
Towards Deductive Verification of Concurrent Linux
Kernel Code with Jessie

Mikhail, Mandrykin
ISP RAS

Moscow, Russia
Email: mandrykin@ispras.ru

Alexey, Khoroshilov
ISP RAS

Moscow, Russia
Email: khoroshilov@ispras.ru

Abstract—The paper considers the challenge of deductively
verifying Linux kernel code written in C programming
language with extensive use of low-level memory operations
and interactions with the highly concurrent environment.
The paper presents an initial approach to specification and
verification of concurrent code working with shared data by
proving the code’s compliance with specified synchronization
discipline. The proposal is illustrated with an example
specifying a user-side simplified model of the read-copy-update
synchronization mechanism widely used within the Linux kernel.

Keywords—Verification, concurrency, ownership, invariants, C
semantics.

I. INTRODUCTION

Deductive verification is an area of static formal software
verification which studies various approaches for expressing
the correctness of a program with respect to some specifi-
cation in terms of multiple mathematical propositions called
verification conditions or VCs and analyzing those resulting
VCs by means of partially or fully automated logical reason-
ing. One of the key characteristics of deductive verification
techniques is their soundness meaning that they allow to
ensure the conformance of a program with its specification
under certain assumptions by relying on the correctness of
the involved deductive reasoning tools. The reasoning tools
typically employed in the area include interactive and au-
tomated theorem provers and satisfiability modulo theories
(SMT) solvers. Apart from the various provers and solvers,
deductive verification techniques are usually supplied by the
corresponding support tool implementations which automate
the steps required for translating the original program into the
resulting set of VCs.

With regard to the challenge of the most sound and complete
verification of Linux kernel code fragments applying deductive
verification tools has both its advantages and drawbacks.
On the one hand, deductive verification tools can potentially
provide a way for modular sound verification of a wide range
of properties on existing low-level system code requiring
nearly no modifications to it, which is especially important
for Linux kernel code which was not initially developed
with intent for formal verification. This is made possible by
the compelling generality of the underlying approach, which
relies on significant expressiveness of the underlying logical
systems. On the other hand, the corresponding reasoning

tools always have restricted capabilities due to the general
undecideability of the resulting decision problems and very
high algorithmic complexity of the decision procedures being
involved. Practical deductive verification tools usually address
these issues by means of involving human interaction and
applying various intricate techniques for reduction, decompo-
sition and simplification of the resulting VCs as well as by
providing supplementary tools to facilitate the management
of the involved tools and human interaction artifacts obtained
during the verification process. Reduction usually results from
modularity of the applied verification frameworks, decomposi-
tion is achieved by separation applied to the resulting VCs on
multiple levels e.g., separating source program paths, memory
regions, various properties of the source code behavior (its
safety, explicitly specified behaviors, frame conditions for rea-
soning about effects of imperative code, etc.) and propositional
structure of the resulting logical formula, simplification also
comes from several prospects, the most important ones being
the assumed typing disciplines and memory models which
allow some highly efficient static analysis algorithms to be
applied for preliminary resolving some necessary conditions
and providing the back-end decision procedures with helpful
additional assumed or inferred facts related to the decision
problems being resolved.

For Linux kernel code the major challenges for deductive
verification thus lie in achieving efficiency (simplicity) of
encoding in context of weak typing discipline, highly diverse
pragmatics and complicated memory model of the C program-
ming language with extensive involvement of various language
extensions and low-level memory operations, and, even more
so, in maintaining modularity while reasoning about highly
concurrent environment of the Linux kernel.

The ASTRAVER project [1] aims at establishing a toolchain
for highly automated deductive verification of Linux kernel
modules. The toolchain is developed on top of two platforms
for source-code analysis and deductive verification. The first,
front-end platform is FRAMA-C [2], a suite of tools dedicated
to source code analysis of software written in C. FRAMA-C is
extensible and collaborative platform with plugin-based archi-
tecture, which includes its own WP [3] plugin for deductive
verification and allows dynamic linkage of third-party plugins.
In particular, the JESSIE plugin, which was originally part of
the WHY deductive verification platform, was forked and is

being further developed as part of the ASTRAVER project.
As a capable C source-code analysis platform, FRAMA-C
provides good compatibility with GNU C including its various
specific features and extensions used in the Linux kernel code.
The platform also provides its own adaptation of the CIL
infrastructure for source code transformation, which greatly
facilitates rewriting and normalization of the original source
code performed by the JESSIE plugin in order to deal with the
complicated memory model and semantics of C. The JESSIE
plugin provides support for deductive verification by means of
translating the initial C program along with the corresponding
functional specifications written in a dedicated specification
language (FRAMA-C uses ACSL [4]) into a number of
modules and theories in the WHY3ML [5] programming and
specification language, an input language of the WHY3 [6]
deductive verification platform. Thus, the WHY3 platform
serves as the second, back-end deductive verification platform,
providing an expressive input language and implementing
verification condition (VC) management: generation, trans-
formation, discharging through external theorem provers, and
proof management. WHY3 has extensible mechanism for ex-
ternal prover support with pre-implemented drivers for several
SMT-solvers [7], [8], saturation-based provers [9], [10] and
proof assistants [11], [12]. The efficiency of VC encoding is
accomplished by the WP and JESSIE plugins though different
means. While WP plugin achieves flexibility and performance
by generating VCs directly and thus supporting high-level VC
rewriting (through QED plugin [3]) and several memory mod-
els (Hoare, typed and bit-wise) configurable separately
for each VC, the JESSIE plugin implements one optimized
hybrid memory model based on region separation [13] and
effect inference [14] with some support for explicit low-
level pointer type reinterpretations [15] while relying on the
WHY3 platform for the VC management. In our experience
during the initial stage of the ASTRAVER project the JESSIE
memory model (with some significant modifications [15])
was identified expressive enough to represent the sequential
part of Linux kernel code semantics (including various kinds
of pointer casts and bit-wise reasoning). Meanwhile there is
currently no support for concurrent semantics neither by the
Frama-C nor by the Why3 platform.

As most modern system software, Linux kernel modules
are concurrent. Moreover, the Linux kernel code makes heavy
use of lock-free synchronization mechanisms such as atomic
operations, memory barriers and (largely) RCU [16].

The most notable challenge in verification of concurrent
programs is, unsurprisingly, the absence of a single con-
tinuous control flow. While sequential deductive verification
approaches for VC generation such as weakest precondition
calculus rely on the user-provided contracts expressed as pre-
conditions, postconditions and invariants attached to program
control points, a concurrent environment seemingly under-
mines the whole matter by allowing non-deterministic inter-
ference with other concurrent executions on the paths between
the control points. Such capability of control flow interruption
breaks locality and composability of reasoning and leads to a

combinatorial explosion in the number of possible execution
paths. Even introduction of synchronization primitives and
atomic operations by itself doesn’t significantly help with
reducing the arising vastly grown search space of possible
interleavings. Luckily, there are techniques for avoidance of
explicit exhaustive search in the resulting space by transferring
the invariants previously attached to program control points
to the manipulated data. After such methodological shift, the
introduction of a synchronization discipline allows reduction to
coarse-grained concurrency within which the interferences of
other executions can only occur in a relatively small number
of explicitly delimited program locations and specified data
invariants need only be checked locally. This allows to fully
recover the locality of reasoning at cost of some unsoundness
regarding program termination. The ownership methodology
with locally checked two-state invariants(LCI) [20] is one of
such techniques. The key concepts introduced by the extended
ownership methodology are the notions of two-state invariants,
admissibility, and claims. Together they provide a foundation
for local deductive reasoning by means of assigning invariants
to types of objects manipulated by the concurrent program.
The ownership methodology is adapted for classical first-order
logic supported by most modern automated reasoning tools
and was previously successfully applied in the VCC [18]
deductive verification tool.

While many modular thread-local approaches to verifying
concurrent programs only support locking synchronization
primitives ([17]), VCC implements a concurrency model
capable to express many cases of both locking and lock-
free synchronization. VCC concurrency model extends the
ownership methodology with support for atomic updates on
volatile data. The tool is conceptually similar to the FRAMA-
C-JESSIE-WHY3 toolchain, in particular it accepts annotated
subset of C as the source language, establishes certain object
model on top of C, implements typed memory model with
reinterpretation [19] and relies on an SMT-solver backend [7].

In this paper we suggest an initial proposal for extension
of the ACSL specification language supported by FRAMA-C
with ownership methodology primitives similar to the ones
available in VCC and provide several examples usages of
the proposed extensions to formalize some aspects of correct
usage of basic RCU synchronization primitives in the code of
Linux kernel modules.

II. OWNERSHIP METHODOLOGY AND LCI

Ownership methodology is an object-oriented discipline
imposing an invariant that any thread can perform sequential
(non-atomic) updates only on the objects that it owns and
can perform reads only on objects that it either owns or can
prove to remain unchanged (closed). Objects are organized
into an ownership forest where each object always has exactly
one owner distinct form that object, except form the threads
that are also regarded as objects and always own themselves.
Objects are typed and each object type is ascribed with a
number of two-state invariants that constrain possible update
operations on the object and can refer to both the state before

and after an update. Multiple sequential updates on objects are
performed in groups so that each such group of updates can be
seen as a single update by the concurrent system as a whole
(this represents so-called coarse-grained concurrency which is
guaranteed to soundly approximate fined-grained concurrency
under the assumptions of the ownership methodology[21]).
To allow grouped sequential updates and object initialization
in presence of two-state invariants, objects are extended with
binary ghost state indicating whether an object is currently
being updated. Objects that are being updated are called open,
while objects that aren’t are called closed. From the mentioned
methodology restrictions it directly follows that only objects
owned by current thread can be opened. Meanwhile if an
object is guaranteed to remain closed, it’s guaranteed to remain
unchanged so it can be safely read. Two-state invariants are
supposed to necessarily hold only for transitions between
states in which the corresponding objects are closed. There
is, though, one exception for the transition corresponding to
the opening operation itself which requires invariants to be
checked in order to allow claiming (section IV-B). The most
important property achievable by the ownership methodology
with two-state invariants is that local and independent check of
the invariants separately for each object update is sufficient to
prove preservation of the invariants in the whole concurrent
system. In order to achieve this property the invariants are
required to be admissible. An invariant is admissible if it
is preserved by any transition that preserves invariants of
all modified objects. Admissibility is a non-local property
that can generally depend on any object type invariant, but
it is monotonic in a sense that once proven, it cannot be
broken by adding new object type definitions. Checking that
all provided invariants are admissible allows to localize the
invariant preservation checks by regarding only the invariants
of directly updated objects.

In VCC this ownership methodology is extended with a
notion of volatile fields that can be both written or read
atomically independently from the ownership on the object,
but provided that object’s non-volatile fields are not being
updated, i.e. the object remains closed. All atomic updates on
volatile fields must preserve all the invariants of the updated
object. Extension of the methodology with volatile fields
doesn’t break locality of invariant checks while providing a
way to express certain extra synchronization mechanisms.

III. OWNERSHIP METHODOLOGY AND ACSL

ACSL [4] was not originally developed with ownership
methodology in mind, hence, expectedly, there are a number of
issues either with direct integration of the ownership method-
ology into the language or with applying the methodology on
top of it. The most obvious and significant issues include the
following ones:
• Unlike VCC, ACSL does not establish or assume any

object-oriented paradigm on top of C, neither it even has typed
semantics. The Jessie plugin, though, already does transform
input C/ACSL functionally specified programs into object-
oriented intermediate language (also called Jessie [22]). So

the major task for supporting ownership methodology would
be exposing some parts of the Jessie intermediate language
capabilities to ACSL, in particular additional pre-defined ghost
fields required by the ownership methodology e.g., \closed
and \owns.
• In VCC there is no direct analogue of the ACSL notion

of validity exposed through built-in constructions \valid
and \valid read. The most close counterparts for them
would be notions of opened objects for non-volatile fields,
closed objects within atomic blocks for volatile ones (a union
of these two closely corresponds to \valid), and notions
of objects owned by current thread or closed objects, jointly
closely corresponding to \valid read. For the purpose of
the most straightforward integration of already verified purely
sequential code fragments into the context of the adopted
concurrent paradigm we suggest unifying the mentioned cor-
responding notions by expressing them through one another in
the final translated WHY3ML programs. Here the ownership
methodology concepts are considered more primitive while
\valid and \valid read are supposed to be expressed
through them. In most cases this would allow using parts
of previously verified sequential code in concurrent context
directly without any changes in the corresponding annotations
(one example is calling functions requiring validity of some
objects in contexts where the objects are open).
• ACSL approach to specifying function contracts, partic-

ularly assigns and allocates/frees clauses, doesn’t obviously
correspond to VCC object writeability, let alone there is no
corresponding constructions for specifying memory allocation
footprint in VCC. Similar to the suggested solution to the
validity issue those clauses can be relatively easily mapped
to writes on open objects and ownership summaries corre-
spondingly. So whenever an object opened throughout the
whole function (in both the pre- and post- states while never
being closed in between) is modified, it should be mentioned
in the assigns clause, and whenever a function obtains or
gives up ownership of an object, this should be mentioned
in the corresponding allocates/frees clause. The letter cor-
respondence can be somewhat surprising to the user, so the
allocates/frees clauses can be supplied with more intuitive
syntactic equivalents e.g., takes/drops, acquires/releases or
some other pair.
• ACSL currently (as of version Sodium-20150201 [4])

defines two kinds of type invariants, namely strong and weak
ones. Two-state invariants are neither of these, so they should
be added to the ACSL specification and exposed to the user.
In the following we are using the suggested keyword 2state
to distinguish two-state type invariants.
• One another non-obvious, but highly desirable addition

to ACSL in context of ownership methodology is capability
to define ghost structures implicitly from any location in the
executable code (rather than in the global scope). This is
mostly intended to significantly simplify the usage of claims
(section IV-B).

IV. OWNERSHIP METHODOLOGY BY EXAMPLE

A. Spinlock

Let’s now demonstrate an example of quite a simple syn-
chronization mechanism formalized in terms of the ownership
methodology. The model intentionally simplified specification
of spinlock listed in figure 1 exemplifies integration of
the ownership methodology into ACSL. The example ba-
sically repeats the corresponding example from the VCC
tutorial [23] reproduced in the proposed extension of ACSL,
but it also highlights some ACSL-specific characteristics. The
most noticeable of them is using a special predicate \new to
distinguish closing a freshly allocated object from closing a
previously opened object, since the first case generally requires
a different check for object invariants (consider an invariant
counter = \old(counter) + 1, it’s not possible to
prove it for object initialization). ACSL also requires explicit
specification of allocation/owning footprint. In the example
we don’t use sugared predicate \wrapped equivalent to the
conjunction of \owned (by current thread) and \closed. We
also suggest pervasive usage of explicit built-in \acquire
and \release constructions to operate on objects’ \owns
sets; the sets are supposed to be always empty right after the
objects’ allocations.

B. Claims

Similar to the example in the VCC tutorial our ACSL
version initially makes unrealistic assumptions by requiring
\closed(l). The problem with such precondition is that
it’s not evident how it could be directly proven for a thread
which doesn’t own the lock. For these purposes VCC uses
special notion of a claim object, whose sole purpose is to
be owned by some thread while being occasionally opened
to serve as a proof of other objects’ closedness. To simplify
usage of claims VCC introduces special claim counter fields
that are checked on object opens and are allowed to be
modified only through special claim creation/destruction
operations. Sample definition of a claim structure is presented
in figure 2. This definition requires using a special claim
attribute to avoid structure type invariant admissibility check
since the invariant is not directly admissible. Though it’s
possible to define claims with admissible invariants this would
require using claim sets instead of simpler claim counters
and therefore would be less efficient. The admissibility of
claim invariants is guaranteed by special preconditions on
object opens and special treatment of claim counters. In VCC
methodology the role of claims is not limited to asserting
closedness of objects in their claimed sets, but is extended
to serve as a mere substitute for assertions in a concurrent
environment. Therefore claim creation/claim counter increase
and claim destruction/claim counter decease operations
are also extended appropriately to allow for claiming
arbitrary assertions on closed objects. The corresponding
suggested syntax for these operations in ACSL is the
following: \claim(claim struct name, object,
predicate) and \unclaim(claim, object). As

these operations are performed on closed objects, the
corresponding claim counter fields are always volatile.
They can be added to a structure type by supplying it
with ghost claimable attribute. The \claim/\unclaim
operations generally require implicit declaration of claim
structure types along with the invariants provided at claim
creation locations, here comes the need for the corresponding
capability in ACSL. The operations can only be preformed
inside atomic blocks, which also allows to synchronize ghost
claim counters with real reference counters by supplying
the claimable objects with the corresponding invariants and
putting corresponding atomic reference counter updates into
the same atomic blocks.

C. Read-copy update mechanism

Read-copy update (RCU) [16] is a synchronization mech-
anism with support for lock-free readers and partially lock-
free writers. Within the RCU mechanism writing is called
updating and is performed in two separate phases. The first,
removal phase amounts to a memory barrier-protected atomic
update of a pointer with either a pointer generally known
to be invalid (a NULL or a poisoned pointer) or a pointer
to an object totally prepared for any arbitrary read opera-
tions. The second, reclamation phase comprises an exclusive
(usually lock-protected) deallocation of the obsolete object
remained after the update performed on the corresponding
preceding removal phase. The two phases of updating are
separated by a blocking synchronization operation which en-
sures that the corresponding obsolete (already removed, but
not yet deallocated) object remains valid for readers until
they completely give up accessing it. To ensure this no-
more-reads condition, the readers must always delimit their
accesses within a pair of explicit calls to special read-section
opening/closing marker functions and also ensure freshness
of the objects they access strictly before accessing them by
calling a special dereference-protecting construction at least
once per each read-section. Thus, the blocking synchronization
operation performed by the writers can simply wait till the end
of all the currently active read-sections which would ensure
that no more readers remained accessing the obsolete objects
and they can be then safely deallocated. Thus, essentially, an
RCU mechanism implementation exposes the following five
core basic primitives: 1) the memory barrier-protected atomic
update primitive to perform the removal phase of an update
operation (let’s call this primitive rcu assign pointer),
2) the blocking writer-side synchronization operation to de-
marcate the start of the reclamation phase of an update
(or simply synchronize rcu), 3) the read-section open-
ing marker (rcu read lock), 4) the read-section closing
marker (rcu read unlock), 5) the dereference-protecting
construction (rcu dereference).

We suggest an example (shown in figure 3) of a simplified
functional specification for these primitives intended to be used
in RCU user-side code to ensure correct usage of the exposed
RCU interface. The example serves a preliminary proof-
of-concept for the applicability of the extended ownership

1 /∗@ v o l a t i l e o w n s ∗ / s t r u c t s p i n l o c k {
2 v o l a t i l e unsigned i n t s l o c k ;
3 / /@ ghost void ∗ r e s o u r c e ;
4 } ;
5
6 /∗@ 2state type invariant
7 @ same resource (struct s p i n l o c k l) =
8 @ \old (l . r e s o u r c e) == l . r e s o u r c e ;
9 @∗ /

10
11 /∗@ 2state type invariant
12 @ ownersh ip (struct s p i n l o c k l) =
13 @ ! l . s l o c k =⇒
14 @ \subset (r e s o u r c e , \owns(& l)) ;
15 @
16 @∗ /
17
18 /∗@ requires \owned (o b j) && \closed (o b j) ;
19 @ requires \valid (l) && \new (l) ;
20 @ requires \owns (l) == \empty ;
21 @ frees o b j ;
22 @ ensures \closed (l) ;
23 @ ensures l → r e s o u r c e == o b j ;
24 @∗ /
25 void s p i n l o c k i n i t (s t r u c t s p i n l o c k ∗ l)
26 /∗@ (ghost void ∗ o b j) ∗ /
27 {
28 l → s l o c k = 0 ;
29 /∗@ ghost {
30 @ l → r e s o u r c e = o b j ;
31 @ \release (obj , l) ;
32 @ \close (l) ;
33 @ }
34 @∗ /
35 }
36
37 /∗@ requires \closed (l) ;
38 @ allocates l → r e s o u r c e ;
39 @ ensures \owned (l → r e s o u r c e) && \closed (l → r e s o u r c e) ;
40 @∗ /
41 void s p i n l o c k (s t r u c t s p i n l o c k ∗ l)
42 {
43 i n t s t o p = 0 ;
44 do {
45 /∗@ atomic (l) ∗ / {
46 s t o p = ! cmpxchg(& l → s l o c k , 1 , 0) ;
47 /∗@ ghost
48 @ if (s t o p)
49 @ \acquire (l → r e s o u r c e , l) ;
50 @∗ /
51 }
52 } whi le (! s t o p) ;
53 }
54
55 /∗@ requires \closed (l) ;
56 @ requires \owned (l → r e s o u r c e) && \closed (l → r e s o u r c e) ;
57 @ frees l → r e s o u r c e ;
58 @∗ /
59 void sp i n un loc k (s t r u c t l o c k ∗ l)
60 {
61 /∗@ atomic (l) ∗ / {
62 l → s l o c k = 0 ;
63 / /@ ghost \release (l → r e s o u r c e , l) ;
64 }
65 }

Fig. 1. Spinlock example

methodology to verification of Linux kernel modules that
widely [24] use the RCU interfaces provided by the Linux ker-

1 /∗@ ghost c l a i m struct c l a i m {
2 @ set<void ∗> c l a i m e d ;
3 @ } ;
4 @
5 @ / / 2state type invariant
6 @ / / c l a i m (struct c l a i m c) =
7 @ / / \forall void ∗o ;
8 @ / / \subset (o , c . c l a i m e d) =⇒
9 @ / / \closed (o) ;

10 @∗ /

Fig. 2. Sample claim structure definition.

nel core. The most subtle aspect of the RCU mechanism is the
notion of protected pointer that should only be dereferenced
within the corresponding read-section. Another noticeable
complication is ensuring that both rcu assign pointer
and rcu dereference are used on the same memory
location (address) and that the deallocation of each obsolete
object is appropriately protected by a separate lock.

V. CONCLUSION

We suggested an extension of the ACSL specification
language supported in particular by the FRAMA-C-JESSIE-
WHY3 toolchain with support for concurrent code by using
the ownership methodology previously implemented in the
VCC deductive verification tool and applied for large criti-
cal concurrent systems such as Microsoft Hyper-V. We also
suggested an initial functional specification for the exposed
interface of the RCU synchronization mechanism to show how
the VCC ownership methodology (with a minor extension) can
be applied for verification of Linux kernel modules.

The suggested formalization, though, has not been for-
mally verified using model-checking or some other suitable
technique. Another remaining task is mitigating one inherent
possible source of unsoundness of the ownership methodology
arising from possible unrestricted usage of atomic blocks.

ACKNOWLEDGMENT

The research was supported by the Ministry of Education
and Science of the Russian Federation (unique project identi-
fier RFMEFI60414X0051)

REFERENCES

[1] [Online]. Available: http://linuxtesting.org/astraver
[2] P. Cuoq, F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, B.

Yakobowski, “FRAMA-C, A Software Analysis Perspective”, Proceed-
ings of International Conference on Software Engineering and Formal
Methods 2012 (SEFM12), October 2012.

[3] L. Correnson, Z. Dargaye, A. Pacalet, “WP (Draft) Manual”, [Online].
Available: http://frama-c.com/download/frama-c-wp-manual.pdf.

[4] P. Baudin, J.-C. Filliâtre, C. Marché, B. Monate, Y. Moy, V. Pre-
vosto, “ACSL: ANSI/ISO C Specification Language. Version 1.7”,
http://frama-c.com/download/acsl.pdf.

[5] F. Bobot, J.-C. Filliâtre, C. Marché, A. Paskevich, “Why3: Shepherd
your herd of provers”, Boogie 2011: First International Workshop on
Intermediate Verification Languages, 2011.

[6] J.-C. Filliâtre, A. Paskevich, “Why3 — where programs meet provers”,
In Programming Languages and Systems, pp. 125–128, Springer Berlin
Heidelberg, 2013.

1 /∗@ axiomatic rcu {
2 @ type r c u s e c t i o n = i n t e g e r ;
3 @
4 @ 2state type invariant
5 @ r c u s e c i o n (r c u s e c t i o n s) = \owned(& s) ;
6 @
7 @ logic struct l o c k ∗ r c u l o c k (void ∗∗ loc , void ∗ o b j) ;
8 @ predicate r c u r e c l a i m a b l e (void ∗ o b j) ;
9 @ }

10 @
11 @ ghost r c u s e c t i o n c u r r e n t s e c t i o n = 0;
12 @ ghost set<void ∗> r c u d e r e f e r e n c e d = \empty ;
13 @∗ /
14
15 /∗@ requires c u r r e n t s e c t i o n == 0;
16 @ assigns c u r r e n t s e c t i o n ;
17 @ ensures c u r r e n t s e c t i o n != 0;
18 @∗ /
19 void rcu read lock (void) ;
20
21 /∗@ requires c u r r e n t s e c t i o n != 0;
22 @ assigns c u r r e n t s e c t i o n ;
23 @ assigns r c u d e r e f e r e n c e d ;
24 @ frees r c u d e r e f e r e n c e d ;
25 @ ensures c u r r e n t s e c t i o n == 0;
26 @ ensures r c u d e r e f e r e n c e d == \empty ;
27 @∗ /
28 void rcu read unlock (void) ;
29
30 /∗@ requires r c u l o c k (loc , o b j) == l ;
31 @ requires r c u r e c l a i m a b l e (o b j) ;
32 @ allocates l ;
33 @ ensures \closed (l) ;
34 @∗ /
35 void s y n c h r o n i z e r c u (void)
36 /∗@ (ghost void ∗∗ loc , void ∗obj , struct l o c k ∗ l) ∗ / ;
37
38 /∗@ requires \owned (l) && \closed (l) ;
39 @ requires l → r e s o u r c e == o b j ;
40 @ requires \claim count (l) == 0;
41 @ frees l ;
42 @ ensures r c u l o c k (loc , o b j) == l ;
43 @ ensures r c u r e c l a i m a b l e (∗ l o c) ;
44 @∗ /
45 void r c u p r o t e c t (void ∗∗ loc , void ∗obj ,
46 s t r u c t l o c k ∗ l) ;
47
48 # d e f i n e r c u a s s i g n p o i n t e r (p , v , l) \
49 {\
50 r c u p r o t e c t (&p , v , l) ; \
51 p = v ;\
52 v ;\
53 }
54
55 /∗@ requires c u r r e n t s e c t i o n != 0;
56 @ requires r c u l o c k (loc , o b j) != NULL;
57 @ assigns r c u d e r e f e r e n c e d ;
58 @ allocates o b j ;
59 @ ensures o b j != NULL =⇒ \closed (o b j) ;
60 @ ensures r c u d e r e f e r e n c e d =
61 @ \union (\old (r c u d e r e f e r e n c e d) , o b j) ;
62 @∗ /
63 void ∗ r c u d e r e f (void ∗∗ loc , void ∗ o b j)
64
65 # d e f i n e r c u d e r e f e r e n c e (p , c) \
66 ((t y p e o f (p)) r c u d e r e f (&p , p)) ;

Fig. 3. Simplified RCU model formalization.

[7] L. De Moura, N. Bjørner, “Z3: An efficient SMT solver”, In Tools and
Algorithms for the Construction and Analysis of Systems, pp. 337–340,

Springer Berlin Heidelberg, 2008.
[8] C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanović, T.

King, A. Reynolds, C. Tinelli, “CVC4”, In Computer aided verification,
pp. 171–177, Springer Berlin Heidelberg, January, 2011.

[9] A. Riazanov, A. Voronkov, “The design and implementation of Vam-
pire”, In AI communications, vol. 15(2, 3), pp. 91–110, 2002.

[10] S. Schulz. “System Description: E 1.8”, In Proceedings of the 19th
LPAR, Stellenbosch, pp. 477–483, LNCS 8312, Springer Verlag, 2013.

[11] Y. Bertot, P. Castéran, “Interactive theorem proving and program de-
velopment: Coq’Art: the calculus of inductive constructions”, Springer
Science & Business Media, 2013.

[12] S. Owre, S. Rajan, J. M. Rushby, N. Shankar, M. Srivas, “PVS:
Combining Specification, Proof Checking, and Model Checking”, In
Proceedings of Computer-Aided Verification ’96, pp. 411–414, 1996.

[13] T. Hubert, C. Marché, “Separation analysis for deductive verification”,
In Heap Analysis and Verification, Braga, Portugal, March, 2007.

[14] J.-P. Talpin, P. Jouvelot, “Polymorphic type region and effect inference”,
Technical Report EMP-CRI E/150, 1991.

[15] M. Mandrykin, A. Khoroshilov, “High level memory model with low
level pointer cast support for Jessie intermediate language”, In Program-
ming and Computer Software, Vol. 41, No. 4, pp. 197–208, 2015.

[16] P. E. McKenney, J. Appavoo, A. Kleen, O. Krieger, R. Russell, D. Sarma,
M. Soni, “Read-copy update”, In AUUG Conference Proceedings, p.
175, 2001.

[17] C. Flanagan, S. N. Freund, S. Qadeer, “Thread-modular verification for
shared-memory programs”, In ESOP 2002, Number 2305 in LNCS,
Springer, pp. 262–277, 2002.

[18] E. Cohen, M. Dahlweid, M. Hillebrand, D. Leinenbach, M. Moskal, T.
Santen, W. Schulte, S. Tobies, “VCC: A practical system for verifying
concurrent C”, In Theorem Proving in Higher Order Logics, pp. 23–42,
Springer Berlin Heidelberg, 2009.

[19] E. Cohen, M. Moskal,S. Tobies, W. Schulte, “A precise yet efficient
memory model for C”, In Electronic Notes in Theoretical Computer
Science, vol. 254, pp. 85–103. 2009.

[20] E. Cohen, M. Moskal, W. Schulte, S. Tobies, “Local Verification of
Global Invariants in Concurrent Programs”, In Computer Aided Verifi-
cation, Springer Berlin Heidelberg, pp. 480–494, January, 2010.

[21] E. Cohen, M. Moskal, W. Schulte, S. Tobies. “A prac-
tical verification methodology for concurrent programs”,
Tech. Rep. MSR-TR-2009-15, Microsoft Research, 2009.
(http://research.microsoft.com/pub)

[22] J.-C. Filliâtre, C. Marché, “The Why/Krakatoa/Caduceus platform for
deductive program verification”, In Proceedings of the 19th International
Conference on Computer Aided Verification, Lecture Notes in Computer
Science, Springer, 2007.

[23] M. Moskal, W. Schulte, E. Cohen, M. A. Hillebrand, S. Tobies, “Ver-
ifying C programs: a VCC tutorial”, MSR Redmond, EMIC Aachen,
2012.

[24] P.E. McKenney, S. Boyd-Wickizer, J. Walpole, “RCU usage in the Linux
kernel: one decade later”, Technical report, 2013.

