
On real-time delay monitoring in
software-defined networks

V. Altukhov
Lomonosov Moscow State University

Moscow, Russia
victoralt@lvk.cs.msu.su

E. Chemeritskiy
Applied Research Center for Computer Networks

Moscow, Russia
tyz@lvk.cs.msu.su

Abstract—The paper introduces a new loop-based method to
measure end-to-end packet delay in software-defined network
infrastructures. Although the method generates auxiliary service
packets, it does not require any complementary support from the
switching hardware. The prototype implementation shows the
method is able to provide one-way delay values with microsecond
precision on a steady load. Direct application of the method to
each data flow in the network is straightforward, but can cause
excessive hardware utilization. Thus, the paper proposes an
algorithm to improve it by decomposing global end-to-end
estimations into the set local ones whereas removing their
redundancy. The algorithm makes it practically possible to
monitor delay of each data flow in real-time.

Keywords—One-Way Delay; Measurement; Software-Defined
Networking; Quality of Service

I. INTRODUCTION
A steady growth in a number of interactive network

applications and services originates an increasing demand in
advanced control over the quality of connections through the
network infrastructure. However, it is a hard problem to
compute an appropriate data transmission path and configure
network devices along this path to meet the requested end-to-
end requirements for the connection. It is even harder to
establish such a cooperation of logically independent network
devices to enable dynamic provisioning of the requested
connections. Furthermore, network hardware evolved without
sufficient attention to Quality of Service (QoS) issues, and
support of corresponding functionality is often a subject to
various restrictions.

Surprisingly, all the listed obstacles have been successfully
overcome by the systems focused on end-to-end bandwidth. It
is due to its concavity bandwidth is guaranteed to be the
minimum among the bandwidths of the links along the
connection path. However, the most of the QoS metrics does
not have this property, and their calculation cannot be easily
decomposed. Quite the contrary, measurement, estimation and
attuning of end-to-end delay are naturally hard in any
asynchronous distributed system without global clock, and
require accurate and precise coordination of network devices.
As a result, no modern system for end-to-end delay
measurement can improve the precision of a theoretical worst-

case estimation, and avoid exotic requirement to the switching
hardware.

In this paper we make a first step towards the QoS-aware
routing by introducing a new method to measure end-to-end
connection delay based on the centralized control and flexible
management interfaces for the switching hardware provided by
Software-Defined Networking (SDN). Our approach has the
following features:

Measure end-to-end delay on a per-flow basis;
Precise enough to cover the mutual flow influence;
Work in SDN with general switching hardware;
Update results up to several times in a second.

The paper has the following structure. Section II provides a
brief review of related works. In section III we introduce a new
method to measure packet transmission delay along any route
in a network based on header looping. Section IV considers the
algorithm to optimize application of our delay measurement
method to all routes in a network.

II. RELATED WORK

Back in the days of circuit-switched networks end-to-end
delay was in a straight dependence on a length of the wire. The
compliance with the delay requirements was naturally achieved
by searching the network infrastructure for a short enough
virtual channel. Since, the problem of delay control has
complicated dramatically. With the emergence of packet-
switched networks, data flows started to compete with each
other for network resources. The development of technology in
accordance with Moore�s and Gilder�s empiric laws gradually
shifted the bottleneck of data transmission from the wire to the
switching devices. A considerable effort has been made
towards the designing of an efficient network switch
architecture that could provide maximum utilization to the
connected links [1]. In the pursuit of throughput performance a
contemporary switch utilizes a multistage engine for packet
analysis and a mixture of packet buffers and switching fabric,
managed by complicated dynamic packet scheduling
algorithms.

Each delay control tool relies on a certain method of end-
to-end delay estimation, and there has been suggested quite a
number of them. On the one hand, a conservative estimation
based on independent computation of the worst-case delay for
each network node may be easily implemented and applied to This research is supported by the Skolkovo Foundation Grant N 79, July,

2012 .

1

any kind of a network. However, is known to inflate the actual
delay value by several orders of magnitude. On the other hand,
state-of-the-art achievements in Network Calculus make it
possible to compute a tight upper bound for the worst-case end-
to-end delay with assumptions of traffic conditioning on the
border network switches, fluid data flows, and their FIFO
multiplexing [2]. Unfortunately, these limitations as well as a
high computation complexity are not insensible. The diverse
and intricate operating principles of switching devices
obscured network-wide packet scheduling and made it hardly
promising to build a method for end-to-end delay estimation
with a wide scope, an appropriate precision, and an acceptable
computation complexity at the same time.

Inability to estimate network delay pushed forward an
intention to measure it. Though, one-way delay measurement
in an asynchronous system is challenging. A computation of a
one way delay as a bisection of the round trip time seems to be
natural, but this approach does not generally work as intended
because both routes and network load of the forward and the
backward paths of a flow may differ. Although it is possible to
compute the one-way delay of a flow with higher precision
with help of the complementary software modules installed on
the end hosts [3], this method is either applicable only to
protocols with some specific features or make the end hosts to
generate a lot of secondary traffic.

Less host-assuming approaches address the data
transmission only through the network infrastructure. It is a
tried-and-true method to bypath the asynchrony by setting up a
global clock with Network Time Protocol (NTP), Global
Positioning System (GPS), or Code Division Multiple Access
(CDMA), and tagging the transmitted packets with timestamp
on send. However, it implies each packet has a place for the
timestamp in its headers, and the switches are able to handle
this timestamp. The prevalent approach is to compute the delay
non-intrusively by means of ad hoc service packets and avoid
the tagging similar to [4]. However, this modification does not
eliminate the need in the dedicated time server and the abilities
of the switching devices to synchronize and generate the
appropriate service packets automatically.

SDN introduces a concept of a single centralized controller
to rule all the switching devices and provided a convenient way
to synchronize them. The paper [5] proposes to use this
opportunity to measure the delay by the following outline. First,
the controller reserves a certain header for the service purposes.
Then, it installs a set of forwarding rules to route the packets
with this header by the path of the flow of interest. However,
the last rule along the path is modified to send outgoing
packets to the controller. From time to time, the controller
forges a probe packet with the reserved header and a relevant
timestamp in its payload, and sends it through the ingress
switch of the constructed path. When the packet comes back,
the controller checks its timestamp and computes the packet
delay.

Packet probes do not require any complementary support
from the hardware, nor the synchronization of switching
devices. However, the probe comprises not only the route of
the real packets, but also the routes from the controller to the

ingress switch and from the egress switch back to the controller.
Moreover, each probe packet experiences two passes through a
network stack of the controller, and a pair of transitions
between the Control Plane and the Data Plane at the switches,
usually implemented by means of a slow software processing.
As a result, the value of the target delay component often
becomes smaller than the value of parasitic components, and
the method is unable to provide the required precision.

In this paper we propose a novel approach to establish
packet probes, which copes the negative impact of the adverse
delay components by increasing the share of the target
component with packet iteration.

III. ONE-WAY DELAY MEASUREMENT FOR A SINGLE PATH

A. Rationale
End-to-end packet transmission delay is equal to a sum of a

network infrastructure delay and a delay between border
switches and network applications at the ends of the route. It is
not possible to measure the latter component due to a lack of
information about configurations of the hosts. However, the
delay of packet transmission through the network infrastructure
is a large part of the end-to-end delay. In this paper we discard
the delay between the network and the hosts, and consider the
delay of the network infrastructure only.

In SDN packets can pass through the network infrastructure
with two types of routes: (1) slow path routes that imply
processing of packets at the controller, and (2) fast path routes
that are processed solely by the switching devices. In most
cases, packets pass through the fast path, therefore, in this work
we focus on measuring end-to-end delay for fast path.

We assume each network switch implements Output
Queuing and consists of the following components:

Packet analyzers (one per port),
Switching fabric,
Output queues (one per port).

Fig. 1. Scheme of switch interaction.

Packet processing at a switch is organized as follows (fig.
1). Upon receiving a packet, the switch analyzes its headers
and produces an instruction to process it. Then, the switch
fabric executes the instruction and transmits the packet to an
appropriate set of output ports. However, the packet can arrive
when the connected channel is already in use by packets from
the other ports. In this case the packet is pushed into a FIFO-
queue of the port. The queue is polled every time the channel
becomes ready to transmit.

We assume the delay of packet processing at analyzers and
switching fabrics as well as the delay of packet serialization

2

and propagation depends solely on packet length and some
performance characteristics of the networking hardware. Thus,
the listed components can be calculated statically without a
regard to the network load. Note our assumption does not
generally hold and some advanced hardware violates it.
However, the value of calculation error is negligible compared
to the delay of packet queuing. Thus, our method focuses on
measuring of the latter one.

Because of the dependence on mutual influence of the
flows, queuing delay cannot be calculated a priori. Our method
captures this dependency with help of a service packets forged
by a network controller to follow the path of the usual data
packets and experience all the appropriate delays. However,
instead of making a single run along the path of interest, the
packet iterates it back and forth in an endless loop. At the
beginning of each iteration the first switch of the loop sends a
copy of the packet to the controller as a pulse message.

Note the interval between a pair of consecutive pulses
provides a precise estimation for RTT over the path of interest.
Its value does not capture any delays cause by interaction with
the controller. The first pulse is sent after the service packet is
already inside of the data path. Thus, the interval does not
include the delay of transmission from the controller to the
Data Plane. Next, although each copy of the service packet
actually goes from the switch to the controller, the interval
value is calculated with a subtraction which annihilates the
corresponding delays and reduces their impact to a jitter.

Our method uses aforesaid advantage and derives one-way
delay along the path of interest from its RTT. However, direct
application of the loop-based measurement results into a heavy
load of the controller usually inadmissible in practice. Thereby,
we focus on decrease in the performance requirements of the
loop-based RTT measurement method in the first place, and
consider the ways to divide RTT into one-way delays fairly in
the second.

B. Measuring RTT with Packet Looping
Intensity of the pulse packet flow depends on a length of

the underlying loop that generates it. The longer the loop, the
fewer impulses reach the controller. It is not possible to expand
the loop because it is tied to the path of interest. However, the
controller can use the headers of a service packet to implement
a counter and send pulse messages once per several iterations.

Let a path of interest consists of N>1 switches S1,�, Sn.
To set up an appropriate topology loop controller goes through
the switches along the path and supplies i-th switch with a pair
of forwarding rules to transmit service packets from the switch
number (i-1 mod N) to the switch number (i+1 mod N) and
back without any modifications. Controller identifies a packet
with a predefined value in a certain field of its header (e.g.
0xBEEF in Ethernet type) to be the service one disregarding
the other fields. Thus, the installed rules contain a nonempty
set of wildcard fields (e.g. Ethernet source and destination
addresses).

Controller interprets the values stored a certain subset of
wildcarded fields as a encoding of a loop counter. To make the
counter run, it selects any switch in the loop and replaces one
of its transmission rules with a set of M similar rules that

modify the value of stored a counter. The pattern of i-th rule
matches the encoding of i while its actions sets the counter
fields with the encoding of (i+1 mod M). Thereby, after being
sent into a constructed loop, a service packet with a valid
encoding of a counter in its headers restores the same set of
headers and appears at the same location of a network at every
M-th iteration. Note such a combination of packet location and
headers is often referred as a packet state [6]. Using this term,
it is correct to say the controller sets up a single loop in the
space of packet states.

The described approach requires M rules to set up a counter
for M iterations and leads to a fast exhaustion of forwarding
tables of the switches. Fortunately, it is possible to reduce it by
modifying individual fields of a counter at different switches.
For example, the switch S1 can increment the first field of a
counter encoding and ignore its other fields. The switch S2 can
increment the second field of a counter while passing through
any packets with non-zero value at its first field. This cascade
scheme factorizes the number of required rules. The controller
installs M1 rules into the first switch and M2 rules at a second
switch and set up a loop with an iteration number equal to their
product M1*M2. In general, if the packet has k counter field of
a sufficient size, it is possible to set up a loop of M iteration
along the path of N K switches with K* M^(1/K) +N+1. The
number of rules can be reduced even more, if the switches
support some advanced actions for a certain set of counter
fields (e.g. decrement TTL).

Finally, controller selects any of the counter modification
rules that is used by a single iteration of the loop and extends
its instruction set with an action to send an appropriate pulse
message. As a result, the value RTT can be estimated as an
interval between a pair of consequent pulses divided by the
number of iterations in the constructed loop.

Upon a loss of a service packet the described method stops
the measurement. However, this problem can be solved by
injecting of a new service packet to replace the previous one if
no pulse message has been received for some period. Also this
situation can be used to detect network congestion.

Note a loop over the packet states improves the accuracy of
the RTT measurement. Although intervals between the pulses
include parasitic jitter of a switch-to-controller communication,
its share may be reduced to an eligible value by increasing the
length of the state loop. Suppose the switch-to-controller (SC)
delay varies from 300 µs to 500 µs, and real RTT is about 5 µs.
Then, SC jitter exceeds an actual RTT forty times. If we want
the measured value to provide 90 percent accuracy, it is
necessary to set up a loop with over 400 iterations. Thereby,
we can get a suitable precision even in a network with a high-
latency controller.

C. RTT measurement experiments
We implemented our method to measure the RTT along the

given path with the state looping as an application for POX
controller [7] and validated it experimentally. We used a single
hybrid OpenFlow switch NEC PF5200 with 48 1Gbit/s
interfaces to create a network with 4 virtual switches (fig. 2).

3

The experiments were aimed to check the method accuracy
in dependence on the network load.

The path of interest is S3, S2, S1.Traffic generators and
controller are deployed at a single server with 3 1-Gbit/s
interfaces. We used pktgen [8] to generate and send 1000 byte
packets over the paths S3, S2, S1 and S1, S2, S4, S3, S2, S1.
During the generation, each packet was marked with a
corresponding timestamp. Generated traffic was captured with
wireshark [9]. A difference between the time of packet
capturing and the timestamp inside of its body was considered
as a reference approximation of the RTT at the network
infrastructure.

Under a steady load the reference delay was in range from
500 to 560 s with an average of 540 s. The measurement
with a loop running along the path of interest 1024 times
estimated the RTT by a range from 500 to 600 s, with an
average of 560 s. This assessment differs from the average
reference estimation by 3.7 percent.

The second purpose of the experiment was to show, that the
results of the proposed method reacted the changes in network
load. To simulate dynamically changing network load traffic
we generated flows of 10000 packets with rate of 600 Mbit/s.
Thus, the rate of data transmission in links along the path S3,
S2, S1 changed from 0 to 1.2Gbit/s (some packets were
dropped).

Measurement results for proposed method showed that
delay was in range from 500 s up to 1.5 ms. Measured delay
increase to 700 s, until output port queues became congested.
Upper bound values match packet loss. After output port
queues became empty, measured delay decrease to normal
value � from 500 to 600 s.

D. Deriving one-way delay of a route by RTT
The calculation of a one-way delay by bisecting the RTT is

often inaccurate. Note we can divide RTT over a single hop
with more precision by taking into account the proportion of
data transmitted in each link direction.

Consider a pair of switches connected to each other by a
link with a bandwidth of C (figure 1). For a given time interval
T, X and Y denote a number of bytes, directed to queues Q1
and Q2 of the switches S1 and S2 respectively. Controller can
obtain actual values of X and Y by sending appropriate statistic
requests to the switches. Note these values are usually
measured at the stage of packet analysis. Thus, their
accumulated size can exceed the number of bytes transmitted
through the channel.

There are three possible options:
1. X/T C and Y/T C. Thereby, both output queues are

empty and one-way delay in each link direction is
equal to a half of RTT.

2. X/T C and Y/T C. Q1 is congested and Q2 is empty.
Thus, one-way delay from Switch1 to Switch2 can be
calculated as (RTT+(X/C-T))/2 and one-way delay
from Switch2 to Switch1 can be calculated as (RTT-
(X/C-T))/2.

3. X/T C and Y/T C. Both Q1 and Q2 are not empty.
One-way delay from Switch1 to Switch2 can be

calculated as (RTT+(X/C-T)-(Y/C-T))/2 and one-way
delay from Switch2 to Switch1 can be calculated as
(RTT-(X/C-T)+(Y/C-T))/2.

With these assumptions, we can divide target path into one-
hop paths, obtain their one-way delays by an advanced division
of RTT and sum them up into a pair of resulted one-way
delays. This method has a large overhead, especially if we want
to measure multiple paths in the network. However, if the paths
of interest have some common parts, it is possible to measure
them only once.

IV. DELAY MEASUREMENT FOR ANY ROUTE

A. Divide and measure
Proposed method allows us to measure RTT of single path

in a network. However, the total number of paths depends
exponentially on the number of switches and it is not possible
to apply the proposed method for each of them directly.

POX

S1 S2

S4

S3

Traffic generator

Traffic generator

Target route

First flow Second flow

Fig. 2. Delay measurement experiment topology with generated flows and

target flow.

Suppose (fig.2) we know delays from S3 to S2 and from S2
to S1. Then delay from S3 to S1, can be represented as sum of
one-hop delays: d(3,1)=d(3,2)+d(2,1). Similarly, the delay for
any route in network can be split into a sum of one-hop delays
and the main target is to measure all one-hop delays in network,
or to construct a network delay map - a structure, containing all
one-hop delays.

A straightforward approach is to measure all one-hop RTTs,
using the proposed measurement method, and obtain one-way
delays using the advanced method for RTT separation.

Another approach is to organize so many loop
measurements, which will allow obtain network delay map as
the result of solving a system of linear equations with loops
RTT. We propose an algorithm that construct network delay
map and organize measurements with minimal controller load.

B. Algorithm for constructing network delay map
We need to organize measurements with minimal controller

load. Header looping measurement method provides two
approaches to minimize network load: increase length of the
topological loops and increase the number of iterations over the
headers. Second approach does not arrange us, because while
minimizing number of PacketIn messages, it increases the

4

number of rules installed into the switches. We will use both
approaches in proposing algorithm.

The idea of the algorithm is to replace some measurements
over single links with measurements over longer paths, and
then derive the former from the latter.

We set up the loop construction problem as follows. For a
given network graph, find such a set of topology loops as to:

1. Each one-way link must be included in at least one
loop;

2. Maximize the accumulated length of the loops in a set;
Assign a variable directed edge in graph. Delay for any

path can be calculated from the linear equation, where directed
edges will represent each hop in path. Suppose we can measure
delay for any path in graph. Then, we can construct such a
system of linear equations, solving which will be obtained
network delay map. Therefore, we need to find such a set of
topology loops that will meet all listed requirements and may
be used to construct a system of linear equations solving which
will be obtained network delay map.

Let two loops be dependent, if edges set of one loop
contain edges set of another loop. Only set of independent
loops can be used to construct a system of linear equations.

Let one loop be sum of two another loops, if it�s set of
edges contain every edge from summand loops and does not
contain any other edge.

We will call set of independent loops - objective, if it meets
all the listed requirements. Any loop of the objective set can be
represented as the sum of other loops of smaller lengths (if the
objective loop includes more than two directed edges and it
does not belong to the graph basis). Then the objective set of
cycles can be constructed from the basis of all simple loops of
the graph. The construction of simple loops sets requires
finding a fundamental set of loops of the graph, which is a
union of fundamental sets of all spanning trees of the original
graph.

The problem of finding a fundamental set is complicated,
because the number of spanning trees of the graph can reach

, where n is the number of vertices in graph. Therefore, to
construct the independent set of loops we use an algorithm to
find all the simple loops in the graph described in [10]. Its
complexity � O((n+m)(c+1)), where c is the number of simple
loops in the graph. The resulting set may contain linearly
dependent loops and they should be filtered out with post
processing.

Next step is to construct objective set from set of basic
loops. As mentioned before, any objective loop can be
represented as sum of basic loops. We can construct objective
set of loops as a linear combination of basic loops. But
construction of the objective set of loops with maximum sum
of length is a problem that cannot be solved without exhaustive
search. Therefore, we propose a greedy algorithm that expands
topological loops. In this algorithm, we use only independent
simple loops from constructed system. For every loop in
system, we try to combine it with other, and if combination is
simple independent loop, longer than previous one, we save it.
Thus, after every step of algorithm we get a correct

(independent) system of loops with total topological length,
bigger than the one at the previous step.

Number of loops in the constructed objective set of graph
does not exceed its cyclomatic number. Thus, we need to
supplement it with more loops (total number of loops must be
equals to number of one-way edges in network). To achieve
this, we complete the system with measurements using the
advanced RTT division.

Now we just need to start measurements for every loop in
system. Measuring RTT from this loops and solving linear
system will give us network delay map.

1

3

5 4

2

Fig. 3. Delay map construction experiment topology.

C. Delay map construction experiments
Applied to an example network topology showed by figure

3 our algorithm generates a set of seven loops listed in table I.
However, there are five links and ten delay values to calculate.
Thus, we had to derive one-way delays from the RTT at links
1-2, 2-3, 2-5 (fig. 4).

We have implemented the algorithm as an application for
POX controller and have studied its performance in a network
simulated by Mininet [11].

Experiments with our method showed the one-way delay
for each link has been in range from 16 to 20 µs. For
comparison, the value of RTT measured by pinging hosts,
connected to switches 1 and 2 (which includes SC delay) is in
the range of 40 to 60 s, so we reached necessary accuracy of
measurements. The number of iterations for each loop was
2048. It used two counter-fields, that required to install 96 + k
rules per loop (k is number of switches in loop). The number of
PacketIn messages in a second is from 60 to 100. Such a low
intensity should be acceptable for any modern controller.

TABLE I. SYSTEM OF NETWORK LOOPS, GENERATED BY ALGORITHM

Loop number Switches in loop

1 1, 2, 5, 4, 3, 2, 3, 4, 5, 2, 1
2 1, 2, 5, 4, 3, 4, 5, 2, 1

3 1, 2, 5, 4, 3, 2, 1

4 1, 2, 5, 4, 5, 2, 1

5 1, 2, 1

6 2, 5, 2

7 2, 3, 2

5

Num\link 1 - 2 2 - 1 2 - 3 2 - 5 3 - 2 3 - 4 4 - 3 4 - 5 5 - 2 5 - 4
1 1 1 1 1 1 1 1 1 1 1
2 1 1 0 1 0 1 1 1 1 1
3 1 1 0 1 1 0 1 0 0 1
4 1 1 0 1 0 0 0 1 1 1
5 1 1 0 0 0 0 0 0 0 0
6 0 0 0 1 0 0 0 0 1 0
7 0 0 1 0 1 0 0 0 0 0
8 1 0 0 0 0 0 0 0 0 0
9 0 0 1 0 0 0 0 0 0 0

10 0 0 0 1 0 0 0 0 0 0
Fig. 4. System of linear equations, generated by algorithm.

V. CONCLUSION
We proposed a flexible method to measure one-way delay

of any flow with adjustable trade-off between the accuracy and
the load of network infrastructure it imposes. Using of loops in
space of packet states allowed us to measure delay through fast
path and make switch-controller delay negligible. Proposed
method can be used out-of-the-box, and can be easily
implemented as module of any SDN controller.

We proposed an algorithm to construct a delay map suitable
to estimate the infrastructure delay for all paths in a network
with necessary accuracy in real-time. The algorithm allows our
delay measurement method to scale without overloading of the
controller.

REFERENCES
[1] N. McKeown, A. Mekkittikul, V. Anantharam and J. Walrand,

�Achieving 100% throughput in an input-queued switch�, IEEE
Trans. on Communications, 8, Vol. 47, pp. 1260�1267,
1999.

[2] A. Bouillard and G. Stea, �Exact worst-case delay for FIFO-
multiplexing tandems�, Proc. of the 6th International
Conference on Performance Evaluation Methodologies and
Tools, 2012.

[3] B. Ngamwongwattana and R. Thompson, �Measuring one-way
delay of VoIP packets without clock synchronization�, Proc. of
the International Instrumentation and Measurement Technology
Conference (I2MTC), pp. 532-535, 2009.

[4] S. Shalunov, B.Teitelbaum and A. Karp, �A One-way Active
Measurement Protocol (OWAMP)�, Internet Engineering Task
Force, RFC 4656, September 2006.

[5] K.Phemius and M.Bouet, �Monitoring latency with OpenFlow�,
2013 9th International Conference on Network and Service
Management (CNSM) and its three collocated Workshops -
ICQT, SVM and SETM, pp. 122-125, 2013.

[6] Peyman Kazemian, George Varghese and Nick McKeown,
�Header Space Analysis: Static Checking For Networks�, Proc.
of the 9th USENIX conference on Networked Systems Design
and Implementation, 2012

[7] Pox controller. http://www.noxrepo.org/pox/about-pox/
[8] Robert Olsson, �pktgen the linux packet generator�, Linux

Symposium, 2005
[9] Arora Himanshu, �Wireshark - The best open source network

packet analyzer�, IBM developerWorks, 2012
[10] Donald B. Johnson, �Finding All the Elementary Circuits of a

Directed Graph�, SIAM Journal on Computing 4, no. 1, 77-84,
1975

[11] Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar, Bob
Lantz and Nick McKeown, �Reproducible Network
Experiments Using Container-Based Emulation�, CoNEXT,
2012

6

