Using Refinement in Formal Development
of OS Security Model*

P. N. Devyanin!, A. V. Khoroshilov?, V. V. Kuliamin?, A. K. Petrenko?, and
1. V. Shchepetkov?

! Educational and Methodical Community of Information Security, Moscow, Russia
peterdevyanin@hotmail.com
2 Institute for System Programming, Russian Academy of Sciences, Moscow, Russia
{khoroshilov,kuliamin, petrenko, shchepetkov}@ispras.ru

Abstract. The paper presents work in progress on formal development
of an operating system security model. The main goal is to measure our
confidence in the quality of the model. Additional goal is to simplify its
maintenance. We formalized and verified the model using formal method
Event-B in two ways — with and without use of the refinement tech-
nique — in order to compare them and figure out what approach meets
our goals better. Refinement is technique that helped us deal with com-
plexity of the model, improve readability and simplify automatic proofs.
However, deep understanding of the security model details and careful
planning were absolutely necessary to achieve this. The approach with-
out use of the refinement technique allowed to quickly start formalization
and helped to study the details of the security model, but the resulting
formal model became hard to maintain and explore.

Keywords: security model; formal verification; refinement; Event-B.

1 Introduction

Traditionally computer security models are expressed by combining a natural
language and mathematical notations. Proofs of their correctness and consis-
tency are performed by hand. Such proofs are error prone and not completely
reliable. Besides, the reliability of manual proofs decreases with increasing size
and complexity of the models.

Formal methods are promising approaches for specification and verification
of software systems [10]. Validation of the RBAC ANSI 2012 standard confirmed
that they could be successfully used for proving the correctness of security mod-
els [8]. Although this standard is widely used in industry, numerous problems
were identified and fixed with the help of formal method B [1].

In this paper we present a work in progress on formal analysis of a mandatory
entity-role security model of access and information flows control in Linux (the
MROSL DP-model [7]), which provides:

* The research was supported by the Ministry of Education and Science of the Russian
Federation (unique project identifier REMEFI60414X0051).



2 P. N. Devyanin et al.

— Mandatory integrity control (MIC).
— Mandatory access control (MAC).
— Role-based access control (RBAC).

The model was implemented in Astra Linux Special Edition' as a Linux
Security Module by RPA RusBITech in 2014.

In the previous work [6] we chose formal method Event-B and the Rodin
platform [2, 3] for the MROSL DP-model formalization and verification in order
to confirm that the model satisfies the main security requirements — ability to
protect entities and subjects from violating their integrity and security levels
through authorized accesses.

Like many other formal methods, Event-B allows to develop formal specifi-
cations using refinement — a well-known and a widely recommended technique
for incremental development [9, 4]. Numerous systems were formalized with it [5,
11]. Refinement helps to deal with the complexity of systems by decomposing
their specifications into separate components. However, it is not clear what dis-
advantages refinement has, or what additional benefits it offers.

The paper presents the results of comparison of two MROSL DP-model spec-
ifications that were developed using different approaches: without use of the
refinement technique and with it.

Next section of the paper describe the MROSL DP-model in detail. Sections
3 and 4 give an overview of Event-B and the refinement technique. Section
5 describes formalization of the model. Section 6 provides the comparison of
developed specifications. Section 7 summarizes the results of development and
verification and outlines further work of the project.

2 Main Features of the MROSL DP-model

Concepts used in the model are entities, sessions, user accounts and roles. Entities
represent data objects like files, directories, sockets, etc. Sessions are operating
system processes and each of them has the corresponding user account on behalf
of which it operates. Roles are containers of permissions allowing to perform
certain operations. The main complexity of the model derives from the non-
trivial connections between these concepts that in most cases are expressed as
functions .

The MROSL DP-model contains three main security features: MIC, MAC
and RBAC. Due to MIC each entity, session, user account and role has an in-
tegrity level, which can be high or low. High-integrity entities (roles, etc.) are
protected from modification by low-integrity sessions. MAC provides a security
label to each entity, session, user account and role. MAC prohibits read accesses
to an entity for sessions that do not have greater-or-equal security label (labels
are partially ordered). Also it prohibits write accesses to an entity for sessions
that do not have the same security label. RBAC strictly limits session rights to

! http://www.astra-linux.com



Using Refinement in Formal Development of OS Security Model 3

perform various operations by providing a set of roles (containers of rights) to
each session.

The security model defines 44 operations. 34 of these operations can create
or remove entities, sessions, user accounts or roles, change integrity and security
labels, add or remove accesses. In addition, 10 operations are defined for more
precise security analysis in terms of information flows. Each operation is defined
by precondition and postcondition.

Postconditions must not violate any constraints defined in the model. Some
of these constraints describe the environment of the security model (e.g. filesys-
tem, processes, accesses), while others define security features mentioned above.
Due to the large number of the constraints and their complex nature it is hard
to verify the MROSL DP-model by hand without mistakes. Formalizing the
model into a machine-readable form allows to prove its correctness in a machine
checkable way.

3 Event-B and Rodin

Capability of combining automatic and interactive proofs along with the stories
of its successful use for a number of complex projects convinced us to use a B
dialect called Event-B. It has a simple notation and comes with a great tool
support in the form of the Rodin Platform?.

An Event-B model (or specification) consists of contexts and machines. Con-
texts contain the static parts of the specification: definitions of constants and
their azioms. Machines contain the dynamic or behavioral parts of the speci-
fication: variables, invariants and events. Variables and constants can be sets,
binary relations, functions, numbers or Boolean data. Values of variables form
the current state of the specification and invariants constrain it.

Events represent the way the state may evolve. Each event consists of param-
eters, guards and actions, though any two of them are optional. Guards restrict
values of parameters and states under which the event can occur, while actions
change current state of the specification by modifying its variables. The correct-
ness of each change of the specification state needs to be proven since invariants
are supposed to hold whenever variable values change.

The Rodin platform supports both modelling and proving and integrates
them in a seamless way. Both automatic and interactive proofs are supported. For
each case that requires a proof — unambiguity of expressions, invariant preser-
vation and refinement between models (if the refinement technique is used) —
Rodin generates a corresponding proof obligation. Full proof of a model means
that all generated proof obligations are discharged.

4 Refinement

Refinement technique is well known and supported by many formal methods.
Instead of making a monolithic specification that contains all details of the sys-

2 http://www.event-b.org



4 P. N. Devyanin et al.

tem, refinement offers to build a series of specifications, where each specification
is a refinement of the previous one (or abstract one) and the last one is the most
concrete one. It allows to build a specification gradually, adding new features
step by step, and thus to deal with complexities that arise during formalization
of large systems.

There are two major approaches of refinement: posit-and-prove and rule-
based [5]. In the first approach each refinement step must be proved to be cor-
rect, while in the second approach refinement is performed automatically using
transformation rules, from which it follows that this refinement is correct by
construction.

Refinement can be used in two ways. The aim of horizontal refinement (often
called superposition refinement) is to add complexity to the specification by
introducing new properties and events extending old ones. The second way is to
use refinement to add details to data structures, such as replacing an abstract
variable by a concrete one (vertical or data refinement).

5 Development

Formalization of the MROSL DP-model is a tricky task because of the size of the
model (200 pages) and its complex nature. We started from the development of a
monolithic specification that represents the entire security model. Then we used
this knowledge to develop a new specification with the refinement technique.

To develop the monolithic specification, we used an iterative approach adding
small parts of the system step by step and proving their correctness. It allowed
to quickly notice and to fix problems occurring due to misunderstanding of the
description of the system, but sometimes it was necessary to repeat existing
proofs since every change of the specification could violate them. With this
approach we developed the formal specification of the MROSL DP-model and
proved its correctness. It took more than a year of work. A number of inaccuracies
in the initial description of the model was identified and fixed.

The size of this specification is approximately 2 500 lines of code, which is
quite small compared with the textual description. More details can be seen in
Fig. 1.

Number Lines of code
Finite sets 7 7
Constants 26 26
Axioms 39 83
State variables 48 48
Invariants 161 394
Events 43 1954

Fig. 1. The composition and the size of the monolithic specification.



Using Refinement in Formal Development of OS Security Model 5

On top of this experience we developed a refined specification. Despite the
fact that we were perfectly familiar with the MROSL DP-model at that moment,
several times we had to completely rewrite the specification due to inaccurate
planning. As a result we managed to decompose the original model into 16 parts
and to determine the order in which they should be implemented as a series
of specifications. Our refinement was correct by construction, so no additional
proof obligations were generated.

6 Comparison

During the analysis of the refined specification we noticed some differences from
the monolithic one. The refined version is easier to understand, more human
readable and structured. Moreover, refinement provides a natural way to add
new details to the specification. It is easier to change the specification, and,
unlike the monolithic specification, changes can affect fewer of discharged proofs.
We kept possible changes in mind during refinement planning, and it helped to
achieve our additional goal — to simplify maintenance.

Despite the aforementioned advantages of the refined specification, most de-
sign decisions (which data structures to use, how to express invariants better,
etc.) are the same. The main comparison characteristics like the size of the
specification and the difficulty of interactive proofs are also similar in our case.
However, the development of the monolithic specification required much less ef-
fort — due to the absence of refinement planning, which is quite a difficult task,
so our main goal (to prove correctness of the model) is achieved faster with it.

Better readability of the refined model can be exposed with two examples®.
Fig. 2 demonstrates a part of the create_session event from the monolithic
specification. This event is an analogue of the corresponding operation from the
MROSL DP-model. It models the creation of a new session. It has parameters,
preconditions (guards, in terms of Event-B) and postconditions (actions). Guards
and actions are lines with @grd and @act labels, parameters are defined in the
any section.

Arrows in Fig. 2 group related guards and actions by parts of the model
to which they belong. It is easy to notice a lack of structure here: a lot of
closely related guards and actions are scattered throughout the text. For in-
stance, @Qgrd2 — Qgrd4, @grd7 — Qgrd9, @grd25, Gact6, Gact7 are represent
profiles and executable files. Moreover, parts of one event can be associated not
only with each other, but also with the existing invariants and parts of other
events. There is no way to denote their connection in Event-B without use of
refinement.

Actually the refined model is a series of specifications. Each of them describes
a specific feature of the MROSL DP-model. Fig. 3 represents one of the refine-
ment steps — adding the specification modeling profiles and executable files.
We can see how a particular feature — profiles and exefiles — affects existing

3 These examples are provided with permission of RPA RusBITech.



6 P. N. Devyanin et al.

event create_session
any currentSession newSession profile exefileA exefileE
cnfLevel cnfCats integrity user newAdmaAccesses ...
where
@grd1 currentSessioneCurrentSessions
@grd2 profileeP1(CurrentObjects)
@grd3 exefileEeCurrentObjects
@grd4 exefileAeP(CurrentContainers)
@grd5 newSessioneSessions \CurrentSessions
@grd6 3r-reCurrentRoles A exefileE | ->ExecuteeRoleRights(r)
A r|->ReadAeSessionAdmAccesses(currentSession)” ——]
@grd7 SessionCnflLevel(currentSession)zEntityCnfLevel(exefileE) ™ T A A

Creation of a new session «@—
Integrity and security labels «
are added

Each session has a user ¢
on behalf of which it works

34

Profiles and exefiles are added

@grd8 EntityCnfCats(exefileE)CSessionCnfCats(currentSession)

@grd9 Entitylntegrity(exefileE)>Sessionintegrity(currentSession)
@grd10 cnfLevel=SessionCnfLevel(currentSession)
@grd11 cnfCats=SessionCnfCats(currentSession)

@grd12 integrity=Sessionintegrity(currentSession)
@grd13 user=SessionUser(currentSession)
@grd14 integrityeintegrity A cnfLeveleCnfLevels

@grd21 vm-medom(UserUsRoles(user))
= (UserUsRoles(user)(m)—WriteAe newAdmAccesses
« Mandatelntegrity(m)=integrity
A MandateCnfLevel(m)=cnfLevel
A MandateCnfCats(m)=cnfCats)
@grd22 vcr-creCommonRoles = (cr—ReadAe newAdmAccesses
«» Rolelntegrity(cr) <integrity A RoleCnfLevel(cr)<cnflLevel
A RoleCnfCats(cr)CcnfCats)
@grd23 vcr-creCommonRoles = (cr—=WriteAenewAdmAccesses
< Rolelntegrity(cr)=integrity A RoleCnfLevel(cr)=cnfLevel
A RoleCnfCats(cr)=cnfCats)
@grd24 vr-re(CurrentRoles \ran(UserAsRoles(user))) \ran(UserUsRoles(user))
A rgCommonRoles = redom(newAdmAccesses)
@grd25 ve-ec{exefileEjuexefileA
= Sessionintegrity(currentSession)sEntityIntegrity(e)
A ((SessionCnfLevel(currentSession)=EntityCnfLevel(e)

A SessionCnfCats(currentSession )=EntityCnfCats(e))
v Sessionintegrity(currentSession)=Highl) Yy ‘b
Accesses and access rights are
then added A

@actl CurrentSessions = CurrentSessions U {newSession}
@act2 Sessionintegrity(newSession) = integrity
@act3 SessionCnfLevel(newSession) = cnflLevel
@act4 SessionCnfCats(newSession) = cnfCats
@act5 SessionUser(newSession) = user

@actb SessionProfiles(newSession) = profile
@act7 SessionExefiles(newSession) = {exefileE}uexefileA
@act8 SessionAccesses(newSession) = @

@act9 SessionAdmAccesses(newSession) = newAdmAccesses

end

Fig. 2. A part of the create_session event from the monolithic specification.

events (create_user, set_user_labels and create_session) and the require-
ments (invariants) it must satisfy. This specification is quite compact, it is easy
to understand and maintain.

To achieve this it is vital to know possibilities of refinement, its restrictions,
features of the chosen formal method, and of course the system itself. Each wrong



Using Refinement in Formal Development of OS Security Model

machine N11refines N10 sees C3

invariants

@UserProfiles_type UserProfileseCurrentUserAccounts— P1(CurrentEntities)
@SessionProfiles_type SessionProfileseCurrentSessions—>P(Entities)
@SessionExefiles_type SessionExefileseCurrentSessions— P(Entities)
@UserProfilesintisCorrect

vu,p-ueCurrentUserAccounts A peUserProfiles(u) = Userlntegrity(u }=EntityIntegrity(p)
@UserProfilesCnflsCorrect

vu,p-ueCurrentUserAccounts A peUserProfiles(u) = UserCnfLevel{u)=EntityCnfLevel(p)

events

event create_user extends create_user
any profiles
where
@grd33 profileseP1(CurrentEntities)
@grd34 vp-peprofiles = EntityIntegrity(p)=integrity
@grd35 vp-peprofiles = EntityCnflLevel(p)=cnfLevel
then
@act16 UserProfiles(user) = profiles
end

event set_user_labels extends set_user_labels
any profiles
where
@grd58 profileseP1(CurrentEntities)
@grd59 vp-peprofiles = Entitylntegrity(p)=integrity
@grd60 vp-peprofiles = EntityCnfLevel(p)=cnfLevel
then
@act16 UserProfiles(user) = profiles
end

event create_session extends create_session
any exefileA exefileE profile
where
@grd12 profileeP1(CurrentObjects)
@grd13 exefileEeCurrentObjects
@grd14 exefileAcP(CurrentContainers)
@grd15 EntityCnfLevel (exefileE)CSessionCnfLevel({currentSession)
@grd16 EntityCnfLevel (exefileE)CUserCnfLevel(user)
@grd17 EntitylntLevel(exefileE)zintegrity
then
@act7 SessionProfiles(newSession) = profile
@act8 SessionExefiles(newSession) = {exefileE jJuexefileA
end
end

Fig. 3. A part of the refined specification related to profiles and executable files.



8 P. N. Devyanin et al.

decision can eventually lead to the need of total redesign of a specification. In
some cases wrong refinement can even complicate formalization and analysis.

In our experience, automatic provers operate a little better on the refined
specification. Some statistics can be found in Fig. 4. It could be explained by the
fact that the Rodin platform was specifically designed to support the refinement
technique.

Specifications Monolithic Refined
Automatically proved [70% of the model |75% of the model

Fig. 4. Statistics of operation of automatic provers.

The MROSL DP-model contains precise description of operations in form of
preconditions and postconditions. It simplifies the development of both speci-
fications, but also restricts the refinement possibilities. Thus, in our case (and
for the class of similar systems) refinement offers only better readability and
structure of specifications, in exchange for increased complexity of development.

7 Conclusions and Future Work

We completed formalization and verification of the MROSL DP-model using
formal method Event-B in two ways — without use of the refinement technique
and with it. The approach without refinement allowed us to develop a monolithic
specification that contains the entire security model, while refinement was used to
build an ordered series of specifications, where each specification is a refinement
of the previous one (or abstract one) and the last one is the most concrete one.

We have found that refinement improves readability and simplifies automatic
proofs. But to achieve this it is vital to know possibilities of refinement, its re-
strictions, features of the chosen formal method, and the system under verifica-
tion (the MROSL DP-model, in our case). Careful planning is also needed. The
development of the monolithic specification required much less effort, but the
resulting specification is hard to maintain and explore.

On the next steps of the project we are going to use refinement for for-
malization and verification of a hierarchical MROSL DP-model, which is under
development. It will contain a basic layer that can be extended to a security
model of hypervisor, operating system, etc. We believe that there will be diffi-
culties with refinement due to a nonlinear hierarchy of the model and multiple
inheritance.



Using Refinement in Formal Development of OS Security Model 9

References

10.

11.

Abrial, J.-R.: The B-Book: Assigning Programs to Meanings. Cambridge University
Press, Cambridge (1996)

Abrial, J.-R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2010)

Abrial, J.-R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin:
An open toolset for modelling and reasoning in Event-B. International Journal on
Software Tools for Technology Transfer 12(6), 447-466 (2010)

Abrial, J.-R., Hallerstede, S.: Refinement, decomposition, and instantiation of dis-
crete models: Application to Event-B. Fundamentae Informatica 77(1,2), 1-28
(2007)

Damchoom, K.: An incremental refinement approach to a development of a flash-
based file system in Event-B. Ph.D. thesis, University of Southampton, School of
Electronics and Computer Science (2010)

Devyanin, P., Khoroshilov, A., Kuliamin, V., Petrenko, A., Shchepetkov, I.: For-
mal verification of OS security model with Alloy and Event-B. In: Abstract State
Machines, Alloy, B, TLA, VDM, and Z. pp. 309-313 (2014)

Devyanin, P.N.: Security models of computer systems: access control and informa-
tion flows (in Russian). Hot line - Telecom (2013)

Huynh, N., Frappier, M., Mammar, A., Laleau, R., Desharnais, J.: Validating the
RBAC ANSI 2012 standard using B. In: Abstract State Machines, Alloy, B, TLA,
VDM, and Z. pp. 255-270 (2014)

Wirth, N.: Program development by stepwise refinement. CACM: Communications
of the ACM 14 (1971)

Woodcock, J., Larsen, P.G., Bicarregui, J., Fitzgerald, J.: Formal methods: Practice
and experience. ACM Computing Surveys 41(4), 1-39 (2009)

Yeganefard, S., Butler, M., Rezazadeh, A.: Evaluation of a guideline by formal
modelling of cruise control system in Event-B. In: NFM 2010. pp. 182-191 (2010)



