W.C. PatkeBuu. SI3bikoBoii cepBuc FRIS st pacmupennoit nogaepxku Fortran B Microsoft Visual Studio. Tpyast UCIT
PAH, tom 27, Boim. 3, 2015 1., ¢. 9-28

FRIS Language Service for Extended
Fortran Support in Microsoft Visual Studio

LS. Ratkevich <ratkevichis@gmail.com>,
Russian Federal Nuclear Center — All-Russian Scientific Research Institute of
Experimental Physics (RFNC — VNIIEF),
607190, Mira, 37, Sarov, Nizhny Novgorod Region, Russian Federation

Abstract. This report deals with the construction of the language service for extended support
of the Fortran programming language in the integrated development environment (IDE)
Microsoft Visual Studio. The model and general approach for language service construction is
offered.

The proposed general model of a language service consists of five key blocks: the IDE
integration block; the analysis block; the recognized elements storage block; the elements
serialization/deserialization block; the elements view model block.

The IDE integration block connects a language service with a basic IDE infrastructure. It’s
responsible for subscription of Language Service for text editing events and for providing
corresponding responses.

The Analysis block is responsible for accomplishing lexical, syntactic and semantic analysis. It
gathers all needed information about the elements of a programming language and puts it into
the recognized elements storage block. The second task of this block is to provide information
for syntax highlighting of edited text.

The Recognized elements storage block is like a database of all elements needed for the
Language Service operation. In general case, it is kind of a symbol table. The storage block
could be filled from two sources: from analysis block, as a result of analysis of a source files,
and from elements serialization/deserialization block, as a result of deserialization from a
previously existing specialized program description in the case of using model of API
(Application Programming Interface) for arbitrary programming libraries.

The elements serialization/deserialization block performs two functions. Firstly, it allows saving
the content of programming projects as XML files for description of API and documentation
comments. Secondary, it allows restoring the content of programming projects from their XML
models.

The Elements view model block is a link, a kind of adaptor for elements of storage block to their
representation needed by IDE integration block. Thus, recognized elements may contain some
information that is not necessary to IntelliSense technology features, or on the contrary, does not
contain some needed information. The elements view model is playing this interconnection role.
It contains data types that are wrappers for elements of storage block, which fulfils requirements
of the IDE integration block. There is also implemented various functions of filtering and
selecting of different kinds necessary information.

1.S. Ratkevich. FRIS Language Service for Extended Fortran Support in Microsoft Visual Studio. Trudy ISP RAN /Proc.
ISP RAS, vol. 27, issue 3, 2015, pp. 9-28

The proof of operability of proposed general model of a language service is given on the
example of the FRIS language service developed by author. The material could be equally
applied for construction language services both for other programming languages and for other
development environments.

Keywords: FRIS; Fortran Intelligent Solutions; Fortran; Visual Studio Extensibility;
Language Service; Visual Studio

DOI: 10.15514/ISPRAS-2015-27(3)-1

For citation: Ratkevich I.S. FRIS Language Service for Extended Fortran Support in
Microsoft Visual Studio. Trudy ISP RAN/Proc. ISP RAS, 2015, vol. 27, issue 3, pp. 9-28.
DOI: 10.15514/ISPRAS-2015-27(3)-1.

1. Introduction

Fortran [1], [2] is one of the first high-level programming languages. It was created
in the 50s of XX century and it was intended for development of programs for
scientific calculations. Fortran is still used by its intended purpose in the
development of simulation programs. Nowadays the most widespread Fortran
standard is Fortran 2003 [2] (however there is the Fortran 2008 standard, and the
Fortran 2015 standard is in development stage). It cardinally differs from previous
standards because it introduces the support of object-oriented programming in a
Fortran language. This feature changes the language syntax, where many new
statements are added in conjunction with new conceptions. Definitely, such
modernizations are necessary, but at the same time they are objectively making the
language more complicated.

However these difficulties may be hidden or even eliminated, if the Fortran-
programmer will have appropriate assistance from the IDE in which he writes his
programs code. The most widely used IDE on Windows is Microsoft Visual Studio.
It is extensible and allows adding practically any feature into it. As an example,
Visual Studio may be extended to support various programming languages.

The most widely used Visual Studio integrations of the Fortran language are being
developed in Intel [3] and PGI [4] in conjunction with corresponding compilers.
However the supported features of those integrations significantly inferior to
integrations developed by Microsoft, e.g. for C# programming language.
Primarily it applies to the support of InlelliSense [S] technology, which consists
of the following features: List Members, Parameter Info, Quick Info u
Complete Word (table 1).

It must be noted that in all implemented IntelliSense features, excluding those
for intrinsic procedures, there is essentially absent any description of the
elements except for their definitions.

This great difference between Fortran support and support for languages, developed
by Microsoft, became a key factor for author in the decision to implement the FRIS
(Fortran Intelligent Solutions) language service, that is intended to cover this gap
and implement all IntelliSense features to support Fortran-programmer in effective
development of programs.

10

W.C. PatkeBuu. SI3bikoBoii cepBuc FRIS st pacmupennoit nogaepxku Fortran B Microsoft Visual Studio. Tpyast UCIT
PAH, tom 27, Boim. 3, 2015 1., ¢. 9-28

Table 1. The IntelliSense technology features implementation in Intel and PGI

1.S. Ratkevich. FRIS Language Service for Extended Fortran Support in Microsoft Visual Studio. Trudy ISP RAN /Proc.
ISP RAS, vol. 27, issue 3, 2015, pp. 9-28

Function Intel PGI
List

Members No No

Parameter Yes, excluding overloaded procedures | Yes, only for intrinsic
Info and type bound procedures procedures

Quick Info Yes., excluding fields and procedures of | Yes, only for intrinsic

derived types procedures

Complete Yes, only for modules names, functions | Yes, only for keywords

Word names and subroutines names statements

2. Making model of a language service

Language service [6] is responsible for providing language-specific support for editing
source code in the Visual Studio IDE, or, generally speaking, in any IDE. Basic
language service must by definition [7] to provide a program syntax highlighting, all
other features, including the IntelliSense support, are extra (or extended) features. The
main question that must be answered at first when starting a new language service
development is what features are needed for a programmer. After that, those features
must be ranked by priority (or by usability).

Next, it is needed to identify the sources of data that must be used in the
implementation of the language service. The main data source for any language
service, no doubt, is source files containing programs text on a target language, but in
some cases additional data sources may be needed.

The next stage is to estimate implementation complexity of needed functions. This
estimation may include as the IDE restrictions to different components of a language
service, and the analysis complexity of the target programming language itself.

After this the aggregate language service model is constructed, that reflects its major
structural elements and interconnections between them. This report contains
generalized and optimal, in author's opinion, language service model, which provides
extended support for a target programming language.

When the aggregate language service model is constructed, each of its structural
elements is detailed according to specific requirements to implementation of different
features, and also depending on the restrictions of the target programming language.
Next in the report each of aforementioned steps in making language service will be
examined in details, on example of the Fortran programming language, but the given
material, without loss of generality, could be applied to any other programming
language.

2.1 Analysis of requirements and the necessary features

The first thing, that definitely wants to see any programmer is a program syntax
highlighting, for keywords, data type names, string literals, comments and so on. At
the same time, it’s important to provide the ability to configure such highlighting,

11

for example, for significant to user procedure names and data type names of
program libraries, say, OpenMP, MPI, and others. Such syntax highlighting helps to
focus attention on the most important details.

The second thing, that is important to a programmier, is the amount of provided context
help, that at least must consist of the definition for a programming language element
with which programmer works or wants to work (in the case of word completion lists).
But in most cases the element definition is not enough to understand, how exactly the
element must be used, as an example, a procedure that has more than a dozen
parameters, some of which may be optional. In this case it’s necessary to accompany the
element definition with some meaningful description. When the data that must be
provided to user, and, respectively, that must be collected and stored, are identified, the
sources, from which this could be obtained, must be analyzed.

2.2 Analysis of data sources

The most obvious way to get the definitions of programming language elements is
the analysis of program source files. The form of such definitions is fixed in the
programming language standard, e.g. in the Fortran standard. The meaningful
description of the elements may be obtained, if to complement the program text
with comments in a special form — documentation comments. The XML
documentation comments are the standard for Visual Studio. So, the program text
contains two languages: the base language — Fortran, and the embedded language —
documentation comments language.

It should be noted, that Fortran has a distinctive feature in using of the programming
libraries. There are three ways to connect the programming library to the main
Fortran project:

e with source code files, that contains the library API, including procedure
definitions, data types definitions and so on;

o with compiled binary files of Fortran modules, that have a closed format,
which understandable just by compiler. Those files also contains the library
API definitions;

e without any descriptions of library API. In such case the compiler will
deduce the outer interfaces for used procedures, and will try to resolve
external references by their names.

In the first case, it is possible to analyze source file that contains the library API and
get all necessary information from it, but in the other two cases, it’s impossible to
do so, and it's necessary to provide other mechanisms to get such information.

As a basis for implementation of this task, was taken the idea that is used in the
program for automatic documentation generation for so called managed applications
— Sandcastle [8]. It uses two files for generation of program documentation: one
with the API description, and the other with the documentation for the API.

Fortran isn’t managed language, so it’s impossible to use the standard Sandcastle
API format for description of its elements. Therefore the model for description
12

W.C. PatkeBuu. SI3bikoBoii cepBuc FRIS st pacmupennoit nogaepxku Fortran B Microsoft Visual Studio. Tpyast UCIT
PAH, tom 27, Boim. 3, 2015 1., ¢. 9-28

Fortran API was developed in FRIS for this purpose. It is the XML file in the
special format, which contains a description of main Fortran elements. FRIS can
save (serialization) the structure of elements, which is obtained from the analysis of
program texts, into XML format and restore (deserialization) Fortran elements from
their XML representation.

The XML model for Fortran documentation comments is also developed, including
the features for its serialization and deserialization. This will allow to develop a
special Sandcastle plug-in, and to use files of Fortran API and documentation
comments description to automatically generate a developer or/and user help files.

2.3 Analysis of main operating characteristics of a language
service

When developing a language service it’s necessary to take into account that analysis
of program texts will operate in a real time. This means that in most cases the text
under analysis will be in the lexical, syntactic or semantic incorrect state, in terms of
programming language specification. This peculiarity must be considered in the
construction of corresponding analyzers.

The second peculiarity is in the fact that the analysis for a syntax highlighting is
carried out in Visual Studio line-by-line (one line a time). The analyzer, colorizer in
terms of VS, is transmitted for analysis a string of text and the analyzer state in
which it was at the end of analysis of the previous line. This means that the
corresponding analyzer must be constructed with the ability to save its state in any
time and to restore its work from any such state. This approach makes it possible to
carry out incremental analysis, which is very important for large source files
(approx more than 10000 lines). Then, when some lines are changed, it’s necessary
to analyze just the changed lines, but not a whole file.

The third peculiarity that must be considered to create effective full-text analyzers is
the need to take into account the state of source files. In terms of using program
project source files in the IDE, file could be in a one of two essential states:

e opened in editor;

e doesn’t opened in editor.

In the first case, it’s needed to accomplish full-text analysis of a source files, but in
the second one it’s possible to accomplish a simplified analysis to collect
information about just externally visible program elements. For example, it’s not
necessary to analyze whole body of procedure, because information, say, about its
local variables could be needed to user just in a moment of editing a procedure
body, which automatically transfers file with procedure to the sate “opened in
editor”, and consequently, the other analysis rules will be applied to it. Thus the
requirement to analyzer to operate in two modes, for convenience “full” and
“simplified” analysis, will significantly increase the analysis speed of programming
project source files.

13

1.S. Ratkevich. FRIS Language Service for Extended Fortran Support in Microsoft Visual Studio. Trudy ISP RAN /Proc.
ISP RAS, vol. 27, issue 3, 2015, pp. 9-28

3. General model of a language service

The author proposes the following general model for building any language
services, which is the result of summarizing author’s experience in developing FRIS

(Fig. 1).

IDE integration ‘ ' Analysis block

block

Recognized s s
Elements view 9 serialization /
elements NP
model block deserialization
block

storage block

Fig. 1. General language service model

As shown in Fig.1 any language service could be represented as 5 base blocks. The
arrows represent the data exchange between blocks.

The IDE integration block contains interfaces implementation, which are required
for interaction with IDE. It’s responsible for subscription of a language service on
the text editing editor events, and for corresponding responses, for example, for
syntax highlighting and information providing for work of IntelliSense features.

The analysis block is responsible for lexical, syntactic and semantic analysis. When
it receives events from the IDE integration block, it performs appropriate actions.
For example, in response to file open event or text changed event, it will provide the
information for syntax highlighting. It’s also responsible for providing source files
analysis depending on their states.

The recognized elements storage block is central data storage about all elements,
necessary for language service. In general case, it is kind of a symbol table. The
storage block could be filled from two sources: from analysis block, as a result of
analysis of a source files, and from serialization/deserialization block, in the case of
using model of Fortran API for any program libraries.

The elements serialization/deserialization block performs two functions. Firstly, it
allows saving the content of programming projects as XML files for description of
Fortran API and documentation comments. Secondary, it allows restoring the
content of programming projects from their XML models. This approach reflects
the dual nature of programming projects. Thus, for author of programming project,
for example, program library, it is accessible in source files and it is perceived as
“Internal”, but for a user of this library, it is perceived as “external”, and its source
files may be inaccessible to user.

The elements view model block is a link, a kind of adaptor for elements of storage
block to their representation needed by IDE integration block. Thus, recognized
elements may contain some information that is not necessary to IntelliSense
technology features, or on the contrary, does not contain some needed information.
The elements view model is playing this interconnection role. It contains data types
14

W.C. PatkeBuu. SI3bikoBoii cepBuc FRIS st pacmupennoit nogaepxku Fortran B Microsoft Visual Studio. Tpyast UCIT
PAH, tom 27, Boim. 3, 2015 1., ¢. 9-28

that are wrappers for elements of storage block, which fulfils requirements of the
IDE integration block. There is also implemented various functions of filtering and
selecting of different kinds necessary information. It could be said, that the storage
block is like a database, and the view model block is like a data selection
procedures.

3.1 IDE integration block

The IDE integration block connects a language service with a basic IDE
infrastructure. In the case of Visual Studio, the base language service must implement
the IVsLanguagelnfo [9] interface. This interface is responsible for providing
information about target language including its name, associated file extensions, and
component for a syntax highlighting (colorizer). Colorizer must to implement the
IVsColorizer [10] interface, which is responsible for providing character-by-character
information about colors of buffered program text representation in memory. In order
to provide the IntelliSense technology support it is needed to implement 5 additional
interfaces [11]: IVsCodeWindowManager, [VsMethodData, IVsCompletionSet,
IVsTextViewFilter and I0leCommandTarget.

To simplify for developers the task of creating new language services, and the other
tasks of Visual Studio extension, Microsoft created MPF (Managed Package
Framework) [12] library, which supplies a set of base classes that implements many
needed interfaces, and thus provides to developers the ability to implement only the
features that is needed to them. Let’s take a brief look at the key classes that are
necessary for the implementation of the language service and its various features.

The LanugageService abstract class provides basic implementation of a language
service. It contains a number of abstract methods responsible for different features of a
language service, such as syntax highlighting, and initialization of full-text source files
analysis in order to provide information for various IntelliSense features, and so on.
The Source class is a source file abstraction in terms of a language service. It is used
to store all information about edited file, as well as for interoperability with other
language service model classes, which require information about current source file.
In particular, it contains an instance of the Colorizer class, which is responsible for
syntax highlighting.

The Colorizer class implements IVsColorizer interface. This class is used by the core
editor of IDE for providing of syntax highlighting in current source file. For even
more flexibility and abstraction MPF Colorizer from concrete programming language,
the scanner abstraction is used.

The scanner must to implement IScanner interface. Each scanner is essentially a
specialized lexical analyzer, which must to be able to save its current state and to
restore its state for continuation of analysis as if it is doing a simple linear analysis of
character stream.

The AuthoringScope class contains all information about a source file which is the
result of parsing of this file. It is the central place for providing information for basic

15

1.S. Ratkevich. FRIS Language Service for Extended Fortran Support in Microsoft Visual Studio. Trudy ISP RAN /Proc.
ISP RAS, vol. 27, issue 3, 2015, pp. 9-28

IntelliSense technology features. In particular, method GetDataTipText — returns a
string that contains description of programming language element, under the mouse
cursor. It provides data for Quick Info IntelliSense feature. Method GetDeclarations —
returns a list of programming language element definitions. It provides data for List
Members and Complete Word IntelliSense features. Method GetMethods — returns a
list of method signatures with a given name, including their overloaded versions. It
provides data for Parameter Info IntelliSense feature.

In FRIS implementation is used modified version of MPF library, since a number of
methods needed by FRIS were inaccessible for overriding in Microsoft’s MPF classes.

3.2 Analysis block

The FRIS analysis block consists of two sub blocks: analysis for syntax highlighting
and full-text analysis (in “full” and “simplified” mode) for a collection of
information about elements in a source file.

The FRIS analyzers are built with the ability to support sublanguages. In this case,
the base language is Fortran, and sublanguages are any other languages, other than
Fortran, that are used in the program text, for example, the XML documentation
comments language and the OpenMP directives language.

Fig. 2 shows the general scheme of working of the analyzers stack, on the example
of analysis of a part of XML documentation comment. The base language analyzer
(Fortran) generates tokens, which are then passed through a tokens filter. If token
matches with one of registered sublanguages, the appropriate analyzer is called. The
output is a set of fully recognized tokens for all supported languages.

The peculiarity of work of a syntax highlighting analyzing block is that it is
essentially some kind of extended version of a lexical analyzer, since there are strict
requirements on the speed of operation of a syntax highlighting. Support for
arbitrary program library in FRIS is, in particular, in the ability of a visual
highlighting of their elements such as procedures, modules, data types, etc. Such
highlighting is performed in a syntax highlighting block based on the current
context. For any identifier under analysis the check depending on current scope is
performed, whether it belongs to arbitrary library, which elements necessary to
highlight. Then, if necessary, the identifier is highlighted with a defined earlier
color.

The peculiarity of full-text analysis is in the used analysis strategy. Since the
analysis is need to be performed in the real time, while the user modifies the text of
program, all analyzers must to work in the error suppression mode. It must be noted
that Fortran is very complicated language for analysis, because of its lexical and
syntactical peculiarities. The most striking examples are:

o the ability to use multiline tokens, for example, identifiers. Next is given
the sample of a multiline identifier “my_id”. The special attention must be
given the fact that in between a start and end lines of any multiline lexeme,
it is allowed to use comments and blank lines.

16

W.C. PatkeBuu. SI3bikoBoii cepBuc FRIS st pacmupennoit nogaepxku Fortran B Microsoft Visual Studio. Tpyast UCIT
PAH, tom 27, Boim. 3, 2015 1., ¢. 9-28

1 my &

2 lcomment

3

4 lanother comment after blank line
5 &id

o the absence of reserved keywords. The decision whether identifier is a
keyword depends on a context of its usage in a statement. Therefore, it is
not statements that are identified by keywords, as in languages with
reserved keywords, but the keywords are identified by statements. Taking
into account that analysis is performed in a real time, it is impossible to
determine the identity of incomplete statement. For example, it is unclear,
whether “if” is a keyword that belongs to conditional statement, or it is a
name of an array, in the following part of statement: “if(”.

Special Token XML DocStart

lll<summary> 1]
XML Tag
<summary>
S | Tokens Fil)
ecial Tokens Filter
Fortran Analyzer P o :">
(Base Language)

switch)

XML Documentation
Comments Analyzer
(Sublanguage)

OpenMP Analyzer
(Sublanguage)

Fig. 2. The general analyzers operation scheme

The emphasized peculiarities greatly complicate the development of analyzers for
Fortran. But all of them are taken into account in FRIS. In particular, the optimistic
parsing strategy is used. The parser processes a source file statement-by-statement.
For every statement the abstract syntax tree (AST) is built. If the statement could
not be matched, e.g. as a result of that the user just not has time to completely type
it; the special AST is generated for it, which includes all mismatched tokens.

In conjunction with a parser the full AST builder is operating (Fig.3). It builds the
full AST from the individual statement ASTs. It also stores the AST that is already
built. The builder task is to track operations of opening and closing of syntactical
contexts, in particular their optimistic completion.

For example, if now the operator “if(...)then” is analyzed, then according to
standard, it could be completed only by “endif” statement. However, the user could
not have enough time to fully type this statement, then the builder will interpret the
“end” statement as a completion of a “if(...)then” operator. Similarly to it, if in the
end of parsing of source file the stack of open contexts of the builder is not empty,

17

1.S. Ratkevich. FRIS Language Service for Extended Fortran Support in Microsoft Visual Studio. Trudy ISP RAN /Proc.
ISP RAS, vol. 27, issue 3, 2015, pp. 9-28

then they are completing in a special mode — completion by the end of the file. It is
also have ability of priority processing of high level element statements. For
example, if the subroutine element is processed now, and as a result of a parsing the
function element definition statement is discovered, then the current subroutine
element is being completed with a special flag, and the function element processing
is being started.

AST_ASSIGN AST_PROGRAM
= <virtual>
AST_ID AST_ID AST_ASSIGN
a b =

Fortran Parser Full AST builder
(Returns AST per (builds file AST from

statment) statement AST’s)

Fig.3. The FRIS parser operation scheme

Thus, the parser is always outputs the correct AST, which has no error nodes. This
allows simplifying the semantic analysis algorithm. The semantic analyzer walks
the AST and collects information about all needed Fortran elements, which then
stores in the recognized elements storage block.

3.3 The recognized elements storage block

The recognized elements storage block is a central storage for all known in the
current programming project elements (modules, data types, variables, etc.). It is
filled from two sources: as a result of a source files parsing, and as a result of
deserializing information about arbitrary libraries.

This block is essentially a kind of a symbol table. Its design must take into account
that information in it will be continuously updating as a result of the user editing of
source files.

Consider the proposed generic model of the storage block (Fig. 4).
It consists of following parts:
o the class for a symbol table description;
o the class for an interface description for a typical element of the
programming language;
o the class for an interface description for a typical scope of the programming
language;

o the classes describing specific elements of the programming language, that
implement interfaces of a typical element and of a typical scope, for
elements, which are scopes.

18

W.C. PatkeBuu. SI3bikoBoii cepBuc FRIS st pacmupennoit nogaepxku Fortran B Microsoft Visual Studio. Tpyast UCIT
PAH, tom 27, Boim. 3, 2015 1., ¢. 9-28

Symbol Table

General Element General Scope
Interface Interface

Specific element
descriptions

Fig. 4. The model of the recognized elements storage block

The class for a symbol table description must be built as indexed data storage, in
order to effectively processing operations of update and elements search. For
maximum flexibility it must store the references on the interface for a typical
element, instead of references to specific elements. The specific element could be
obtained from an abstract interface as a result of type casting. The following scheme
of a symbol table is proposed (Table 2).

Table 2. The model of a symbol table

1.S. Ratkevich. FRIS Language Service for Extended Fortran Support in Microsoft Visual Studio. Trudy ISP RAN /Proc.
ISP RAS, vol. 27, issue 3, 2015, pp. 9-28

Table 3. The model of interface for a typical element of a programming language

Field Data type Description
Name string Name of element
Scope Scope Outer scope of element
Description string Description of element. For instance from documentation
comments
Location Location Element location: definition location, declaration location.
Location consists of file name and region. Region consists
of 4 integer indexes: start line, start line character index, end
line, end line character index.

Field Data type Description
Names map<long, string> Map unique identifier to string
Elements map<long, object> Map element unique identifier to element
object
Projects map<string, Map program project name to map of
map<string, project file names to list of file elements
list<long>>> unique identifiers
ProjectDependencies map<string, Map program project to program projects
list<string>> it depends from

In this approach, firstly there is an access to all elements (Elements field). Secondly,
for any project there is a list of its dependencies from other projects, which allows
simplify a search procedure of needed elements, and to exclude from the search
result the elements that is not visible in target project. Thirdly, every project
contains a dictionary of its source files, and elements, which contained in every file
that allows to effectively performing the update operations. The update operation is
a result of a source file parsing operation, due to a text changes made by user. Thus,
since all elements that are connected with file is known, so their deletion from other
dictionaries and insertion a newly recognized elements, is a relatively simple task.
Next consider the proposed interface for a typical element of a programming
language (table 3).

Every element must have at least a name, a scope, where it’s defined, a description,
for example, that is obtained from documentation comments, and a location. An
element location consists from a declaration location and a definition location. Each
of which is in turn consists from a file name, and an element region in it.

Consider the proposed interface for a typical scope of the programming language
(table 4). The scope, in a general case, is a container of elements.

19

Table4. The model of a typical scope of the programming language

Field Data type Description
Scope Scope Outer scope of this scope
Elements list<Element> | List of elements of the scope

Every scope contains a reference to a parent scope and a list of elements that make
up this scope.

Every specific element of a programming language must be derived from an
interface for a typical element, and if it is a scope, from an interface of a typical
scope.

3.4 The elements serialization/deserialization block

The elements serialization/deserialization block is a key element for the
implementation of a mechanism to support arbitrary user libraries. The serialization
mechanism performs a saving of a given programming project in a form of two
special XML files: description of Fortran API and description of documentation
comments. The optional level of refinement could be additionally specified. In the
case, when the serialization is performed for creation a developer documentation of
a programming project, then all elements are saved, but in the case of creation a user
documentation or interface for a programming project as an external library, then
just externally visible elements are saved. It should be recalled that for each element
in the Fortran module, could be specified the access mode: public or private. The
public elements are externally accessible when the module is used, but the private
elements could be used just inside the module and inaccessible outside of it.

The deserialization mechanism operation is slightly different, because in
deserialization there is just one operation mode — reading all information describing
an arbitrary library. In this case, even if there will be provided XML files, that
contains full description of arbitrary library, only externally visible elements will be
read. This allows reducing the amount of memory needed to store a library
description, and also eliminates the need to store elements, which will not be
accessed to user under no circumstances, for example, private module elements, or
internal elements of procedures.

20

W.C. PatkeBuu. SI3bikoBoii cepBuc FRIS st pacmupennoit nogaepxku Fortran B Microsoft Visual Studio. Tpyast UCIT
PAH, tom 27, Boim. 3, 2015 1., ¢. 9-28

For serialization and deserialization are used the models for description of Fortran
API and XML documentation comments, that is developed by author and are
expressed in the form of appropriate XML Schema Definitions (XSD) [13], [14].
Let’s consider each of these models.

The model of Fortran API (Fig.5) allows describing external interfaces of any
library as a Fortran interfaces. The meaning and purpose some of the model

elements are given in table 5.

assembly

\/Global scope |

reflection

N\

" Module
moduledata

m J

Fig. 5. The part of Fortran API XSD

Table 5. The description of some elements of the Fortran API model

Element (tag) Description
reflection Root tag
assemblies Describes set of projects that API contained in this file
assembly Describes individual project
apis Root for all API description
api Element description
. Describes group and subgroup of element. I.e. for function: group —
apidata .
method, subgroup - function
moduledata Module description switch
referencedata Reference element switch
typedata Derived type description switch
variabledata Variable description switch
proceduredata Procedure description switch
interfacedata Interface description switch
methoddat. Method description switch
namelistdata Name list description switch
commonblockdata | Common block description switch
imports Module imports description
elements List of inner elements

As can be seen from the above figure, tag “apis” contains a description of all project
elements. The tag “api” is used for a direct element description. In order to uniquely

21

1.S. Ratkevich. FRIS Language Service for Extended Fortran Support in Microsoft Visual Studio. Trudy ISP RAN /Proc.
ISP RAS, vol. 27, issue 3, 2015, pp. 9-28

identify the type of element: a module, a function, a subroutine, a data type and so
on, the special switches, like a “moduledata” tag, are used.

One more remark should be made regarding the tag “elements”, which is used to
describe the internal elements of current element. It’s allowed to specify here
references — fully qualified element names, and their description place next in a
main “apis” tag, and also it’s allowed to provide the description of child elements
directly in this tag.

It should be noted that description of Fortran API may be used for a creation of
Fortran procedure interfaces for their calls from other programming languages, that
is solves the inverse problem.

Consider the model of documentation comments. It conceptually consists of two
interconnected parts: a description of documentation tags for documenting program
elements (Fig.6), and a description of documentation comments XML file format
(Fig. 7). The meaning and purpose of the model elements are given in table 6.

subroutine

derived type

any element

Lentry - function

Fig. 6. The usage of documentation tags for different Fortran elements

remarks
members e

derived type ‘
member Mgl typeparam }

" function |

Fig.7. The part of Fortran Documentation XSD

For description of any element may be used 4 tags, two of which are high-level:
“summary” and “remarks”, and other two are nested, it means that they could be
used just inside of other tags: “see” and “para”. In addition to them, for description
of:

e derived type parameters is used “typeparam” tag;
e arguments of subroutines, functions and entry points is used “param” tag;
o result of function is used “result” tag.

22

W.C. PatkeBuu. SI3bikoBoii cepBuc FRIS st pacmupennoit nogaepxku Fortran B Microsoft Visual Studio. Tpyast UCIT
PAH, tom 27, Boim. 3, 2015 1., ¢. 9-28

Table 6. The elements description of the Fortran documentation model

Element (tag) Description
doc Root element
members Container for all documentation elements
member Contains documentation for single element
summary Element summary
remarks Additional information for element
see Internal tag, makes reference to given element
para Internal tag, creates paragraph in parent tag
typeparam Describes derived type parameter
param Describes argument of subroutine or function
result Describes function result

Thus, files for description of the model of Fortran API and documentation
comments form the basis not only for work with arbitrary libraries in Fortran, but
also form the basis for the generation of the reference documentation, for example
with a Sandcastle tool. It should be noted that Fortran API model can be used for
solving the inverse problem — description of API for a Fortran procedures for their
using from other programming languages.

3.5 The elements view model block

The elements view model block is a link between the IDE integration block and the
data storage block. It performs two basic functions: converts a data from a storage
block to a form required by the IDE, and performs various search operations in a
storage block.

The convert operation of stored data to the form required by the IDE produces
elements that are complemented by the properties of visual representation. For
example, such properties as text color and element icon, which used in various
completion lists, are set. In other words, the elements view model block contains
various aspects of data presentation to user. Thus the structure of the view model
block is analogue to the structure of the storage block. It also defines interfaces for
typical presentation elements and scopes, and a set of their specific implementations
for each element of the storage block.

The second function of this block is the search function. Here are performed various
operations of elements resolution in a scope, a search for elements with the
specified name and type, etc. That is, it performs the selection of needed elements
from the storage block that taking into account a different aspects of a programming
language. Then, selected data converted to the form required for user representation.

4. Proof of concept

The FRIS language service is built on the basis of the general model of a language
service, and implements all described blocks. Figures 8-13 are examples of work of
its various functions, proving the presented conception of a generalized language
service model, including providing extended support for user libraries.

23

1.S. Ratkevich. FRIS Language Service for Extended Fortran Support in Microsoft Visual Studio. Trudy ISP RAN /Proc.
ISP RAS, vol. 27, issue 3, 2015, pp. 9-28

type(Urs0fhata) ofdata
call ReleaseUrsOf{ocfdata,ko,kan)

type(Urs0fData) ofdata
call ReleaselUrsOof{ofdata,ke,kan)

Fig. 8. The extended support of user libraries (before and after)

class (extendedtype) @ ex
call exy
Mpoueaypa mysubz(a,b)
rmywsub2 EULE 0AHA CEASAHHAA © THNOM AaHHER NPOUEAYDa
@ name integer(kind =431 a
@ NEpELIM NapaMeTn
’ r integer(kind =43 . b
¥ 1z ETOPOA NapaMeTp

al® secondtype

Fig. 9. List Members

call

subifa, b)

Moanporparta No4nporpata BENOIHAST ASHCTEMA HIL AEYMA NEpEMEHHEIMA
MpwMED CO3AHMA A0330UA B KOMMEHT DMK,

a: fategarfing = 4) . a

FISEELET FEaMETE
¥ ex ~
@ funl OyHKkLAA funliargl) result(res)
=F green MAMMED OMACaHKA O0WER WHDOPMAaLA O diyHKLAA,
Py ITOT TEKET By 4T BLIESLEH C HOBOH CTROMA

~ integer(kind = 4) :: argl
= Orange | exoaHoi NapameTp
integer(kind = 2) 11 res
HOHEEDTMDOBAHHOE 3HAYEHME

Fig. 10. Parameter Info and Complete Word

call glohalsub(

A 10of 2 v globalsubia, b,)
Moanporparama FMHTepderc Ana rnoGansHoM NoANporparses
& redifting = 4} 0 3
OFRACAHIAS PEPFOrD RBaMeETsa

Fig. 11. Parameter Info for overloaded subroutine

type(
‘g FirstType
‘4 SecondType
‘g ThirdType

“t4 ExtendedType PacwipeHHbIil NponsEoaHeil Tin Extended Type
Easoesiid TMN: SecondType
PaCcWipeHHEIR THN J3HHLX, COZAHHBIA C MCTIONEZ0BAHMEN MEXAHHEMA
HACNBADBAHNA

Fig. 12. Complete word for a derived type name

24

W.C. PatkeBuu. SI3bikoBoii cepBuc FRIS st pacmupennoit nogaepxku Fortran B Microsoft Visual Studio. Tpyast UCIT
PAH, tom 27, Boim. 3, 2015 1., ¢. 9-28

1.S. Ratkevich. FRIS Language Service for Extended Fortran Support in Microsoft Visual Studio. Trudy ISP RAN /Proc.
ISP RAS, vol. 27, issue 3, 2015, pp. 9-28

2 function
2 module ol
=] subroutine CHWAN2T ANA onpegeneHiia Fartran moayna

=V N sumnar v
I
Vg summar v
“lmodule Modulel
T MMOOpTHPOB&HHE IPYVDHY MOIV ISR
implicit none
'OOMCAaHHA NepPeMeHHHXY M THIIOE OSHEHEX

contains
1OOMCcaHEMa BHYTPEHHMX GyHEIMHE M OOIIPODDEn

end module

Fig. 13. Code Snippet Sample
Consider the pivot table of the language services from Intel, PGI and FRIS (table 7).

Table 7. The Intel, PGI and FRIS language services comparison

Function Intel PGI FRIS
List Members No No Yes
Yes, excluding
overloaded Yes, only for
Parameter Info procedures and | intrinsic Yes
type bound | procedures
procedures
f\‘{els, excluding Yes, only for
Quick Info ields and intrinsic Yes
procedures of d
derived types procedures
Yes, only for
modules names, | Yes, only for
Complete Word functions names | keywords Yes
and subroutines | statements
names
Code Snippet [15] Yes, but only as Yes. Snippets included
Support menu command or | No in Completion Lists
shortcut
Documentation No No Yes. Documentation
comments support included in all tooltips
SupPort qf user No No Yes
libraries

Thus, due to use of the developed general language service model, FRIS provides
extended support of a Fortran in Microsoft Visual Studio.

25

5. Conclusion

The report presents the general model of a language service for extended support of
a Fortran programming language developed by author. This model can be easily
applied not only to create new language services for other languages, but also to
create a language services in other IDEs.

All aspects that must be taken into account in development of a language service are
given in details, including the analysis of user requirements, the analysis of a data
sources for a language service, and the analysis of operation peculiarities of a
language service in a specific IDE.

As a result of executing described analysis kinds, in every particular case, the plan
of a language service development must be created. For a language service
development simplification, the general model of a language service is given and
each its block is described in details on example of its implementation in FRIS.

At last, the proof of proposed concept of constructing language services is given, on
example of comparison FRIS with existing language services from Intel and PGI.
The model that is used in FRIS provides its significant advantage over other
language services.

It especially should be noted that FRIS implements a model for supporting user
libraries. It includes a model of Fortran API and a model of documentation
comments, developed by author. The Fortran API model allows not only to describe
the interfaces of any library in terms of Fortran, but also allows solving the inverse
problem, by known Fortran interfaces obtain API for target language. The
documentation comments model allows user to document different Fortran elements
straight in the program text, and then obtain documentation in various types of
context help. The model of Fortran API in conjunction with the model of
documentation comments can be used to create a developer and/or user
documentation, for example with a Sandcastle tool.

References

[1]. The Fortran automatic coding system for the IBM 704 EDPM. Programmers reference
manual. IBM, 1956

[2]. ISO. ISO/IEC 1539-1:2004 Information technology - Programming languages - Fortran -
Part 1: Base Language, pp. 569

[3]. Intel Fortran Composer (Visual Fortran) URL: http://software.intel.com/en-
us/articles/intel-fortran-composer-xe-2013-sp1-release-notes

[4]. PGI Visual Fortran URL: https://www.pgroup.com/products/pvf.htm

[5]. Using IntelliSense URL: http://msdn.microsoft.com/en-
us/library/hcw1s69b(v=vs.80).aspx

[6]. Language Services URL: http://msdn.microsoft.com/en-us/library/bb165099.aspx

[7]. Model of a Language Service URL: http://msdn.microsoft.com/en-
us/library/bb166518(v=vs.100).aspx

[8]. Eric Woodruff’s Sandcastle Help File Builder Documentation URL:
http://ewsoftware.github.io/SHFB/html/bd1ddb51-1c4f-434f-bbla-ce2135d3a909.htm

[9]. IVsLanguagelnfo Interface URL: https://msdn.microsoft.com/en-
us/library/microsoft.visualstudio.textmanager.interop.ivslanguageinfo(v=vs.80).aspx

W.C. PatkeBuu. SI3bikoBoii cepBuc FRIS st pacmupennoit nogaepxku Fortran B Microsoft Visual Studio. Tpyast UCIT
PAH, tom 27, Boim. 3, 2015 1., ¢. 9-28

[10]. TVsColorizer Interface URL: https://msdn.microsoft.com/en-
us/library/microsoft.visualstudio.textmanager.interop.ivscolorizer(v=vs.80).aspx

[11]. Language Service Interfaces URL: http://msdn.microsoft.com/en-
us/library/bb164598(v=vs.80).aspx

[12]. Managed Package Framework Classes URL: http://msdn.microsoft.com/en-
us/library/bb164709(v=vs.80).aspx

[13]. W3C XML Schema Definition Language (XSD) 1.1 Part 1: Structures URL:
http://www.w3.org/TR/xmlschemal1-1/

[14]. W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes URL:
http://www.w3.org/TR/xmlschemal1-2/

[15]. Creating and Using IntelliSense Code Snippets URL: https://msdn.microsoft.com/en-
us/library/ms165392(v=vs.80).aspx

A3bikoBou cepBuc FRIS ansa pacwumpeHHon
nopaepxku Fortran B Microsoft Visual Studio

U.C. Pamkesuu <ratkevichis@gmail.com>,
Poccuiickuit @edepanvuviii Aoepuwviii Llenmp — Beepoccutickuti Hayuno
Hccnedosamenvckuii Unemumym Oxcnepumenmanvhoi Qusuxu,
607190, Poccus, Huxcecopoockas obn., 2. Capos, np-m Mupa, 37

AHHoTanms. B naHHO# cTaThe paccMaTpHUBAIOTCS BOMPOCHI TOCTPOEHHUS S3BIKOBOTO CEPBHCA
JUIL PacIIMPEHHOM IOINEpKKH s3bIKa INporpamMMupoBaHust Fortran B HHTErpHpOBaHHOI
cpene paspabotku Microsoft Visual Studio. Ipemnmaraercst monmens u oOmMMH TMOAXOA K
TIOCTPOCHUIO S3BIKOBBIX CEPBHCOB.

Ipennaraemass oOmas MopeNb S3BIKOBOTO CEPBHCAa COCTOMT M3 IISITH OJIOKOB: OJIOKa
UHTETpallud Cco cpenoil paspaborky; Onoka aHanu3a; OJ0Ka XpaHEHHS PACIO3HAHHBIX
3JIEMEHTOB; 0JIOKa CepHalIM3alUy/AeCepUaI3aLuK HIIEMEHTOB; 0J0Ka MOJENH IIPeCTaBICHHUS
3JIEMEHTOB.

brnok unrerpauuu ¢ IDE coenunser s3p1k0BoM cepBuc ¢ 06a30B0it nnppactpykrypoit IDE. On
OTBEUaeT 3a IIOJIHCKY SI3BIKOBOTO CEpBHCA Ha COOBITHS pPENAKTHPOBAHHS TEKCTa
MI0JIb30BATEIIEM B PENAKTOPE U 32 COOTBETCTBYIOIINE OTKIIUKH.

Brnok ananm3a oTBewaer 3a MpoBeJeHHEe JEKCHIECKOT0, CHHTAaKCHIECKOTO M CEMAaHTHIECKOTO
aHamm3a. OH cobupaer BcIO HEOOXOAMMYIO HHGpOpPMamuio o0 DJJIEMEHTax S3bIKa
MpOrpaMMHPOBAHHS U MOMEINAET UX B OJOK XpaHEHHs PAclO3HaHHBIX 3JEeMEHTOB. BTopoii
3aj1aueil JaHHOTO OJI0Ka SABIIAETCS MPEAOCTaBICHHE HH(POPMAIIMHN I MOACBETKH CHHTAKCHCA
PENAKTHPYEMOTO TEKCTa IPOTrPaMMBI.

brox xpaHeHHMs pacHO3HAHHBIX 3JEMEHTOB SBISETCS CBOEOOpa3sHOil 0a30i JaHHBIX BCEX
9JIEMEHTOB, HEOOXOIUMBIX JUIsi pabOTHI SI3BIKOBOTO cepBHca. B o0mieM ciaydae oH sBIseTCS
Pa3HOBUAHOCTEIO TaOIUIEI CHMBOJIOB. HamonrHeHne 6i10ka XpaHEHHsT MOXKET BECTHCH U3 JIBYX
HCTOYHHKOB: U3 OJIOKa aHanM3a, Kak pe3yibTaT pazbopa (aiyioB ¢ TEKCTaMU IPOTpaMM, U U3
0JI0Ka cepHaIH3alii/ IecepruaIn3auy 3JIEMEHTOB, KaK pe3yJbTaT JecepHaln3aliul U3 paHee
CYILECTBYIOIETO CIENHATH3UPOBAHHOTO ONMUCAHMS MPOTPaMMBbl, B CIIy4yae HCHOJIb30BaHUSA
mozenu API (Application Programming Interface) mist mpou3BosbHbIX OHOTHOTEK.

brok cepuanuzanny/aecepuanu3aliy 3JIEMEHTOB BBIIOJIHACT IBe GyHKUMH. Bo-nepBbix, oH
MO3BOJISIET COXPAHSATH COEPIKUMOE MIPOrPaMMHBIX ITPOEKTOB B Buae XML ¢aiinos onucanus
APl u KoMMeHTapueB JOKYMCHTUPOBAHUS K HHUM. BO-BTOpBIX, OH MO3BOJIAET
BOCCTaHABJIMBATh COJECPIKUMOE IIPOTPaMMHBIX NPOoekToB U3 nx XML moneneit.

27

1.S. Ratkevich. FRIS Language Service for Extended Fortran Support in Microsoft Visual Studio. Trudy ISP RAN /Proc.
ISP RAS, vol. 27, issue 3, 2015, pp. 9-28

Brox Monenu mpencTaBICHHS SIEMEHTOB SIBIISICTCS CBSA3YIOIIMM 3BEHOM, CBOEOOpPA3HBIM
ajanTepoM, O3JIEMEHTOB OJIOKa XpaHeHWs, K TOMY BHAY, KOTOPHIH HEOOXOIUM JUIst
Hcronb3oBanys B O10ke uaTerpanuu ¢ IDE. Tak pacmo3HaHHBIE 371€MEHTHI MOTYT COZlEpKaTh
HEKoTOpyI0 MH(popMaimio, kKotopas He Tpedyercs ¢yHkuusaM texHonoruu IntelliSense, mim
Hao0OpOT, HE colepxkaTh HyKHOW HHpopMaummu. B Mozmenu npencTaBlieHHs >IEMEHTOB
OPraHu3yIOTCS TUIIBI JAHHBIX — OOEPTKHU IS SJIEMEHTOB OJI0KA XpaHEHHs, COOTBETCTBYIOIIHE
TpeboBanusaM Onoka wuHTerpauun ¢ IDE. Taxxke 3mech peanu3yroTcs BCEBO3MOKHBIE
(GyHKIMY BEIOOPKH U oncKa HeoOXoquMoi nHdopmanmu.

JlokazarenscTBO pabOTOCIIOCOOHOCTH IPEUIOKEHHOH 0000IEHHON MOJIeH IPUBOJUTCS Ha
npuMepe pa3pabOTaHHOTO aBTOPOM s3bIKoBoro cepuca FRIS. Mznoxennsiii marepuan
MOXeT OBITh B paBHOH Mepe HCIOJIB30BaH Ul ITOCTPOCHHUS SI3BIKOBBIX CEPBUCOB, KaK IS
JPYTHX SI3BIKOB IIPOrPaMMUPOBAHMS, TaK U JUIS IPYTHX CPEICTB pa3pabOTKIL.

Kuarwuessie ciaoBa: FRIS; Fortran Intelligent Solutions; Fortran; Visual Studio Extensibility;
Language Service; Visual Studio

DOI: 10.15514/ISPRAS-2015-27(3)-1

Jas nuruposanusi: Patkesuu U.C. SI3pikoBoii cepsuc FRIS amnst pacmmpennoi nonaepxku
Fortran B Microsoft Visual Studio. Tpyast UCIT PAH, Tom 27, Boim. 3, 2015 ., ctp. 9-28 (na
aHrmiickoM s3bike). DOI: 10.15514/ISPRAS-2015-27(3)-1.

Cnucok nutepatypbl
[1]. The Fortran automatic coding system for the IBM 704 EDPM. Programmers reference
manual. IBM, 1956
[2]. ISO. ISO/IEC 1539-1:2004 Information technology - Programming languages - Fortran -
Part 1: Base Language, pp. 569
[3]. Intel Fortran Composer (Visual Fortran) URL: http://software.intel.com/en-
us/articles/intel-fortran-composer-xe-2013-sp1-release-notes
[4]. PGI Visual Fortran URL: https://www.pgroup.com/products/pvf.htm
[5]. Using IntelliSense URL: http://msdn.microsoft.com/en-us/library/hcw1s69b(v=vs.80).aspx
[6]. Language Services URL: http://msdn.microsoft.com/en-us/library/bb165099.aspx
[7]. Model of a Language Service URL: http://msdn.microsoft.com/en-
us/library/bb166518(v=vs.100).aspx
[8]. Eric Woodruff’s Sandcastle Help File Builder Documentation URL:
http://ewsoftware.github.io/SHFB/html/bd1ddb51-1c4f-434f-bbla-ce2135d3a909.htm
[9]. IVsLanguagelnfo Interface URL: https://msdn.microsoft.com/en-
us/library/microsoft.visualstudio.textmanager.interop.ivslanguageinfo(v=vs.80).aspx
[10]. IVsColorizer Interface URL: https://msdn.microsoft.com/en-
us/library/microsoft.visualstudio.textmanager.interop.ivscolorizer(v=vs.80).aspx
[11]. Language Service Interfaces URL: http://msdn.microsoft.com/en-
us/library/bb164598(v=vs.80).aspx
[12]. Managed Package Framework Classes URL: http://msdn.microsoft.com/en-
us/library/bb164709(v=vs.80).aspx
[13]. W3C XML Schema Definition Language (XSD) 1.1 Part 1: Structures URL:
http://www.w3.org/TR/xmlschemall-1/
[14]. W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes URL:
http://www.w3.org/TR/xmlschemal 1-2/
[15]. Creating and Using IntelliSense Code Snippets URL: https://msdn.microsoft.com/en-
us/library/ms165392(v=vs.80).aspx

28

