
Optimizing Concurrent Processing of Write-then-Read
Transactions

c© Alexander Kalinin

Institute for System Programming of the Russian Academy of Sciences
allex.kalinin@gmail.com

Abstract

Write-then-read transaction (W |R) is a trans-
action that consists of two consecutive phases:
write phase containing write and read opera-
tions in random order, and second phase con-
taining read operations and write operations
only on data items previously updated in the
first phase. W |R transactions are of great prac-
tical importance, but the problem of efficient
processing of such transactions has received
only little attention of research community so
far. In this paper, we present Dynamic Ver-
sioning Protocol (DVP), which optimizes W |R
transactions processing using versions on the
second phase. DVP supports STEAL policy and
incorporates dynamic approach to the problem
of selecting most suitable versions for read op-
erations of the read phase. We prove the cor-
rectness of our protocol, so it guarantees the se-
rializability of all transactions. The conducted
experimental evaluation shows significant ben-
efits of DVP for processing of concurrent W |R
transactions.

1 Introduction
There is a well-known problem of concurrent processing
of update transactions (usually called updaters) that up-
date some data items more or less randomly and read-
only transactions (usually called queries) that consist
only of read operations. One of the most widely used
protocols, two-phase locking (2PL [9]), does not effi-
ciently support such processing [18], because it cannot
efficiently handle data contention that may exist between
updaters and queries. This problem is of great practical
importance and, as a result, a variety of approaches have
been proposed to address this issue.

The solution to the concurrency problem that avoids
data contention between updaters and queries is to main-
tain multiple versions of data items. This is gener-
ally called multiversioning [20]. In multiversioning,
data contention is reduced by allowing queries to read
obsolete versions (that are, nonetheless, transaction-
consistent), while updaters create new versions of data
items.

Proceedings of the Spring Young Researcher’s Colloquium
on Database and Information Systems, Saint-Petersburg, Rus-
sia, 2008

Most multiversion algorithms support only two trans-
action classes: updaters and queries. On the other hand,
there exists such usable class as write-then-read trans-
actions (W |R transactions, for short). This transactions
consist of two consecutive phases: write phase contain-
ing write and read operations in random order, and sec-
ond phase containing read operations and write opera-
tions on data items only previously updated in the first
phase. Integrity constraints (IC) checking implies using
such W |R pattern when such checking occurs at the very
end of transaction. Of course, other types of IC’s check-
ing may yield different transaction patterns, which is not
the goal of this paper.

Most concurrency control protocols process W |R
transactions as updaters (usually using 2PL), which leads
to unnecessary delays of W |R transactions. Let us con-
sider an example.

Example 1. Consider a system for items supplies man-
agement. This system uses two relations:

Supply(supp id, date, item, item number,
...),

ItemInfo(item id, rating, ...)

Manager can request supply of a particular item.
The corresponding order is placed in Supply relation.
System checks reasonability of this request by checking
ItemInfo relation, which stores some information for
each item (rating, sale statistics, etc.). If some criterion
(low sales for the item, for example) is not sufficient, re-
quest for supply will be denied.

Thus, we could have two transactions here. Let T1 be
a W |R transaction that inserts tuple s in Supply rela-
tion. Then this transaction reads tuple i from ItemInfo
relation to check the criterion. Let T2 be a transaction
that runs concurrently and updates ItemInfo relation
by updating tuple i from it. Consider one of the possible
histories:

W1(s) W2(i) R1(i) c(T2) c(T1)

All concurrency control protocols that process up-
daters using 2PL rules would not allow such a his-
tory. For example, strict two-phase locking protocol
(S2PL[3]) will block T1 on R1(i) and will not allow it
to read i before commit of T2.

But transaction T2 could be serialized after T1 if T1
do not see version of tuple i created by T2.

Unfortunately, class of W |R transactions has not re-
ceived much attention in the database research commu-
nity. As far as we know, there is only one protocol

that optimizes processing of W |R transactions: an ex-
tension of the multiversion two-phase locking protocol
(EMV2PL [13]).

However, the approach of [13] suffers from several
important shortcomings. First, EMV2PL does not sup-
port STEAL policy [11], what implies that buffer man-
ager cannot write noncommited updated pages back to
the database before commit of transaction. STEAL pol-
icy is supported in most commercial database systems
and we consider such support in our protocol as one of its
major features. Second, EMV2PL maintains unrestricted
number of versions, which leads to high storage over-
head and complex version management. As shown in
papers [15, 14] multiversion protocols, which bound the
possible number of versions obtain serious performance
advantages in comparison with protocols without restric-
tions on number of versions. Third, EMV2PL employs
static approach to the problem of selecting appropriate
versions for read operations on the second phase. That is,
EMV2PL obtains timestamp at the end of the first phase
and as a result on the second phase transaction is bound
to read versions that precede obtained timestamp. This
approach is simple, but in many cases more recent ver-
sions of data items could be read. Note, that the research
conducted by Carey et al. [4] shows that reading younger
versions of data items rather than older ones gives serious
performance benefits.

Towards the goal of optimizing processing of W |R
transactions, this paper introduces a new Dynamic Ver-
sioning Protocol (DVP), which produces only serializ-
able schedules and supports an efficient processing of
W |R transactions. Our protocol allows more efficient
processing by employing following techniques. Firstly,
it allows W |R transactions to release all their read locks
after executing their first phase and to execute second
phase without acquiring new locks. Secondly, DVP sup-
ports STEAL policy, which is one of its major benefits.
Thirdly, it maintains only fixed number of versions per
each data item. At last, DVP introduces dynamic ap-
proach to the problem of selecting most suitable ver-
sions for read operations on the second phase, which al-
lows reading of the most recent versions possible on the
second phase without experiencing unnecessary delays.
So, DVP ovecomes all aforementioned shortcomings of
EMV2PL protocol.

To explain in more details the benefits of dynamic ap-
proach let us consider one more example.

Example 2. Consider transactions T1 and T2 from pre-
vious example. Concurrent execution of this transactions
might produce following history:

W1(s) W2(i) c(T2) R1(i) c(T1)
A static approach obliges T1 to read old versions of

tuple i. So, EMV2PL serializes T1 before T2. On the
other hand DVP dynamically (i.e. during T1 execution)
determines that there are no existing conflicts between
T1 and T2 transactions and serializes T1 after T2. There-
fore, it allows reading of more recent version of i.

The remainder of the paper is organized as follows.
Section 2 presents related work. Section 3 provides de-
scription of DVP. Section 4 discusses some possibilities
of using our approach for query processing. Section 5
contains performance study and shows our protocol to be

very efficient for processing concurrent write-then-read
transactions. Finally, Section 6 concludes this paper.

2 Related work
To address the problem of data contention between
concurrent transactions two-version protocols were pro-
posed in [1, 17]. Two-version approach greatly simplifies
version storage management, but it does not eliminate
data contention, because only one old version is available
at the time. Moreover, such protocols do not support pro-
cessing of queries, because all transactions are processed
as updaters.

Another approach is a multiversion two-phase locking
(MV2PL) [3, 8, 6, 5]. It supports processing of two dif-
ferent type of transactions: queries and updaters. Up-
daters are processed according to S2PL. Query always
reads the most recent versions that were committed be-
fore its start. However, to conduct such processing pro-
tocol must maintain unrestricted number of versions, be-
cause it cannot just simply discard versions that can be
requested by queries. This leads to a considerable stor-
age overhead. To address the problem of garbage collect-
ing various approaches have been proposed. In [16, 6, 7]
old versions can be discarded, and, as a result, active
queries may have to be rolled back because of abscence
of required versions for reading. Such rollbacks often af-
fect long-running queries, and that complicates their pro-
cessing. This problem has been eliminated in [19], but at
the expense of complex initialization phase. During this
phase queries must register all their future read actions,
which prevents corresponding versions from discarding.
Also, MV2PL uses timestamps to determine versions for
reading. Every updater must write such timestamp on all
the versions it has created at the time when it commits.
That is why MV2PL does not support STEAL policy,
which makes effective management of versions some-
what difficult.

Protocols supporting fixed number of versions were
proposed to address some of the issues [21, 14, 15,
12]. In this protocols queries read transaction-consistent
snapshots of the database. Since number of snapshots
is restricted, snapshot advancement becomes a very im-
portant matter. [21, 14] present dynamic finite version-
ing (DFV) schemes, which support dynamically derived
snapshots and effective query processing. It uses tech-
niques for dynamic obtaining and advancement of snap-
shots without need to interrupt transaction processing.
Another approach, presented in [15], deals with prob-
lem of versioning indexed data, but implementation de-
scribed there enables advancement only for the oldest
snapshot. In contrast, DFV (and DVP as well) en-
ables advancement for any snapshot that is not in use by
any query. The AVA3 protocol proposed in [12] needs
at most three versions to guarantee non-interference of
queries and updaters, but queries still may access out-
of-date data even right after version advancement proce-
dure. Protocols mentioned here do not address, however,
another important issue: optimization of read operations
for updaters. Updaters are processed according to S2PL
protocol, and that makes difficult an efficient processing
of, for example, W |R transactions.

One of the solutions that makes possible efficient pro-

cessing of read operations in concurrent transactions is
Snapshot Isolation [2, 16]. It processes all transactions
in the same manner. Update operations work as usual,
with acquiring of write locks, while read operations work
with versions from some snapshot that was created be-
fore transaction’s start. This method guarantees that read
operations are never blocked, because there is no need in
obtaining any read locks. However, Snapshot Isolation
has its own drawbacks. First, old versions must be main-
tained in some way, and aforementioned problems with
garbage collecting may occur. Second, it uses the princi-
ple called First-commiter-wins, which prevents lost up-
dates, but at the same time can cause frequent rollbacks.
And last, Snapshot Isolation can allow non-serializable
executions.

Another approach, which supports processing of
W |R transactions, is EMV2PL [13]. EMV2PL is an ex-
tension of MV2PL protocol. As a result it inherits all
of its drawbacks such as unrestricted number of versions
and absence of support of STEAL policy. W |R trans-
actions are processed in a different way than in DVP.
Transition between phases (LockPoint in EMV2PL) re-
sults in release of all read locks, but second phase is pro-
cessed similar to as for query: every read operation reads
the most recent version that was committed before Lock-
Point time. As a result, second phase proceedes without
acquiring any locks, but at the same time it can lead to
reading more obsolete versions.

[4] presents another protocol, called multiversion
query locking (MVQL), which deals with problem of ob-
solence for queries. MVQL is based on MV2PL proto-
col, but allows weaker form of consistencies for queries
[10]. MVQL supports four types of consistencies: strict,
strong, weak and update. Rules for each type of con-
sistency can be described in terms of relaxation of some
serialization graph constraints. Strict and strong forms
allow only serializable execution, while weak and up-
date forms accept non-serializable execution, by allow-
ing some types of cycles in serialization graph. The
weaker form of consistency, the more recent versions can
be read. As a result, MVQL allows benefits only at the
cost of serialization.

3 Dynamic Versioning Protocol
In this section we will describe our protocol. DVP is
an extension to DFV schemes and it uses some details
of their design. The comprehensive description of DFV
can be found in [21], but for the sake of clarity we will
describe some of the details here along with our innova-
tions. In the first section we will describe basic principles
of version identification, which is the foundation of our
protocol. The next three sections describe processing of
different types of transactions. In the last two ones we
will discuss some theoretical issues.

3.1 Basic principles of version identification

DVP is a multiversion protocol. For each data item it
maintains several versions. The number of versions for
each data item is limited and this limit is a parameter of
our protocol. In this paper we assume data items to be
pages. Data granulatity is not essential for our protocol,

and it can be implemented to be used with records, for
example.

Definition 1. Logical snapshot of the database is a col-
lection of versions, one per each data item, that repre-
sents transaction-consistent state of the database.

Definition 2. Committed version is a version that has
been created by now committed transaction.

Some of the versions are used as parts of logical snap-
shots of the database. Our protocol supports any number
of snapshots, but for the sake of clarity we will describe
the case of two snapshots. We will refer to them as “cur-
rent snapshot” (CS) and “previous snapshot” (PS). The
former will represent the most recently obtained logical
snapshot, and the latter will represent logical snapshot
that has been obtained at some moment before the cur-
rent one.

Each data item can have several types of versions:

Definition 3. Last-Committed Version (LCV) is the
most recently committed version of a data item.

Definition 4. Working Version (WV) is a version of a
data item that has been created by some not yet commit-
ted (i.e. active) transaction.

Definition 5. Previous Version (PV) is an obsolete com-
mitted version of a data item, which has been created
before Last Commited Version.

Each data item has at least one version – LCV. If it has
some other committed versions, they can be considered
as PV versions. Of course, PV versions may not exist at
all. For example, when data item has been created and
has never been updated since.

If WV version exists, there cannot be another one for
the same data item, because active updaters are processed
according to S2PL rules, so they cannot obtain Write-
locks for the same data item at the same time. For some
data items such version, of course, may not exist at all
in the case of absence of active transactions that update
them. When updater commits, all WV versions it has
created are converted into LCV versions, and “old” LCV
versions at the same time are converted to PV versions.

So, all versions of a data element can be divided into
three categories: WV , LCV and PV . Belonging to a
snapshot can be considered as an additional property of
a version. For example, version from current snapshot
is always labeled as LCV and CS or PV and CS. It
cannot be labeled as WV and CS, because WV cannot
be part of any snapshot, as such version has not been
committed yet.

It is important to mention that these labels are not
physically stored on versions. Our protocol identifies
version labels using some auxillary structures described
below.

To dynamically identify versions DVP uses follow-
ing structures: list containing active (i.e. not committed)
transactions (we will call it ActList), timestamp of ver-
sion (which is obtained at the moment of creation of ver-
sion) and version’s creator identifier (which is an identi-
fier of corresponding updater). Timestamp can be repre-
sented as some kind of ascending counter. So, when new
version is created, its timestamp is assigned counter’s

value, and counter itself increments. Creator identifier
uniquely identifies transaction that created the version.
Each transaction obtains such an identifier at the very
start and gives it to every new version it creates.

ActList is a global list, but timestamp and identifier
are version-dependent and must be stored for each ver-
sion (e.g. on a page itself). Below we will describe dy-
namic approach to identify LCV, WV and PV versions.
Dynamic identification of snapshot versions will be de-
scribed in Section 3.3.

Consider list V , containing metadata (timestamp and
creator identifier) about all versions of some data item1.
Let’s assume that this list is sorted in descending order
by timestamps. We identify versions for each data item
as follows:

• WV. This version is always the most recent one.
Thus, it must have the largest timestamp among
other versions. So if it exists, it is the first one in
V . And this version exists iff there exists an active
transaction that updates this data item. Summariz-
ing, if creator identifier of the first version in V lies
in ActList then it is a WV version. Otherwise, WV
version does not exist.

• LCV. This version is the most recent one among
committed versions. So only WV can have larger
timestamp. Thus, we have two possibilities here. If
WV version exists, then LCV is the second one in
V . If WV version does not exist, then LCV is the
first one in V , because in this case the data item has
only committed versions.

• PV. Previous versions are all versions except LCV
and WV.

3.2 W |R transactions

Definition 6. W |R-transaction is a transaction that con-
sists of two consecutive phases: write phase containing
write and read operations in random order, and second
phase containing read operations and write operations
on data items only previously updated in the first phase.

On the first phase W |R transaction is processed as
an updater according to S2PL protocol. Such transac-
tions always start as updaters and become W |R ones
only when they switch to the second phase. So trans-
action manager (TM) does not need to know in advance
that new transaction is W |R one. We will describe up-
daters processing in Section 3.4. This section and the
next one describe design details of the second phase. Ef-
ficient proccesing of the second phase of W |R transac-
tion is our main technical contribution.

On the second phase W |R transaction can read any
data items, but it can only update pages previously-
locked on the first phase. So it cannot obtain new write
locks. Write operations are processed in a usual way,
but read ones require different approach. To get perfor-
mance gains read operations are processed without ac-
quiring any common locks. This could cause a serial-
ization fault, e.g. when the same data item is already ac-
quired for writing. To guarantee serializability we enable

1In our implementation we store list V in the header of the page
that represents last version.

W |R transaction to read one of the PV versions. This
happens only when read operation of this W |R transac-
tion conflicts with some another operation on the same
data item. The meaning and definitions of different types
of conflicts will be exlained in the next section.

We use some kind of notifications of read operations,
called read-notification-locks (RN-locks). RN-lock is
not a lock in the common sense of this word. It is rather
some kind of flag that indicates reading of a data item.
But this flags can be easily thought of as some type of
locks that are compatible with every other types of locks,
even with the exclusive ones. So, they can be imple-
mented as a part of a lock manager. That is why we
call it this way. To keep information about read oper-
ations in the first phase, TM converts usual read locks
obtained at the first phase into RN-locks (this operation,
of course, can unlock some transactions that have been
locked according to S2PL protocol). Before executing
each read operation on the second phase, W |R trans-
action also obtains RN-lock for the corresponding data
item. In contrast to S2PL, W |R transactions almost do
not experience unnecessary delays, which is a benefit of
our approach.

RN-locks provide information about read operations,
but to maintain information about concurrent transac-
tions, we need another structure, called FollowSet. For
each W |R transaction T , FollowSetT stores identifiers
of transactions that must be serialized after T . Two main
rules about FollowSet are:

• All transactions that belong to FollowSetT must be
able to see all versions created by T .

• T must not be able to see versions created by trans-
actions from FollowSetT .

Using this structure TM can easily find version for
reading. It just selects the most recent committed version
whose creator has not got into FollowSetT . In this case
W |R transaction does not see versions created by trans-
actions that have been serialized after it. Repetitive read-
ings of the same data element by T will affect the same
version, because creators of new ones also will be placed
into FollowSetT . Proper maintenance of FollowSets
is essential for efficient processing of W |R transactions.
In the next section we will describe this issue in more
detail.

3.2.1 Maintenance of FollowSets

In this section we will describe design details for
FollowSets. The main idea is to dynamically deter-
mine conflicts between operations of concurrent trans-
actions. Each concurrent transaction that conflicts with
W |R transaction T and is serialized after it must be
placed in FollowSetT . Conflicts can be divided into two
classes: direct and indirect.

Definition 7. Two operations conflict when they belong
to different active transactions, they are on the same data
element and one of them is write.

Definition 8. Direct conflict is a conflict between opera-
tions of two active concurrent transactions one of which
is W |R transaction on its second phase.

Read(x)

Write(x)

Write(y)

T T1

Read(y)

- end of first phase

- read operation

- write operation

Figure 1: Example of direct conflicts

Read(x)

Write(x)

Write(y)

T T1

T2

Read(y)

(a)

Read(x)

Write(x)

Write(y)

T T1

T2

Write(y)

(b)

Read(x)

Write(x)

Read(y)

T T1

T2

Write(y)

(c)

Figure 2: Indirect conflicts

Direct conflict occcurs only when some W |R trans-
action reads a data element on the second phase while
some other transaction updates it. Such conflicts can be
easily recognized by TM at the time of locking of data
items. This is illustrated by the following example:

Example 3. Consider Figure 1. T is a simple W |R
transaction, which reads data elements x and y on the
second phase, and T1 is a concurrent updater, which up-
dates this elements. Let’s look at the data item x. Be-
fore reading x, T obtains RN-lock. In this case TM de-
termines that x is already locked by T1. Direct conflict
between T and T1 is recognized and T1 is placed into
FollowSetT .

Now consider element y. In this case T1 obtains
Write-lock before updating y. Again, direct conflict is
recognized, because T is already obtained RN-lock on y,
and T1 is placed into FollowSetT .

Direct conflict between two W |R transactions can
cause a delay at the second phase. Consider W |R trans-
actions T1 and T2. T1 updates some data element x and
T2 reads it (on the second phase). But if at that moment
T2 is already in FollowSetT1, then it must read version
created by not yet committed T1. To prevent reading un-
committed data TM delays T2 until T1 commits.

Definition 9. W |R transaction T and concurrent trans-
action T1 conflict indirectly, when they each conflict di-
rectly with some other concurrent transaction T2.

To clarify this definition, consider for example, W |R
transaction T and updaters T1 and T2. When T2 con-
flicts directly with T and T1 then it causes indirect con-

flict between T and T1. Indirect conflicts can be of three
types: W-R, W-W and R-W. We describe each type of
conflict providing the only possible scenario for each of
them to occur:

W-R: W-R conflicts occur due to read-after-write op-
erations on the same element of data. Consider Fig-
ure 2(a). Transactions T and T1 conflict directly on
data element x. So T1 is placed in FollowSetT . Dur-
ing its execution T2 reads version of y created by T1.
Hence, it is serialized after T1 and must be also placed
in FollowSetT . To prevent such conflict, TM obtains
information about creator of the version selected for
reading and uses it to put transaction in corresponding
FollowSet. For example, when T2 reads y, TM puts
it in FollowSetT , because creator of the corresponding
version T1 is already in it.

W-W: This type of conflict occurs due to precedence
relation between versions [3]. Precedence relation in our
protocol is determined by S2PL rules. As a result, or-
der of precedence coincides with order of serialization
of corresponding updaters. This corresponding updaters
never conflict directly, but they can cause an indirect con-
flict. Consider Figure 2(b). This case is somewhat simi-
lar to the previous one. But this time T2 updates element
y. T2 must be placed in FollowSetT , because its ver-
sion of y succeeds version of y created by T1. In this
case, to prevent conflict, TM uses information about cre-
ator of LCV version. For example, T2 will be placed in
FollowSetT , because creator of LCV T1 is in it. We
need to check creator of LCV version, because updated
page always becomes LCV version after its creator com-
mits.

R-W: This type of conflict is always due to creating
new version of data element that has been read by an-
other transaction. Consider Figure 2(c). Transaction T2
creates a new version of element y, but when T1 was
reading y it did not see this new version. So T2 is serial-
ized after T1 and it also must be placed in FollowSetT ,
because T1 has been put in it. To handle such conflicts
TM needs different approach. When some transaction
updates data element, TM cannot determine if this ele-
ment has been read by another already committed trans-
action. To keep information about read operations of
updaters TM uses another technique called Lock Inher-
itance. When updater commits, TM converts all its read
locks into RN-ones and passes them to W |R transactions
that contain committed updater in their FollowSets.
Then R-W conflicts can be handled as direct ones. In
our scenario, when T1 commits TM converts read lock
on y into RN-lock and passes it to T . When T2 updates
element y direct conflict occurs between T and T2. TM
handles this conflict by putting T2 into FollowSetT .

There are some important issues here:

• FollowSet is used by TM only at the second phase.
So it is always empty at the start of the second
phase.

• FollowSet is used only for W |R transactions and
there is no need to maintain such a structure for an-
other type of transactions.

• When TM places some transaction T into
FollowSetT1 it must also place it in each

other FollowSetT2 that contains T1 itself. This
happens because T must be serialized after T1, and
T1 must be serialized after every T2. Thus, in this
case T also must be serialized after every T2.

• When W |R transaction T is placed in some
FollowSetT1 the contents of its own FollowSetT
must be placed with it. This happens because
FollowSetT contains transactions that must be se-
rialized after T . So in this case they must be serial-
ized after T1 too.

The last two actions enforce serializability and are in
total consistence with the definition of FollowSetT as
a set containing all transactions that must be serialized
after T .

3.3 Logical snapshots and queries processing

Queries are transactions that contain only read opera-
tions. Since such transactions are processed in a special
way, TM must know that a new transaction is indeed a
query. For efficient processing of queries DVP maintains
some number of logical snapshots. When a new query
begins it just starts reading current snapshot, which it
cannot change during execution. Moreover, it does not
need to acquire any kind of locks, even notification (RN)
ones. Since queries do not obtain any locks they also do
not participate in any type of conflicts described earlier.
So this transactions never experience delays of any kind
during their execution.

Logical snapshot is a set of versions that represents
transaction-consistent state of the database. This state
corresponds to the moment of snapshot’s creation. As
a result, versions belonging to snapshot can be slightly
obsolete. There exist different approaches to creation of
snapshots. The naive one would be to wait for active
transactions to finish and to not start new ones. Then, at
the moment when there are no active transactions, snap-
shot can easily be obtained. Such approach is prohibitive
in OLTP systems. Instead DVP uses diffirent, dynamic
approach that does not require any manipulations with
transactions. The main idea of this approach is that TM
can dynamically determine versions belonging to snap-
shots using some simple auxillary structures. Thus, such
versions do not differ from the usual ones and version’s
metadata (its timestamps and creator’s identifier) can be
used to determine if it belongs to some snapshot. For
each snapshot TM only needs to store timestamp of its
creation (TCS and TPS for our snapshots) and a copy
of ActList (ActListCS and ActListPS). Timestamp of
snapshot is a value of the same counter we use for the
creation of versions.

Let V represent list of versions ordered by timestamps
as described in Section 3.1. Then algorithm to find ver-
sion belonging to a current snapshot would be:

1. Obtain sublist V ′ of V that contains versions with
timestamps less than TCS .

2. Select LCV version from V ′ as described in Section
3.1, using ActListCS .

In fact, V ′ contains versions that existed at the mo-
ment of snapshot creation. The problem is that this

Read(x)

Write(x)

Write(y)

T T1

T2

Read(x)

Read(y)

Snapshot

advancement

Figure 3: Scenario for snapshot creation failure

sublist can contain WV version as well, because TM
did not wait until it became committed. That is where
ActListCS comes in. Since it is a copy of ActList at
the moment of snapshot’s creation, all that TM needs is
to select LCV version from V ′. For any other snapshot
(e.g. previous one) the procedure would be the same.

To take a new snapshot TM simply must obtain times-
tamp and a copy of ActList. In this case there is no need
to use the naive approach described earlier. However,
there are some restrictions here as well.

First of all, to be transaction-consistent snapshot must
contain versions from all transactions that had been seri-
alized at the moment of its creation. Since our protocol
maintains serializability for W |R transactions in a spe-
cial way, there is some possibility that creation of a snap-
shot may be delayed. TM delays snapshot creation only
when some W |R transaction is active and its FollowSet
is not empty. Again, there is only one possible scenario
for this:

Consider Figure 3. Updater T1 directly conflicts with
W |R transaction T . Hence, it is placed in FollowSetT
and is serialized after T . If TM took snapshot as de-
picted, it would not contain version of y created by T .
Thus, query T2 would see version created by T1, but not
by T , which is serialized before T1. When query reads
version of some data element, it must be able to read all
the versions that have been serialized before this first one.
So this snapshot is not transaction-consistent.

Second restriction is due to that the number of snap-
shots is fixed. If some snapshot is in use by any number
of queries, it cannot be replaced by the new one. To be
able to take a new snapshot TM must have a free one.
New queries always start using current snapshot (i.e. CS
version). So if current snapshot is free, TM just takes
another one by obtaining timestamp in TCS and copying
ActList into ActListCS . But if current snapshot is used
by other queries, then it must be kept intact for them. TM
uses previous snapshot for this purpose. To backup cur-
rent snapshot it just copies TCS into TPS and ActListCS

into ActListPS . However, if previous snapshot is also
in use by other queries, then creation of a new snapshot
must be delayed.

3.4 Updaters processing

Updaters are transactions that contain read and write op-
erations in random order. They are processed according
to S2PL protocol. That means that transactions must ac-

quire read and write locks. As we explained before, when
updater commits TM converts all its read locks into noti-
fication ones (RN-locks) and passes it to the correspond-
ing W |R transactions. However, there is a restriction
imposed on updates by versioning environment. When
transaction updates some data element for the first time
it creates new version of this element. That is not a prob-
lem when number of versions is unrestricted. In our case,
though, this number is fixed and TM must choose a ver-
sion for replacement.

LCV versions cannot be overwritten because they are
the only source of previous versions. If TM replaced
LCV versions, it would eliminate versioning at all and
DVP would become similar to S2PL. PV versions, how-
ever, can be considered for replacement. But we have
several limitations here as well:

1. PV version that belongs to the current snapshot can-
not be replaced, because current snapshot is used by
new queries.

2. PV version that is read now by some active W |R
trasaction cannot be replaced.

3. PV version that might be read by some active W |R
transaction in the future cannot be replaced by now.
We call such situation a potential reading. If TM
chose to replace such version, in the future W |R
transaction might find no version at all.

4. PV version that belongs to a previous snapshot can
be replaced, if there are no queries that use this pre-
vious snapshot. Of course, in this case we must con-
sider three aforementioned limitiations as well.

Thus, TM can only replace PV versions that satisfy
this restrictions. In the case of potential reading it acts
as if W |R transaction is already reading this item. So, if
it creates a new version for data item x, for every active
W |R transaction it must determine the version of x it is
reading now or may be reading later using FollowSet as
described in Section 3.2.

If version for replacement exists then it is replaced by
the new one. Otherwise updater must wait for some ver-
sion to become free. It is important that updater will not
be locked permanently, because new transactions do not
use PV or PS versions and old transactions will eventu-
ally finish. In this case some version will become free
and updater will be unblocked.

3.5 Correctness

Theorem 1. DVP guarantees serializability of all trans-
actions.

We provide the proof for this theorem in Appendix A.
Note, that serializability is the key issue for any proto-
col. Many applications rely on serializability and cannot
simply sacrifice it for perfomance gains.

3.6 Deadlocks

Theorem 2. W |R transactions cannot experience dead-
locks during the second phase.

The proof for this theorem can also be found in Ap-
pendix A. This is a very important result. It can signif-
icantly increase transaction throughput in the situations
with strong data contention between concurrent transac-
tions. We will discuss this issue in the light of experi-
mental results.

4 W |R transaction as a query
In this section we discuss the possibility of using W |R
transactions as queries. W |R transaction is similar to
query when its first phase contains no operations. In this
case it is transfered to the second phase right at the start,
and because W |R transaction cannot acquire write locks
on the second phase, it can only read data. The main dif-
ference is that such W |R transaction still has to obtain
RN-locks. As a result, it can participate in some of the
aforementioned conflicts. But at the same time it uses
dynamic approach to find suitable version for reading.
Query, on the other hand, uses snapshot, which is com-
pletely defined at the moment of querie’s start. More-
over, such snapshot cannot be updated if some long-
running queries are keeping busy all snapshots, because
their number is fixed. Hence, new queries would have to
read obsolete versions of the pages. Dynamic approach
can yield some benefits in such a case, because it selects
version based on current situation, and it is independent
of concurrent long-running queries.

Using W |R transactions as queries has its own draw-
backs. As we mentioned before, if some version has been
(or will be) used by some active W |R transaction, it can-
not be replaced by a new one. This creates a potential
bottleneck for updaters. If number of such W |R-query
transactions is high enough, they might cover all ver-
sions and updaters might experience delays. It may hap-
pen with usual W |R transactions too, but their second
phase’s length generally is not big enough to cause any
serious delays. However, in many cases even such de-
lays might not be such a major drawback. In other mul-
tiversion protocols queries can be started as updaters. In
this case they read the most recent versions. But at the
same time they must acquire read locks, and, as a result,
they experience delays. Such queries-updaters can even
become deadlock victims. W |R-query transaction, on
the other hand, does not acquire any read locks and can-
not experience deadlocks. Thus, its performance can be
significantly better than querie-updater’s. So such W |R-
query transactions represent some kind of trade-off be-
tween performance of updaters and reading of less obso-
lete versions.

5 Experimental Evaluation
We have developed prototype to conduct experimental
evaluation of our protocol. This prototype simulates the
work of the buffer manager, the version manager and the
lock manager. Each transaction consists of write and
read operations on the data elements, which in our ex-
periments are pages. It is important to mention that since
all protocols were tested on the same prototype, the pos-
sible implementation details of this prototype should not
influence the results.

We compared DVP with two other protocols: mul-
tiversion DFV and nonversion S2PL. Comparision with

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 10 20 30 40 50 60 70 80

T
h
ro

u
g
h
p
u
t,
 t
r/

s
e
c

Query selectivity, %

DVP
S2PL
DFV

Figure 4: Updater throughput

S2PL allows us to study benefits of versioning approach
in processing of W |R and other types of transactions.
But our main goal is to test our protocol against DFV,
which also supports queries, STEAL policy and lim-
ited number of versions per each data item. It does not
support W |R transactions, however, which allows us to
study benefits of our approach.

5.1 Experiment 1: Benefits of multiversion environ-
ment

In this experiment we compare multiversion algorithms
(DVP and DFV) with usual (S2PL) in the case when
strong data contention between queries and updaters ex-
ists. Our workload contains 25% of queries and 75%
of updaters running concurrently. Selectivity factor for
queries is varied from 2% to 80% of the database, but
within the same experimental run it stays fixed. Up-
daters, on the other hand, are short, containing only three
write operations. This allows us to reduce data con-
tention between them. In this case almost all conflicts
are between queries and updaters. Write actions for up-
daters are generated randomly, while queries always read
some continuous region of the database.

Figure 4 shows updater throughput. As we can see,
for multiversional DVP and DFV queries selectivity is
not an issue. Queries just read snapshots, while updaters
write new versions. Updaters do not experience any
unnecessary delays, because they do not intersect with
queries. Any updaters delays would be because of data
contention between updaters themselves, but we have re-
duced it to minimum by allowing them only three oper-
ations. Data contention becomes a problem for S2PL,
though. In this case queries and updaters read the same
pages. In fact, queries are executed as an updaters here,
obtaining read lock before each read operation. It does
not create any problems when query selectivity is about
2%, because in this case queries are relatievely small and
data contention is not high enough to cause problems.
However, increasing query selectivity also increases exe-
cution time of queries and data contention. Queries hold
read locks for a considerable ammount of time, and, ac-
cording to S2PL protocol, updaters that read the same
pages have to wait for this locks to be released. At 80%
selectivity almost all new updaters conflict with queries

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 10 20 30 40 50 60 70 80

T
h
ro

u
g
h
p
u
t,
 t
r/

s
e
c

Query selectivity, %

DVP
S2PL
DFV

Figure 5: Query throughput

and, as a result, spend most of the time waiting for them.
This results to a very poor performance of updaters under
S2PL.

Figure 5 shows query throughput. DVP and DFV pro-
cess queries in a similar manner, and, as a result, query
throughputs for this two algorithms are almost equal.
Again, S2PL loses to multiversion algorithms. In fact,
this experiment compares overhead of query processing
for S2PL and multiversion algorithms. For S2PL over-
head consists of locking needed pages and possible wait-
ing for concurrent updaters. For multiversion algorithms
overhead includes one possible additional read opera-
tion on each basic read. This additional operation oc-
curs when query reads old version of a page. In this case
query first reads LCV version, which contains informa-
tion about all remaining versions, determines version for
reading and reads it. If LCV version is a suitable ver-
sion itself, no additional read occurs. As we can see on
Figure 5, S2PL overhead exceeds multiversion one, and,
as a result, query throughput is lower for S2PL.

Our first experiment shows that multiversion environ-
ment has benefits in both query and updater processing.
It offers better query throughput, which can be an im-
portant issue for some applications. More importantly,
it offers significantly better updater throughput, which is
important for efficient OLTP.

5.2 Experiment 2: W |R transactions

This experiment shows benefits of our protocol in W |R
transactions processing. The whole workload entirely
consists of W |R transations. Each transaction executes
randomly generated read and write operations. Data con-
tention between transactions is very high in this exper-
iment, and rollbacks are relatively common. If some
transaction is rolled back, it must be restarted. As a re-
sult, W |R transaction may start several times before it
is committed. We vary relative second phase length in
this experiment, which is measured as a ratio of number
of operations at the second phase to the total number of
operations. As in the previous experiment, it stays fixed
on each run.

W |R transactions are processed as usual updaters ac-
cording to DFV and S2PL, and relative second phase
length does not have an impact on the throughput. Be-

 0

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50 60

R
e
la

ti
v
e
 r

o
llb

a
c
k
 c

o
u
n
t,
 %

Second phase part, %

DVP
S2PL
DFV

Figure 6: Relative rollback count

cause of severe data contention, transactions experience
frequent rollbacks and delays under S2PL and DFV. As
a result, throughput of W |R transactions for this proto-
cols is not high. That is not an issue for DVP. First of all,
as on the second phase W |R transactions do not acquire
any read locks, they would not experience any unneces-
sary delays. Second, as we stated in first theorem of Sec-
tion 3.5, W |R transactions do not experience deadlocks
at the second phase and, as a result, number of rollbacks
dramatically decreases.

Relative number of rollbacks is shown in Figure 6.
It is measured as a ratio of number of rollbacks to to-
tal number of transactions. If some transaction is rolled
back several times, only one rollback counts. As we can
see, under S2PL and DFV transactions are indeed rolled
back often. On the other hand, under DVP number of
rollbacks is significantly lower, and at 60% length roll-
backs are almost eliminated.

5.3 Experiment 3: W |R and queries

In this section we evaluate the possibility of using W |R
transactions as queries. The main idea was described in
Section 4. Workload consists 40% of read-only transac-
tions and 60% of updaters. In this experiment we vary
average selectivity of read-only transactions. In contrast
to the first experiment, for each run selectivities of differ-
ent transactions are uniformly distributed around some
fixed point. For each such point we conduct two tests
using DVP protocol. In the first one read-only transac-
tions are represented as W |R transactions, and in the sec-
ond they are executed as queries. In this experiment we
also study the effect that high number of W |R transac-
tions has on throughput of updaters. This effect was de-
scribed in Section 4. Again, updaters in this experiment
are relatievely short (with several write operations). This
allows us to avoid conflicts between them, and we can
more accurately evaluate relationships between updaters
and queries/W |R transactions.

First of all we want to discuss the weighted reading
of versions. This parameter allows us to evaluate the
novelty of read versions. Weighted reading is a ratio of
weighted version count (WV C) to total number of read
pages. Weighted version count increases with each read-

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 5 10 15 20 25 30 35 40 45 50

R
e
la

ti
v
e
 w

e
ig

h
te

d
 r

e
a
d
in

g

Average query/WR selectivity, %

DVP
DFV

Figure 7: Weighted reading

ing of version:

WV C = WV C +

1 for LCV version
2 for version next to LCV
...
n for nth version

In some protocols information about versions is stored
as some sort of distributed list: version keeps information
about the next version. In this case WV C would define
real number of read pages, and weighted reading would
measure an average number of readings per one read op-
eration. Again, for updater value of this parameter is
equal to 1, because it always reads LCV versions. Fig-
ure 7 shows us the results. In this case, due to the nature
of WV C, the smaller the value, the better. We can see
here that dynamic approach leads during this experiment.
The cause is that queries are bound to snapshots, while
dynamic approach takes into consideration current situ-
ation. Also, we can see that after 25% mark, weighted
access for W |R transactions grows much slower than for
queries. This is caused by slow update rates of snapshots:
long queries with large selectivities keep snapshots busy
and prevent them from update. As a result, queries read
much more obsolete versions. For mentioned above pro-
tocols with distributed version information storing using
queries would yield an additional readings per operation
to find suitable version.

The next parameter we want to discuss is through-
put of updaters. In Section 4 we mentioned the main
problem that can occur when W |R transactions are used
as queries: updater’s delays. Consider Figure 8, which
shows throughput results. As we can see, queries have
no impact on updaters processing. With queries, updaters
always have versions for replacement. So they experince
almost no delays, except that are caused by conflicts with
another updaters. W |R transactions are a different mat-
ter though. When average selectivity is not very high, up-
dater throughput is almost equal to the throughput with
queries. This is because length of W |R transactions does
not cause any significant delays yet. But then situation
changes. With the increase of average selectivity, W |R
transactions become longer. As a result they can keep
busy all the versions of some data items for some amount
of time, and updaters have to wait for replacement ver-
sions. Similar situation would occur with any nonversion

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 5 10 15 20 25 30 35 40 45 50

T
h
ro

u
g
h
p
u
t,
 t
r/

s
e
c

Average query/WR selectivity, %

DVP(WR)
DVP(query)

Figure 8: Updater throughput

protocol, such as S2PL, when updaters would wait for
other transactions. Here, we must choose between nov-
elty of read versions and possible deterioration of con-
current updaters. Different systems can require different
approaches.

This last experiment clearly shows benefits of our dy-
namic approach. W |R transactions read more recent ver-
sions, because they are not bound to some statical struc-
tures, like snapshots. Hence, they can yield significant
benefits to read-only transactions. If performance of up-
daters is an important issue (i.e. in OLTP systems), our
protocol offers an alternative: snapshot queries.

6 Conclusion
In this paper we presented a new multiversion approach,
called dynamic versioning protocol (DVP), which sup-
ports efficient processing of W |R transactions. DVP al-
lows W |R transactions to release all their read locks be-
fore start of the second phase, and, as a result, during this
phase they execute read operations without taking new
read locks and cannot experience deadlocks. Our proto-
col uses dynamic approach to determine which versions
to read on the second phase. This approach is based on
evaluation of current situation and discovering existing
conflicts, which results in reading much more recent ver-
sions. For queries, DVP uses dynamically derived snap-
shots, which are obtained and advanced without need
to interrupt transaction processing. One of the impor-
tant features of our protocol is support of STEAL pol-
icy, which allows dirty pages to be written back on disk
without need to wait for commit. Also, DVP maintains
fixed number of versions, which greatly simplifies ver-
sion management and reduces storage overhead.

Then we discussed some interesting application of
W |R transactions to query processing. The main idea
is that W |R transactions with empty first phase can rep-
resent read-only transactions. The main benefit of such
approach is that W |R transactions generally read more
recent versions than queries. However, such processing
may result in slight decrease of performance, because
W |R transaction can experince rare delays during the
second phase. Thus, DVP allows choosing between per-
formance with queries and reading more recent data with
W |R transactions.

We conducted experimental evaluation of DVP. First
of all, processing of second phase of W |R transactions
without read locks can yield significant benefits in W |R
throughput. Furthermore, the third experiment shows
that our dynamic approach results in selecting much
more recent versions for reading. This confirms that
DVP can provide an efficient solution to the problem of
processing of W |R transactions.

Finally, we proved the correctness of our protocol.
Correctness means that DVP allows serializable execu-
tion of concurrent transactions, which is a very important
feature of our protocol.

References
[1] R. Bayer, H. Heller, and A. Reiser. Parallelism

and recovery in database systems. ACM Trans.
Database Syst., 5(2):139–156, 1980.

[2] H. Berenson, P. A. Bernstein, J. Gray, J. Melton,
E. J. O’Neil, and P. E. O’Neil. A critique of ansi
sql isolation levels. In SIGMOD Conference, pages
1–10, 1995.

[3] P. A. Bernstein, V. Hadzilacos, and N. Goodman.
Concurrency control and recovery in database sys-
tems. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1987.

[4] P. M. Bober and M. J. Carey. Multiversion query
locking. In VLDB, pages 497–510, 1992.

[5] P. M. Bober and M. J. Carey. On mixing queries and
transactions via multiversion locking. In In ICDE
1992, Tempe, Arizona, pages 535–545. IEEE Com-
puter Society, 1992.

[6] A. Chan, S. Fox, W.-T. K. Lin, A. Nori, and D. R.
Ries. The implementation of an integrated concur-
rency control and recovery scheme. In SIGMOD
Conference, pages 184–191, 1982.

[7] A. Chan and R. Gray. Implementing distributed
read-only transactions. IEEE Trans. Software Eng.,
11(2):205–212, 1985.

[8] D. DuBourdieux. Implementation of distributed
transactions. In Berkeley Workshop, pages 81–94,
1982.

[9] K. P. Eswaran, J. Gray, R. A. Lorie, and I. L.
Traiger. The notions of consistency and predi-
cate locks in a database system. Commun. ACM,
19(11):624–633, 1976.

[10] H. Garcia-Molina and G. Wiederhold. Read-only
transactions in a distributed database. ACM Trans.
Database Syst., 7(2):209–234, 1982.

[11] T. Härder and A. Reuter. Principles of transaction-
oriented database recovery. ACM Comput. Surv.,
15(4):287–317, 1983.

[12] H. V. Jagadish, I. S. Mumick, and M. Rabinovich.
Asynchronous version advancement in a distributed
three-version database. In In ICDE 1998, Orlando,
Florida, USA, pages 424–435. IEEE Computer So-
ciety, 1998.

[13] F. Llirbat, E. Simon, and D. Tombroff. Using
versions in update transactions: Application to in-
tegrity checking. In VLDB, pages 96–105, 1997.

[14] A. Merchant, K.-L. Wu, P. S. Yu, and M.-S. Chen.
Performance analysis of dynamic finite versioning
for concurrency transaction and query processing.
In SIGMETRICS, pages 103–114, 1992.

[15] C. Mohan, H. Pirahesh, and R. A. Lorie. Effi-
cient and flexible methods for transient versioning
of records to avoid locking by read-only transac-
tions. In SIGMOD Conference, pages 124–133,
1992.

[16] D. P. Reed. Implementing atomic actions on decen-
tralized data. ACM Trans. Comput. Syst., 1(1):3–
23, 1983.

[17] R. E. Stearns and D. J. Rosenkrantz. Distributed
database concurrency controls using before-values.
In SIGMOD Conference, pages 74–83, 1981.

[18] A. Thomasian. Performance limits of two-phase
locking. In Proceedings of the Seventh Interna-
tional Conference on Data Engineering, April 8-
12, 1991, Kobe, Japan, pages 426–435. IEEE Com-
puter Society, 1991.

[19] W. E. Weihl. Distributed version management for
read-only actions. IEEE Trans. Software Eng.,
13(1):55–64, 1987.

[20] G. Weikum and G. Vossen. Transactional Infor-
mation Systems: Theory, Algorithms, and the Prac-
tice of Concurrency Control and Recovery. Morgan
Kaufmann, 2002.

[21] K.-L. Wu, P. S. Yu, and M.-S. Chen. Dynamic fi-
nite versioning: An effective versioning approach
to concurrent transaction and query processing. In
ICDE, pages 577–586, 1993.

A Proof of theorems
In this section we will prove two theorems from Sections
3.5 and 3.6. We will be using elements of standard multi-
versioning theory, which can be found in [3]. First, we
will prove correctness of our protocol by showing that all
possible multiversion serialization graphs (MVSG) are
acyclic. Then, we will prove the fact, that W |R transac-
tions cannot experience deadlocks under DVP.

First of all, we can define precedence relation between
every two versions of some data item x. xi precedes xj

(xi ≺ xj) iff xi was created before xj . This order is
well-defined because DVP processes updaters according
to the S2PL rules. In this case xj can be created only
when xi has already been committed.

Consider MVSG G. Its vertices represent transac-
tions of three different types: W |R, W (updater) and R
(query). It also can contain edges of three types:

1. Ti
1→ Tj . That means that Tj reads version of some

data item, created by Ti.

2. Consider Ti, Tj and Tk, where i 6= j 6= k. Ti cre-
ates xi that precedes xj created by Tj . Let Tk read
xi. In this case this edge is drawn: Tk

2→ Tj .

3. Consider Ti, Tj and Tk, where i 6= j 6= k. Ti cre-
ates xi that precedes xj created by Tj . Let Tk read
xj . In this case this edge is drawn: Ti

3→ Tj .

First we examine some of the properties of MVSG un-
der DVP. We formulate them in the form of lemmas. In
this lemmas, FSi denotes FollowSet of transaction Ti.
oi defines commit operation for transactions of W -type
and W |R-type. For transactions of R-type it defines its
first read operation. Operations are processed in well-
defined order. This implies that for each pair of opera-
tions oi and oj , either oi < oj or oi > oj .

Lemma 1. Let Ti
1→ Tj

2→ Tk, where Tj is of R-type.
Then, oi < ok.

Proof. This follows from procedure of snapshot’s cre-
ation. According to this procedure Ti must be commit-
ted before snapshot’s creation, and Tk is committed af-
ter that. Otherwise, its versions would have belonged to
the snapshot, and Tj

2→ Tk wouldn’t have been possi-
ble.

Lemma 2. This lemma consists of two parts:

1. Let Ti
1,3→ Tj . Then, oi < oj .

2. Let Ti
2→ Tj , where Ti is not of W |R-type or R-

type. Then, also, oi < oj .

Proof. This property follows strictly from S2PL locking
rules.

Lemma 3. Let Ti → Tj → Tk, Tj ∈ FSi and Tk is not
of R-type. Then, if ok < oi, then Tk ∈ FSi.

Proof. Tk conflicts indirectly with Ti through Tj . DVP
handles such conflicts by putting Tk in FSi.

Lemma 4. Let Ti ∈ FSj . Then situation Ti → Tj is not
possible.

Proof. Examine the possibility of edges of different
types:

1. Ti
1→ Tj is not possible, because transaction can-

not read version, created by transaction from its
FollowSet.

2. Ti
2→ Tj is not possible. If Ti is of W -type, then it

would have committed before corresponding write
operation of Tj and could not have belonged to
FSj . If Ti is of W |R-type, then, according to DVP
rules, it would have been blocked until completion
of Tj . In this case it would have read version created
by Tj .

3. Ti
3→ Tj is similar to the first part of the previous

case: Ti would have committed before correspond-
ing write operation of Tj .

Lemma 5. Let Ti
1→ Tj , where Tj is of R-type and Ti ∈

FSk. Then, situation Tj
2→ Tk is not possible.

Proof. In this case we have active W |R transaction Tk

with some transaction in its FollowSet. In this case
snapshot could not have been obtained, according to
DVP rules. So situation Tj

2→ Tk is not possible.

Lemma 6. Let Ti → . . . → Tj → Tk → Tl, where Tk

is of R-type and Tj ∈ FSi. Then oi < ol.

Proof. Since Tk reads snapshot, and versions from Tk

are in this snapshot, then Ti would have committed be-
fore snapshot’s creation. This is ensured by DVP rules
for snapshot creation. But versions from Tl are not in
this snapshot, and that means Tl would have committed
after snapshot’s creation. This implies oi < ol.

Lemma 7. If there is a cycle in MVSG, it cannot contain
any W |R transactions.

Proof. Let’s assume that cycle with W |R transactions
exists: T1 → T2 → . . . → Ti1 → . . . → Ti2 → . . . →
Tik

→ . . . → Tn → T1. Consider three general cases:

1. o1 < o2 < . . . < oi1 ; Ti1 is a W |R transaction and
Ti1+1, . . . , Ti2−1 ∈ FSi1 . Then, again, oi1 < oi2

(notice, that we also have o1 < oi2 here), and oi2 <
oi2+1 and so on (we use Lemmas 1-3 here). Similar
to o1 < oi2 , we can derive that o1 < oi1 < . . . <
oik

. Then we have following possibilities:

(a) Tn, . . . , Tik+1 ∈ FSik
. In this case we also

have o1 < oik
, o2 < oik

, . . . , oi1 < oik
.

Then, T1, T2, . . . , Ti1

∈ FSik
(Lemma 3). But this implies that

Ti1 , . . . ,
Ti2−1 ∈ FSik

, and so on. We can re-
ceive only situations, described in Lemmas 4-
6 here: Lemma 4 (Tik−1 ∈ FSik

), Lemma
5(Tik−2 ∈ FSik

and Tik−1 is of R-type) and
Lemma 6(for example, for some R transac-
tion Tk where k ∈ [1; i1]; in this case we
would receive oik

< ok+1, but at the same
time ok+1 < oik

in our general case).
(b) oik

< oik+1 < . . . < on and Tn is of W -
type or W |R-type. In this case we can derive
that either on < o1 (Tn is of W -type; or Tn is
W |R transaction and Tn

1,3→ T1) or T1 ∈ FSn

(Tn is W |R transaction and Tn
2→ T1). In

the first case we already have o1 < on, which
contradicts to on < o1. The second case is
equal to 1a, where ik = n.

(c) oik
< oik+1 < . . . < on−1 and Tn is of R-

type. In this case we can derive that on−1 <
o1 (Lemma 1). But at the same time we have
o1 < on−1 - contradiction.

(d) Tik+1, . . . , Tn−1 ∈ FSik
and Tn is of R-type.

In this case oik
< o1. But we already have

o1 < oik
- contradiction.

2. T2, . . . , Ti1−1 ∈ FS1, o1 < oi1 < oi1+1 < . . . <
oi2 and so on. This case is similar to the first general
one with the same four possibilities. In fact, we can
consider it as the first general case with Ti1 = T1.

3. T2, T3, . . . , Tn ∈ FS1; or T2, T3, . . . , Tn−1 ∈ FS1

and Tn is of R-type. First case contradicts with
Lemma 4. Second case implies o1 < o1 (Lemma
6), which is also impossible.

Not one of this three general cases is possible, and
they include all possible cycles with W |R transactions.
So we can derive that such cycles are prohibited.

Lemma 8. If there is a cycle in MVSG, it cannot contain
any W transactions.

Proof. Consider possible cycle in MVSG: T1 → T2 →
. . . → Tn → T1, where T1 is of W -type. First of all,
according to the previous lemma, it cannot contain any
W |R transactions. So this cycle can contain only trans-
actions of W -type and R-type. According to Lemmas 1
and 2, we can only derive that o1 < o1, which is impos-
sible. So cycles with W transactions are prohibited.

Theorem 3. DVP guarantees serializability of all trans-
actions.

Proof. According to the previous two lemmas, if there
existed any cycle in MVSG, then it could not contain W
and W |R transactions. But in this case we could receive
cycle containing only R-type transactions, which is im-
possible, because R transactions cannot be adjacent to
each other in MVSG.

Next, we will prove that W |R transactions cannot ex-
perience deadlock situations on the second phase.

Lemma 9. Let Ti ∈ FSj . Then Tj /∈ FSi.

Proof. If Ti ∈ FSj , then, according to DVP, in the
situation that could lead to Tj ∈ FSi, Ti would be
blocked until completion of Tj . So it cannot occur that
Tj ∈ FSi.

Theorem 4. W |R transactions cannot experience dead-
locks during the second phase.

Proof. Since W |R transactions, according to DVP, can
wait for only another W |R transactions, deadlock cycle
can contain only W |R transactions. Consider such cycle:
T1 → T2 → . . . → Tn → T1. If Ti waits for Tj ,
then Ti ∈ FSj . But for our cycle we would receive
that Tn ∈ FS1 and T1 ∈ FSn, which contradicts with
Lemma 9. So such deadlock cycles are prohibited.

