imposed by the test engines on the final abstract automaton have to be in
mind during development of both states and test actions. It is difficult to control the restrictions during
development of the test scenario because the restrictions are imposed on the final abstract automaton but
the abstract automaton of the SUT is being dynamically constructed during the testing process. The most
complicated property to satisfy in practice is the determinacy of the abstract automaton and the determi-
nacy of the spanning subautomaton. The method of coverage-targeted reduction of the model does not
ensure that the final abstract automaton will satisfy one of these properties. The following methods can
be used to modify the abstract automaton so that it would satisfy the determinacy or determinacy of the
spanning subautomaton [14, 15]: splitting of states, injection of connective transitions, generalization
of transitions. These methods do not directly concern control subsystems of RTES. We do not consider
them in this paper.

4.5.4 Test sequence reduction methods

The total time of execution of test scenarios may be dramatically high in some cases. This happens
because the number of test actions applied during execution of test scenarios is high. It should be noted
here that one test action specified in a scenario function may be applied many times during execution
of the test scenario because the traversal algorithm implemented in the test engine applies known test
actions to get to a state where there are some test actions not applied yet. Decreasing the number of test
actions is considered as a big problem because the target coverage criteria must be ultimately satisfied
whatever is happened with the abstract automaton.

The following methods are suggested to solve the problem: testing piecemeal, filtering of input pa-
rameters in scenario functions, enlargement of states. These methods are based on a practical observation
and at the same time a logical consideration according to which reducing the number of both possible
states of the abstract automaton and test action specifications in scenario functions results in decreasing
the number of test actions really applied during execution of the test scenario. We do not formalize the
methods in this paper and do not formally proof their effectiveness, but describe them informally and
argument why they are useful and usually deliver the expected result in practice.

Testing piecemeal. According to this method the CSUT is partitioned into logical parts. Each part
is tested by a separate test scenario. Parts can be algorithms, flow-charts, parts of algorithms or even
separate branch instructions. It depends on the complexity of the CSUT and the target coverage criteria.
The test scenario for a part of the CSUT is expected not to define more states and test action specifications
in scenario functions than the test scenario for the CSUT as a whole. Testing piecemeal results in the
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input parameters as well as the states of the CSUT gone over piecemeal therefore the total number of test
actions performed by the test scenarios for the parts of the CSUT is expected not to exceed the length of
the test sequence generated by the test scenario for the CSUT as a whole. If possible, the test scenarios
for the parts of the CSUT can be run simultaneously to further reduce the total time of execution.

Implementation of the method implies that the test scenario takes control over the data and control
flows in the CSUT. Some input parameters are set to values which ensure that the data and control flows
reach the target part of the CSUT, the other parameters are gone over to satisfy the coverage of the target
part of the CSUT.

Some coverage criteria do not allow for testing piecemeal because all structure of the SUT or require-
ments must be taken into account to satisfy the criteria. A typical example is MCC (Multiple Condition
Coverage) [1].

Filtering of input parameters in scenario functions. Filters are conditions on a set of variables
which filter out some sets of their values. The method reduces the number of test action specifications
in scenario functions by applying filters in iteration statements to filter out those set of values for the
input parameters of the CSUT which do not enlarge the coverage. The syntax rules for filters in iteration
statements can be found in [10].

Enlargement of states. The goal of the method consists in reducing the number of states of the
abstract automaton by re-generalizing the specification states so that the new set of generalized states
would contain more specification states than the prevous set on the average. Let a test scenario is imple-
mented for the iron automatic shut-off subsystem and the states of the specification act as the states of
the abstract automaton. We can remember that the state of the specification is determined by the values
of four temporal predicates therefore the upper bound for the number of possible states of the abstract
automaton is 16. We obviously might calculate that only 9 states are really possible. As we showed the
method of coverage-targeted reduction of the model results in 7 states of the abstract automation. Both
9 and 7 states cover the whole space of possible states of the specification. It is a true fact that we have
constructed 7 states that are larger that 9 original states on the average.

4.6 Practical results

All solutions described in this paper were implemented and applied in projects on testing of avionics
related control subsystems. As an example, we provide some details of our joint project with Russian
System Corporation, where a system under test was the control subsystem of AAFSS (Airborne Active
Flight Safety System) developed by Russian System Corporation.

AAFSS is designed to increase flight safety and effectiveness of the airborne complex. The system
performs monitoring of the operational status of the airborne systems, survival facilities, operational
conditions and adequacy of the behavior of the crew, as well as decision control on recovery of flight
safety in critical situations.

The AAFSS software consists of a number of subsystems. The control subsystem is the most critical
one because it takes all decisions in AAFSS. The control subsystem consists of about 10 decision control
algorithms, 30 input parameters, 10 state variables, 10 output parameters and 80 temporal predicates.
The functional requirements to the control subsystem are well-structured and carefully described mainly
in flow-charts.

The numbers of the input parameters, state variables and temporal predicates do not give an alter-
native to the method of testing piecemeal. 15 test scenarios were developed for the control subsystem
of AAFSS. Each scenario performs about 58000 test actions on the average. Some critical bugs were
revealed by those test scenarios in development versions of control software.
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We got added evidence that an important advantage of a model based testing technology comple-
mented with a strong process of formalization of requirements consists in possibility to reveal bugs at
earlier stages [7]. In particular, some problems concerning correctness, unambiguity and completeness
[16, 17] of the decision control algorithms were revealed.

5 Conclusions

The paper presents our experience in model based testing of control subsystems of safety critical RTES
using the UniTESK testing technology. The input for testing process is LLR that describe implementation
details of the control logic in an informal way. This description is usually similar to flow charts enriched
by timing properties. The tests to be developed have to cover all LLR and have to provide appropriate
source code coverage. The latter means that the tests have to cover all the decisions and/or conditions
that basically inherited from LLR.

In these settings model based testing techniques demonstrate themselves as an efficient means to
achieve the required coverage level in a semi-automated way. Basically, the UniTESK model based
testing approach suggests to formalize LLR and then to take benefits from the automation of the verifi-
cation activities on the base of this model. Formalization of LLR allows to reveal issues in LLR them-
selves. Additionally, UniTESK allows to provide verification of HLR on the base of the same LLR-based
module-level tests.

The next logical step could be to formalize LLR from the very beginning using some formal notation.
The possible benefits of this step include:

• generation of source code from LLR;
• generation of UniTESK models from LLR if testing against LLR is required;
• earlier bug revealing in LLR during the formalization step;
• partial automation of LLR verification against HLR.

There are already several tools available that support formalization of LLR. The most known of them
are SCADE and Simulink. Qualified code generators have been developed for the models produced by
these tools. If qualified code generators are available in a project, there is no need in LLR-based tests.
In this case model based testing techniques can be valuable to automate test generation in the context
of HLR verification. If qualified tools are not available in a project, LLR-based tests described above
are still required for certification purposes. In this case most parts of the UniTESK test suite could be
generated from LLR except for the test scenarios, where manual tuning is required to prevent the state
explosion.
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