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Abstract—The paper introduces a new loop-based method to 
measure end-to-end packet delay in software-defined network 
infrastructures. Although the method generates auxiliary service 
packets, it does not require any complementary support from the 
switching hardware. The prototype implementation shows the 
method is able to provide one-way delay values with microsecond 
precision on a steady load. Direct application of the method to 
each data flow in the network is straightforward, but can cause 
excessive hardware utilization. Thus, the paper proposes an 
algorithm to improve it by decomposing global end-to-end 
estimations into the set local ones whereas removing their 
redundancy. The algorithm makes it practically possible to 
monitor delay of each data flow in real-time.

Keywords—One-Way Delay; Measurement; Software-Defined 
Networking; Quality of Service 

I. INTRODUCTION 
A steady growth in a number of interactive network 

applications and services originates an increasing demand in 
advanced control over the quality of connections through the 
network infrastructure. However, it is a hard problem to 
compute an appropriate data transmission path and configure 
network devices along this path to meet the requested end-to-
end requirements for the connection. It is even harder to 
establish such a cooperation of logically independent network 
devices to enable dynamic provisioning of the requested 
connections. Furthermore, network hardware evolved without 
sufficient attention to Quality of Service (QoS) issues, and 
support of corresponding functionality is often a subject to 
various restrictions. 

Surprisingly, all the listed obstacles have been successfully 
overcome by the systems focused on end-to-end bandwidth. It 
is due to its concavity bandwidth is guaranteed to be the 
minimum among the bandwidths of the links along the 
connection path. However, the most of the QoS metrics does 
not have this property, and their calculation cannot be easily 
decomposed. Quite the contrary, measurement, estimation and 
attuning of end-to-end delay are naturally hard in any 
asynchronous distributed system without global clock, and 
require accurate and precise coordination of network devices. 
As a result, no modern system for end-to-end delay 
measurement can improve the precision of a theoretical worst-

case estimation, and avoid exotic requirement to the switching 
hardware. 

In this paper we make a first step towards the QoS-aware 
routing by introducing a new method to measure end-to-end 
connection delay based on the centralized control and flexible 
management interfaces for the switching hardware provided by 
Software-Defined Networking (SDN). Our approach has the 
following features: 

Measure end-to-end delay on a per-flow basis;
Precise enough to cover the mutual flow influence;
Work in SDN with general switching hardware;
Update results up to several times in a second.

The paper has the following structure. Section II provides a 
brief review of related works. In section III we introduce a new 
method to measure packet transmission delay along any route 
in a network based on header looping. Section IV considers the 
algorithm to optimize application of our delay measurement 
method to all routes in a network. 

II. RELATED WORK

Back in the days of circuit-switched networks end-to-end 
delay was in a straight dependence on a length of the wire. The 
compliance with the delay requirements was naturally achieved 
by searching the network infrastructure for a short enough 
virtual channel. Since, the problem of delay control has 
complicated dramatically. With the emergence of packet-
switched networks, data flows started to compete with each 
other for network resources. The development of technology in 
accordance with Moore�s and Gilder�s empiric laws gradually 
shifted the bottleneck of data transmission from the wire to the 
switching devices. A considerable effort has been made 
towards the designing of an efficient network switch 
architecture that could provide maximum utilization to the 
connected links [1]. In the pursuit of throughput performance a 
contemporary switch utilizes a multistage engine for packet 
analysis and a mixture of packet buffers and switching fabric, 
managed by complicated dynamic packet scheduling 
algorithms. 

Each delay control tool relies on a certain method of end-
to-end delay estimation, and there has been suggested quite a 
number of them. On the one hand, a conservative estimation 
based on independent computation of the worst-case delay for 
each network node may be easily implemented and applied to This research is supported by the Skolkovo Foundation Grant N 79, July, 

2012 . 
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any kind of a network. However, is known to inflate the actual 
delay value by several orders of magnitude. On the other hand, 
state-of-the-art achievements in Network Calculus make it 
possible to compute a tight upper bound for the worst-case end-
to-end delay with assumptions of traffic conditioning on the 
border network switches, fluid data flows, and their FIFO 
multiplexing [2]. Unfortunately, these limitations as well as a 
high computation complexity are not insensible. The diverse 
and intricate operating principles of switching devices 
obscured network-wide packet scheduling and made it hardly 
promising to build a method for end-to-end delay estimation 
with a wide scope, an appropriate precision, and an acceptable 
computation complexity at the same time. 

Inability to estimate network delay pushed forward an 
intention to measure it. Though, one-way delay measurement 
in an asynchronous system is challenging. A computation of a 
one way delay as a bisection of the round trip time seems to be 
natural, but this approach does not generally work as intended 
because both routes and network load of the forward and the 
backward paths of a flow may differ. Although it is possible to 
compute the one-way delay of a flow with higher precision 
with help of the complementary software modules installed on 
the end hosts [3], this method is either applicable only to 
protocols with some specific features or make the end hosts to 
generate a lot of secondary traffic. 

Less host-assuming approaches address the data 
transmission only through the network infrastructure. It is a 
tried-and-true method to bypath the asynchrony by setting up a 
global clock with Network Time Protocol (NTP), Global 
Positioning System (GPS), or Code Division Multiple Access 
(CDMA), and tagging the transmitted packets with timestamp 
on send. However, it implies each packet has a place for the 
timestamp in its headers, and the switches are able to handle 
this timestamp. The prevalent approach is to compute the delay 
non-intrusively by means of ad hoc service packets and avoid 
the tagging similar to [4]. However, this modification does not 
eliminate the need in the dedicated time server and the abilities 
of the switching devices to synchronize and generate the 
appropriate service packets automatically. 

SDN introduces a concept of a single centralized controller 
to rule all the switching devices and provided a convenient way 
to synchronize them. The paper [5] proposes to use this 
opportunity to measure the delay by the following outline. First, 
the controller reserves a certain header for the service purposes. 
Then, it installs a set of forwarding rules to route the packets 
with this header by the path of the flow of interest. However, 
the last rule along the path is modified to send outgoing 
packets to the controller. From time to time, the controller 
forges a probe packet with the reserved header and a relevant 
timestamp in its payload, and sends it through the ingress 
switch of the constructed path. When the packet comes back, 
the controller checks its timestamp and computes the packet 
delay. 

Packet probes do not require any complementary support 
from the hardware, nor the synchronization of switching 
devices. However, the probe comprises not only the route of 
the real packets, but also the routes from the controller to the 

ingress switch and from the egress switch back to the controller. 
Moreover, each probe packet experiences two passes through a 
network stack of the controller, and a pair of transitions 
between the Control Plane and the Data Plane at the switches, 
usually implemented by means of a slow software processing. 
As a result, the value of the target delay component often 
becomes smaller than the value of parasitic components, and 
the method is unable to provide the required precision. 

In this paper we propose a novel approach to establish 
packet probes, which copes the negative impact of the adverse 
delay components by increasing the share of the target 
component with packet iteration. 

III. ONE-WAY DELAY MEASUREMENT FOR A SINGLE PATH 

A. Rationale 
End-to-end packet transmission delay is equal to a sum of a 

network infrastructure delay and a delay between border 
switches and network applications at the ends of the route. It is 
not possible to measure the latter component due to a lack of 
information about configurations of the hosts. However, the 
delay of packet transmission through the network infrastructure 
is a large part of the end-to-end delay. In this paper we discard 
the delay between the network and the hosts, and consider the 
delay of the network infrastructure only. 

In SDN packets can pass through the network infrastructure 
with two types of routes: (1) slow path routes that imply 
processing of packets at the controller, and (2) fast path routes 
that are processed solely by the switching devices. In most 
cases, packets pass through the fast path, therefore, in this work 
we focus on measuring end-to-end delay for fast path. 

We assume each network switch implements Output 
Queuing and consists of the following components: 

Packet analyzers (one per port), 
Switching fabric, 
Output queues (one per port). 

 

 
Fig. 1.  Scheme of switch interaction. 

Packet processing at a switch is organized as follows (fig. 
1). Upon receiving a packet, the switch analyzes its headers 
and produces an instruction to process it. Then, the switch 
fabric executes the instruction and transmits the packet to an 
appropriate set of output ports. However, the packet can arrive 
when the connected channel is already in use by packets from 
the other ports. In this case the packet is pushed into a FIFO-
queue of the port. The queue is polled every time the channel 
becomes ready to transmit. 

We assume the delay of packet processing at analyzers and 
switching fabrics as well as the delay of packet serialization 
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and propagation depends solely on packet length and some 
performance characteristics of the networking hardware. Thus, 
the listed components can be calculated statically without a 
regard to the network load. Note our assumption does not 
generally hold and some advanced hardware violates it. 
However, the value of calculation error is negligible compared 
to the delay of packet queuing. Thus, our method focuses on 
measuring of the latter one. 

Because of the dependence on mutual influence of the 
flows, queuing delay cannot be calculated a priori. Our method 
captures this dependency with help of a service packets forged 
by a network controller to follow the path of the usual data 
packets and experience all the appropriate delays. However, 
instead of making a single run along the path of interest, the 
packet iterates it back and forth in an endless loop. At the 
beginning of each iteration the first switch of the loop sends a 
copy of the packet to the controller as a pulse message. 

Note the interval between a pair of consecutive pulses 
provides a precise estimation for RTT over the path of interest. 
Its value does not capture any delays cause by interaction with 
the controller. The first pulse is sent after the service packet is 
already inside of the data path. Thus, the interval does not 
include the delay of transmission from the controller to the 
Data Plane. Next, although each copy of the service packet 
actually goes from the switch to the controller, the interval 
value is calculated with a subtraction which annihilates the 
corresponding delays and reduces their impact to a jitter. 

Our method uses aforesaid advantage and derives one-way 
delay along the path of interest from its RTT. However, direct 
application of the loop-based measurement results into a heavy 
load of the controller usually inadmissible in practice. Thereby, 
we focus on decrease in the performance requirements of the 
loop-based RTT measurement method in the first place, and 
consider the ways to divide RTT into one-way delays fairly in 
the second. 

B. Measuring RTT with Packet Looping 
Intensity of the pulse packet flow depends on a length of 

the underlying loop that generates it. The longer the loop, the 
fewer impulses reach the controller. It is not possible to expand 
the loop because it is tied to the path of interest. However, the 
controller can use the headers of a service packet to implement 
a counter and send pulse messages once per several iterations. 

Let a path of interest consists of N>1 switches S1,�, Sn. 
To set up an appropriate topology loop controller goes through 
the switches along the path and supplies i-th switch with a pair 
of forwarding rules to transmit service packets from the switch 
number (i-1 mod N) to the switch number (i+1 mod N) and 
back without any modifications. Controller identifies a packet 
with a predefined value in a certain field of its header (e.g. 
0xBEEF in Ethernet type) to be the service one disregarding 
the other fields. Thus, the installed rules contain a nonempty 
set of wildcard fields (e.g. Ethernet source and destination 
addresses). 

Controller interprets the values stored a certain subset of 
wildcarded fields as a encoding of a loop counter. To make the 
counter run, it selects any switch in the loop and replaces one 
of its transmission rules with a set of M similar rules that 

modify the value of stored a counter. The pattern of i-th rule 
matches the encoding of i while its actions sets the counter 
fields with the encoding of (i+1 mod M). Thereby, after being 
sent into a constructed loop, a service packet with a valid 
encoding of a counter in its headers restores the same set of 
headers and appears at the same location of a network at every 
M-th iteration. Note such a combination of packet location and 
headers is often referred as a packet state [6]. Using this term, 
it is correct to say the controller sets up a single loop in the 
space of packet states. 

The described approach requires M rules to set up a counter 
for M iterations and leads to a fast exhaustion of forwarding 
tables of the switches. Fortunately, it is possible to reduce it by 
modifying individual fields of a counter at different switches. 
For example, the switch S1 can increment the first field of a 
counter encoding and ignore its other fields. The switch S2 can 
increment the second field of a counter while passing through 
any packets with non-zero value at its first field. This cascade 
scheme factorizes the number of required rules. The controller 
installs M1 rules into the first switch and M2 rules at a second 
switch and set up a loop with an iteration number equal to their 
product M1*M2. In general, if the packet has k counter field of 
a sufficient size, it is possible to set up a loop of M iteration 
along the path of N K switches with K* M^(1/K) +N+1. The 
number of rules can be reduced even more, if the switches 
support some advanced actions for a certain set of counter 
fields (e.g. decrement TTL). 

Finally, controller selects any of the counter modification 
rules that is used by a single iteration of the loop and extends 
its instruction set with an action  to send an appropriate pulse 
message. As a result, the value RTT can be estimated as an 
interval between a pair of consequent pulses divided by the 
number of iterations in the constructed loop. 

Upon a loss of a service packet the described method stops 
the measurement. However, this problem can be solved by 
injecting of a new service packet to replace the previous one if 
no pulse message has been received for some period. Also this 
situation can be used to detect network congestion. 

Note a loop over the packet states improves the accuracy of 
the RTT measurement. Although intervals between the pulses 
include parasitic jitter of a switch-to-controller communication, 
its share may be reduced to an eligible value by increasing the 
length of the state loop. Suppose the switch-to-controller (SC) 
delay varies from 300 µs to 500 µs, and real RTT is about 5 µs. 
Then, SC jitter exceeds an actual RTT forty times. If we want 
the measured value to provide 90 percent accuracy, it is 
necessary to set up a loop with over 400 iterations. Thereby, 
we can get a suitable precision even in a network with a high-
latency controller. 

C. RTT measurement experiments 
We implemented our method to measure the RTT along the 

given path with the state looping as an application for POX 
controller [7] and validated it experimentally. We used a single 
hybrid OpenFlow switch NEC PF5200 with 48 1Gbit/s 
interfaces to create a network with 4 virtual switches (fig. 2). 
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The experiments were aimed to check the method accuracy 
in dependence on the network load. 

The path of interest is S3, S2, S1.Traffic generators and 
controller are deployed at a single server with 3 1-Gbit/s 
interfaces. We used pktgen [8] to generate and send 1000 byte 
packets over the paths S3, S2, S1 and S1, S2, S4, S3, S2, S1. 
During the generation, each packet was marked with a 
corresponding timestamp. Generated traffic was captured with 
wireshark [9]. A difference between the time of packet 
capturing and the timestamp inside of its body was considered 
as a reference approximation of the RTT at the network 
infrastructure. 

Under a steady load the reference delay was in range from 
500 to 560 s with an average of 540 s. The measurement 
with a loop running along the path of interest 1024 times 
estimated the RTT by a range from 500 to 600 s, with an 
average of 560 s. This assessment differs from the average 
reference estimation by 3.7 percent. 

The second purpose of the experiment was to show, that the 
results of the proposed method reacted the changes in network 
load. To simulate dynamically changing network load traffic 
we generated flows of 10000 packets with rate of 600 Mbit/s. 
Thus, the rate of data transmission in links along the path S3, 
S2, S1 changed from 0 to 1.2Gbit/s (some packets were 
dropped). 

Measurement results for proposed method showed that 
delay was in range from 500 s up to 1.5 ms. Measured delay 
increase to 700 s, until output port queues became congested. 
Upper bound values match packet loss. After output port 
queues became empty, measured delay decrease to normal 
value � from 500 to 600 s. 

D. Deriving one-way delay of a route by RTT 
The calculation of a one-way delay by bisecting the RTT is 

often inaccurate. Note we can divide RTT over a single hop 
with more precision by taking into account the proportion of 
data transmitted in each link direction. 

Consider a pair of switches connected to each other by a 
link with a bandwidth of C (figure 1). For a given time interval 
T, X and Y denote a number of bytes, directed to queues Q1 
and Q2 of the switches S1 and S2 respectively. Controller can 
obtain actual values of X and Y by sending appropriate statistic 
requests to the switches. Note these values are usually 
measured at the stage of packet analysis. Thus, their 
accumulated size can exceed the number of bytes transmitted 
through the channel. 

There are three possible options: 
1. X/T C and Y/T C. Thereby, both output queues are 

empty and one-way delay in each link direction is 
equal to a half of RTT.  

2. X/T C and Y/T C. Q1 is congested and Q2 is empty. 
Thus, one-way delay from Switch1 to Switch2 can be 
calculated as (RTT+(X/C-T))/2 and one-way delay 
from Switch2 to Switch1 can be calculated as (RTT-
(X/C-T))/2. 

3. X/T C and Y/T C. Both Q1 and Q2 are not empty. 
One-way delay from Switch1 to Switch2 can be 

calculated as (RTT+(X/C-T)-(Y/C-T))/2 and one-way 
delay from Switch2 to Switch1 can be calculated as 
(RTT-(X/C-T)+(Y/C-T))/2. 

With these assumptions, we can divide target path into one-
hop paths, obtain their one-way delays by an advanced division 
of RTT and sum them up into a pair of resulted one-way 
delays. This method has a large overhead, especially if we want 
to measure multiple paths in the network. However, if the paths 
of interest have some common parts, it is possible to measure 
them only once. 

IV. DELAY MEASUREMENT FOR ANY ROUTE 

A. Divide and measure 
Proposed method allows us to measure RTT of single path 

in a network. However, the total number of paths depends 
exponentially on the number of switches and it is not possible 
to apply the proposed method for each of them directly. 

POX

S1 S2

S4

S3

Traffic generator

Traffic generator

Target route

First flow Second flow

 
Fig. 2.  Delay measurement experiment topology with generated flows and 

target flow. 

Suppose (fig.2) we know delays from S3 to S2 and from S2 
to S1. Then delay from S3 to S1, can be represented as sum of 
one-hop delays: d(3,1)=d(3,2)+d(2,1). Similarly, the delay for 
any route in network can be split into a sum of one-hop delays 
and the main target is to measure all one-hop delays in network, 
or to construct a network delay map - a structure, containing all 
one-hop delays. 

A straightforward approach is to measure all one-hop RTTs, 
using the proposed measurement method, and obtain one-way 
delays using the advanced method for RTT separation.  

Another approach is to organize so many loop 
measurements, which will allow obtain network delay map as 
the result of solving a system of linear equations with loops 
RTT. We propose an algorithm that construct network delay 
map and organize measurements with minimal controller load. 

B. Algorithm for constructing network delay map 
We need to organize measurements with minimal controller 

load. Header looping measurement method provides two 
approaches to minimize network load: increase length of the 
topological loops and increase the number of iterations over the 
headers. Second approach does not arrange us, because while 
minimizing number of PacketIn messages, it increases the 
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number of rules installed into the switches. We will use both 
approaches in proposing algorithm. 

The idea of the algorithm is to replace some measurements 
over single links with measurements over longer paths, and 
then derive the former from the latter. 

We set up the loop construction problem as follows. For a 
given network graph, find such a set of topology loops as to: 

1. Each one-way link must be included in at least one 
loop; 

2. Maximize the accumulated length of the loops in a set; 
Assign a variable directed edge in graph. Delay for any 

path can be calculated from the linear equation, where directed 
edges will represent each hop in path. Suppose we can measure 
delay for any path in graph. Then, we can construct such a 
system of linear equations, solving which will be obtained 
network delay map. Therefore, we need to find such a set of 
topology loops that will meet all listed requirements and may 
be used to construct a system of linear equations solving which 
will be obtained network delay map. 

Let two loops be dependent, if edges set of one loop 
contain edges set of another loop. Only set of independent 
loops can be used to construct a system of linear equations. 

Let one loop be sum of two another loops, if it�s set of 
edges contain every edge from summand loops and does not 
contain any other edge.  

We will call set of independent loops - objective, if it meets 
all the listed requirements. Any loop of the objective set can be 
represented as the sum of other loops of smaller lengths (if the 
objective loop includes more than two directed edges and it 
does not belong to the graph basis). Then the objective set of 
cycles can be constructed from the basis of all simple loops of 
the graph. The construction of simple loops sets requires 
finding a fundamental set of loops of the graph, which is a 
union of fundamental sets of all spanning trees of the original 
graph. 

The problem of finding a fundamental set is complicated, 
because the number of spanning trees of the graph can reach 

, where n is the number of vertices in graph. Therefore, to 
construct the independent set of loops we use an algorithm to 
find all the simple loops in the graph described in [10]. Its 
complexity � O((n+m)(c+1)), where c is the number of simple 
loops in the graph. The resulting set may contain linearly 
dependent loops and they should be filtered out with post 
processing. 

Next step is to construct objective set from set of basic 
loops. As mentioned before, any objective loop can be 
represented as sum of basic loops. We can construct objective 
set of loops as a linear combination of basic loops. But 
construction of the objective set of loops with maximum sum 
of length is a problem that cannot be solved without exhaustive 
search. Therefore, we propose a greedy algorithm that expands 
topological loops. In this algorithm, we use only independent 
simple loops from constructed system. For every loop in 
system, we try to combine it with other, and if combination is 
simple independent loop, longer than previous one, we save it. 
Thus, after every step of algorithm we get a correct 

(independent) system of loops with total topological length, 
bigger than the one at the previous step. 

Number of loops in the constructed objective set of graph 
does not exceed its cyclomatic number. Thus, we need to 
supplement it with more loops (total number of loops must be 
equals to number of one-way edges in network). To achieve 
this, we complete the system with measurements using the 
advanced RTT division. 

Now we just need to start measurements for every loop in 
system. Measuring RTT from this loops and solving linear 
system will give us network delay map. 
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Fig. 3. Delay map construction experiment topology. 

C. Delay map construction experiments 
Applied to an example network topology showed by figure 

3 our algorithm generates a set of seven loops listed in table I. 
However, there are five links and ten delay values to calculate. 
Thus, we had to derive one-way delays from the RTT at links 
1-2, 2-3, 2-5 (fig. 4). 

We have implemented the algorithm as an application for 
POX controller and have studied its performance in a network 
simulated by Mininet [11]. 

Experiments with our method showed the one-way delay 
for each link has been in range from 16 to 20 µs. For 
comparison, the value of RTT measured by pinging hosts, 
connected to switches 1 and 2 (which includes SC delay) is in 
the range of 40 to 60 s, so we reached necessary accuracy of 
measurements. The number of iterations for each loop was 
2048. It used two counter-fields, that required to install 96 + k 
rules per loop (k is number of switches in loop). The number of 
PacketIn messages in a second is from 60 to 100. Such a low 
intensity should be acceptable for any modern controller. 

TABLE I. SYSTEM OF NETWORK LOOPS, GENERATED BY ALGORITHM 

Loop number Switches in loop 

1 1, 2, 5, 4, 3, 2, 3, 4, 5, 2, 1 
2 1, 2, 5, 4, 3, 4, 5, 2, 1 

3 1, 2, 5, 4, 3, 2, 1 

4 1, 2, 5, 4, 5, 2, 1 

5 1, 2, 1 

6 2, 5, 2 

7 2, 3, 2 

5



Num\link 1 - 2 2 - 1 2 - 3 2 - 5 3 - 2 3 - 4 4 - 3 4 - 5 5 - 2 5 - 4
1 1 1 1 1 1 1 1 1 1 1
2 1 1 0 1 0 1 1 1 1 1
3 1 1 0 1 1 0 1 0 0 1
4 1 1 0 1 0 0 0 1 1 1
5 1 1 0 0 0 0 0 0 0 0
6 0 0 0 1 0 0 0 0 1 0
7 0 0 1 0 1 0 0 0 0 0
8 1 0 0 0 0 0 0 0 0 0
9 0 0 1 0 0 0 0 0 0 0

10 0 0 0 1 0 0 0 0 0 0  
Fig. 4. System of linear equations, generated by algorithm. 

V. CONCLUSION 
We proposed a flexible method to measure one-way delay 

of any flow with adjustable trade-off between the accuracy and 
the load of network infrastructure it imposes. Using of loops in 
space of packet states allowed us to measure delay through fast 
path and make switch-controller delay negligible. Proposed 
method can be used out-of-the-box, and can be easily 
implemented as module of any SDN controller. 

We proposed an algorithm to construct a delay map suitable 
to estimate the infrastructure delay for all paths in a network 
with necessary accuracy in real-time. The algorithm allows our 
delay measurement method to scale without overloading of the 
controller. 
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