
И.С. Раткевич. Языковой сервис FRIS для расширенной поддержки Fortran в Microsoft Visual Studio. Труды ИСП

РАН, том 27, вып. 3, 2015 г., с. 9-28

9

FRIS Language Service for Extended
Fortran Support in Microsoft Visual Studio

I.S. Ratkevich <ratkevichis@gmail.com>,

Russian Federal Nuclear Center – All-Russian Scientific Research Institute of

Experimental Physics (RFNC – VNIIEF),

607190, Mira, 37, Sarov, Nizhny Novgorod Region, Russian Federation

Abstract. This report deals with the construction of the language service for extended support

of the Fortran programming language in the integrated development environment (IDE)

Microsoft Visual Studio. The model and general approach for language service construction is

offered.

The proposed general model of a language service consists of five key blocks: the IDE

integration block; the analysis block; the recognized elements storage block; the elements

serialization/deserialization block; the elements view model block.

The IDE integration block connects a language service with a basic IDE infrastructure. It’s

responsible for subscription of Language Service for text editing events and for providing

corresponding responses.

The Analysis block is responsible for accomplishing lexical, syntactic and semantic analysis. It

gathers all needed information about the elements of a programming language and puts it into

the recognized elements storage block. The second task of this block is to provide information

for syntax highlighting of edited text.

The Recognized elements storage block is like a database of all elements needed for the

Language Service operation. In general case, it is kind of a symbol table. The storage block

could be filled from two sources: from analysis block, as a result of analysis of a source files,

and from elements serialization/deserialization block, as a result of deserialization from a

previously existing specialized program description in the case of using model of API

(Application Programming Interface) for arbitrary programming libraries.

The elements serialization/deserialization block performs two functions. Firstly, it allows saving

the content of programming projects as XML files for description of API and documentation

comments. Secondary, it allows restoring the content of programming projects from their XML

models.

The Elements view model block is a link, a kind of adaptor for elements of storage block to their

representation needed by IDE integration block. Thus, recognized elements may contain some

information that is not necessary to IntelliSense technology features, or on the contrary, does not

contain some needed information. The elements view model is playing this interconnection role.

It contains data types that are wrappers for elements of storage block, which fulfils requirements

of the IDE integration block. There is also implemented various functions of filtering and

selecting of different kinds necessary information.

I.S. Ratkevich. FRIS Language Service for Extended Fortran Support in Microsoft Visual Studio. Trudy ISP RAN /Proc.

ISP RAS, vol. 27, issue 3, 2015, pp. 9-28

10

The proof of operability of proposed general model of a language service is given on the

example of the FRIS language service developed by author. The material could be equally

applied for construction language services both for other programming languages and for other

development environments.

Keywords: FRIS; Fortran Intelligent Solutions; Fortran; Visual Studio Extensibility;

Language Service; Visual Studio

DOI: 10.15514/ISPRAS-2015-27(3)-1

For citation: Ratkevich I.S. FRIS Language Service for Extended Fortran Support in

Microsoft Visual Studio. Trudy ISP RAN/Proc. ISP RAS, 2015, vol. 27, issue 3, pp. 9-28.

DOI: 10.15514/ISPRAS-2015-27(3)-1.

1. Introduction

Fortran [1], [2] is one of the first high-level programming languages. It was created

in the 50s of XX century and it was intended for development of programs for

scientific calculations. Fortran is still used by its intended purpose in the

development of simulation programs. Nowadays the most widespread Fortran

standard is Fortran 2003 [2] (however there is the Fortran 2008 standard, and the

Fortran 2015 standard is in development stage). It cardinally differs from previous

standards because it introduces the support of object-oriented programming in a

Fortran language. This feature changes the language syntax, where many new

statements are added in conjunction with new conceptions. Definitely, such

modernizations are necessary, but at the same time they are objectively making the

language more complicated.

However these difficulties may be hidden or even eliminated, if the Fortran-

programmer will have appropriate assistance from the IDE in which he writes his

programs code. The most widely used IDE on Windows is Microsoft Visual Studio.

It is extensible and allows adding practically any feature into it. As an example,

Visual Studio may be extended to support various programming languages.

The most widely used Visual Studio integrations of the Fortran language are being

developed in Intel [3] and PGI [4] in conjunction with corresponding compilers.

However the supported features of those integrations significantly inferior to

integrations developed by Microsoft, e.g. for C# programming language.

Primarily it applies to the support of InlelliSense [5] technology, which consists

of the following features: List Members, Parameter Info, Quick Info и

Complete Word (table 1).

It must be noted that in all implemented IntelliSense features, excluding those

for intrinsic procedures, there is essentially absent any description of the

elements except for their definitions.

This great difference between Fortran support and support for languages, developed

by Microsoft, became a key factor for author in the decision to implement the FRIS

(Fortran Intelligent Solutions) language service, that is intended to cover this gap

and implement all IntelliSense features to support Fortran-programmer in effective

development of programs.

И.С. Раткевич. Языковой сервис FRIS для расширенной поддержки Fortran в Microsoft Visual Studio. Труды ИСП

РАН, том 27, вып. 3, 2015 г., с. 9-28

11

Table 1. The IntelliSense technology features implementation in Intel and PGI

Function Intel PGI

List

Members
No No

Parameter

Info

Yes, excluding overloaded procedures

and type bound procedures

Yes, only for intrinsic

procedures

Quick Info
Yes, excluding fields and procedures of

derived types

Yes, only for intrinsic

procedures

Complete

Word

Yes, only for modules names, functions

names and subroutines names

Yes, only for keywords

statements

2. Making model of a language service

Language service [6] is responsible for providing language-specific support for editing

source code in the Visual Studio IDE, or, generally speaking, in any IDE. Basic

language service must by definition [7] to provide a program syntax highlighting, all

other features, including the IntelliSense support, are extra (or extended) features. The

main question that must be answered at first when starting a new language service

development is what features are needed for a programmer. After that, those features

must be ranked by priority (or by usability).

Next, it is needed to identify the sources of data that must be used in the

implementation of the language service. The main data source for any language

service, no doubt, is source files containing programs text on a target language, but in

some cases additional data sources may be needed.

The next stage is to estimate implementation complexity of needed functions. This

estimation may include as the IDE restrictions to different components of a language

service, and the analysis complexity of the target programming language itself.

After this the aggregate language service model is constructed, that reflects its major

structural elements and interconnections between them. This report contains

generalized and optimal, in author's opinion, language service model, which provides

extended support for a target programming language.

When the aggregate language service model is constructed, each of its structural

elements is detailed according to specific requirements to implementation of different

features, and also depending on the restrictions of the target programming language.

Next in the report each of aforementioned steps in making language service will be

examined in details, on example of the Fortran programming language, but the given

material, without loss of generality, could be applied to any other programming

language.

2.1 Analysis of requirements and the necessary features

The first thing, that definitely wants to see any programmer is a program syntax

highlighting, for keywords, data type names, string literals, comments and so on. At

the same time, it’s important to provide the ability to configure such highlighting,

I.S. Ratkevich. FRIS Language Service for Extended Fortran Support in Microsoft Visual Studio. Trudy ISP RAN /Proc.

ISP RAS, vol. 27, issue 3, 2015, pp. 9-28

12

for example, for significant to user procedure names and data type names of

program libraries, say, OpenMP, MPI, and others. Such syntax highlighting helps to

focus attention on the most important details.

The second thing, that is important to a programmer, is the amount of provided context

help, that at least must consist of the definition for a programming language element

with which programmer works or wants to work (in the case of word completion lists).

But in most cases the element definition is not enough to understand, how exactly the

element must be used, as an example, a procedure that has more than a dozen

parameters, some of which may be optional. In this case it’s necessary to accompany the

element definition with some meaningful description. When the data that must be

provided to user, and, respectively, that must be collected and stored, are identified, the

sources, from which this could be obtained, must be analyzed.

2.2 Analysis of data sources

The most obvious way to get the definitions of programming language elements is

the analysis of program source files. The form of such definitions is fixed in the

programming language standard, e.g. in the Fortran standard. The meaningful

description of the elements may be obtained, if to complement the program text

with comments in a special form – documentation comments. The XML

documentation comments are the standard for Visual Studio. So, the program text

contains two languages: the base language – Fortran, and the embedded language –

documentation comments language.

It should be noted, that Fortran has a distinctive feature in using of the programming

libraries. There are three ways to connect the programming library to the main

Fortran project:

• with source code files, that contains the library API, including procedure

definitions, data types definitions and so on;

• with compiled binary files of Fortran modules, that have a closed format,

which understandable just by compiler. Those files also contains the library

API definitions;

• without any descriptions of library API. In such case the compiler will

deduce the outer interfaces for used procedures, and will try to resolve

external references by their names.

In the first case, it is possible to analyze source file that contains the library API and

get all necessary information from it, but in the other two cases, it’s impossible to

do so, and it's necessary to provide other mechanisms to get such information.

As a basis for implementation of this task, was taken the idea that is used in the

program for automatic documentation generation for so called managed applications

– Sandcastle [8]. It uses two files for generation of program documentation: one

with the API description, and the other with the documentation for the API.

Fortran isn’t managed language, so it’s impossible to use the standard Sandcastle

API format for description of its elements. Therefore the model for description

И.С. Раткевич. Языковой сервис FRIS для расширенной поддержки Fortran в Microsoft Visual Studio. Труды ИСП

РАН, том 27, вып. 3, 2015 г., с. 9-28

13

Fortran API was developed in FRIS for this purpose. It is the XML file in the

special format, which contains a description of main Fortran elements. FRIS can

save (serialization) the structure of elements, which is obtained from the analysis of

program texts, into XML format and restore (deserialization) Fortran elements from

their XML representation.

The XML model for Fortran documentation comments is also developed, including

the features for its serialization and deserialization. This will allow to develop a

special Sandcastle plug-in, and to use files of Fortran API and documentation

comments description to automatically generate a developer or/and user help files.

2.3 Analysis of main operating characteristics of a language
service

When developing a language service it’s necessary to take into account that analysis

of program texts will operate in a real time. This means that in most cases the text

under analysis will be in the lexical, syntactic or semantic incorrect state, in terms of

programming language specification. This peculiarity must be considered in the

construction of corresponding analyzers.

The second peculiarity is in the fact that the analysis for a syntax highlighting is

carried out in Visual Studio line-by-line (one line a time). The analyzer, colorizer in

terms of VS, is transmitted for analysis a string of text and the analyzer state in

which it was at the end of analysis of the previous line. This means that the

corresponding analyzer must be constructed with the ability to save its state in any

time and to restore its work from any such state. This approach makes it possible to

carry out incremental analysis, which is very important for large source files

(approx more than 10000 lines). Then, when some lines are changed, it’s necessary

to analyze just the changed lines, but not a whole file.

The third peculiarity that must be considered to create effective full-text analyzers is

the need to take into account the state of source files. In terms of using program

project source files in the IDE, file could be in a one of two essential states:

• opened in editor;

• doesn’t opened in editor.

In the first case, it’s needed to accomplish full-text analysis of a source files, but in

the second one it’s possible to accomplish a simplified analysis to collect

information about just externally visible program elements. For example, it’s not

necessary to analyze whole body of procedure, because information, say, about its

local variables could be needed to user just in a moment of editing a procedure

body, which automatically transfers file with procedure to the sate “opened in

editor”, and consequently, the other analysis rules will be applied to it. Thus the

requirement to analyzer to operate in two modes, for convenience “full” and

“simplified” analysis, will significantly increase the analysis speed of programming

project source files.

I.S. Ratkevich. FRIS Language Service for Extended Fortran Support in Microsoft Visual Studio. Trudy ISP RAN /Proc.

ISP RAS, vol. 27, issue 3, 2015, pp. 9-28

14

3. General model of a language service

The author proposes the following general model for building any language

services, which is the result of summarizing author’s experience in developing FRIS

(Fig. 1).

Fig. 1. General language service model

As shown in Fig.1 any language service could be represented as 5 base blocks. The

arrows represent the data exchange between blocks.

The IDE integration block contains interfaces implementation, which are required

for interaction with IDE. It’s responsible for subscription of a language service on

the text editing editor events, and for corresponding responses, for example, for

syntax highlighting and information providing for work of IntelliSense features.

The analysis block is responsible for lexical, syntactic and semantic analysis. When

it receives events from the IDE integration block, it performs appropriate actions.

For example, in response to file open event or text changed event, it will provide the

information for syntax highlighting. It’s also responsible for providing source files

analysis depending on their states.

The recognized elements storage block is central data storage about all elements,

necessary for language service. In general case, it is kind of a symbol table. The

storage block could be filled from two sources: from analysis block, as a result of

analysis of a source files, and from serialization/deserialization block, in the case of

using model of Fortran API for any program libraries.

The elements serialization/deserialization block performs two functions. Firstly, it

allows saving the content of programming projects as XML files for description of

Fortran API and documentation comments. Secondary, it allows restoring the

content of programming projects from their XML models. This approach reflects

the dual nature of programming projects. Thus, for author of programming project,

for example, program library, it is accessible in source files and it is perceived as

“internal”, but for a user of this library, it is perceived as “external”, and its source

files may be inaccessible to user.

The elements view model block is a link, a kind of adaptor for elements of storage

block to their representation needed by IDE integration block. Thus, recognized

elements may contain some information that is not necessary to IntelliSense

technology features, or on the contrary, does not contain some needed information.

The elements view model is playing this interconnection role. It contains data types

И.С. Раткевич. Языковой сервис FRIS для расширенной поддержки Fortran в Microsoft Visual Studio. Труды ИСП

РАН, том 27, вып. 3, 2015 г., с. 9-28

15

that are wrappers for elements of storage block, which fulfils requirements of the

IDE integration block. There is also implemented various functions of filtering and

selecting of different kinds necessary information. It could be said, that the storage

block is like a database, and the view model block is like a data selection

procedures.

3.1 IDE integration block

The IDE integration block connects a language service with a basic IDE

infrastructure. In the case of Visual Studio, the base language service must implement

the IVsLanguageInfo [9] interface. This interface is responsible for providing

information about target language including its name, associated file extensions, and

component for a syntax highlighting (colorizer). Colorizer must to implement the

IVsColorizer [10] interface, which is responsible for providing character-by-character

information about colors of buffered program text representation in memory. In order

to provide the IntelliSense technology support it is needed to implement 5 additional

interfaces [11]: IVsCodeWindowManager, IVsMethodData, IVsCompletionSet,

IVsTextViewFilter and IOleCommandTarget.

To simplify for developers the task of creating new language services, and the other

tasks of Visual Studio extension, Microsoft created MPF (Managed Package

Framework) [12] library, which supplies a set of base classes that implements many

needed interfaces, and thus provides to developers the ability to implement only the

features that is needed to them. Let’s take a brief look at the key classes that are

necessary for the implementation of the language service and its various features.

The LanugageService abstract class provides basic implementation of a language

service. It contains a number of abstract methods responsible for different features of a

language service, such as syntax highlighting, and initialization of full-text source files

analysis in order to provide information for various IntelliSense features, and so on.

The Source class is a source file abstraction in terms of a language service. It is used

to store all information about edited file, as well as for interoperability with other

language service model classes, which require information about current source file.

In particular, it contains an instance of the Colorizer class, which is responsible for

syntax highlighting.

The Colorizer class implements IVsColorizer interface. This class is used by the core

editor of IDE for providing of syntax highlighting in current source file. For even

more flexibility and abstraction MPF Colorizer from concrete programming language,

the scanner abstraction is used.

The scanner must to implement IScanner interface. Each scanner is essentially a

specialized lexical analyzer, which must to be able to save its current state and to

restore its state for continuation of analysis as if it is doing a simple linear analysis of

character stream.

The AuthoringScope class contains all information about a source file which is the

result of parsing of this file. It is the central place for providing information for basic

I.S. Ratkevich. FRIS Language Service for Extended Fortran Support in Microsoft Visual Studio. Trudy ISP RAN /Proc.

ISP RAS, vol. 27, issue 3, 2015, pp. 9-28

16

IntelliSense technology features. In particular, method GetDataTipText – returns a

string that contains description of programming language element, under the mouse

cursor. It provides data for Quick Info IntelliSense feature. Method GetDeclarations –

returns a list of programming language element definitions. It provides data for List

Members and Complete Word IntelliSense features. Method GetMethods – returns a

list of method signatures with a given name, including their overloaded versions. It

provides data for Parameter Info IntelliSense feature.

In FRIS implementation is used modified version of MPF library, since a number of

methods needed by FRIS were inaccessible for overriding in Microsoft’s MPF classes.

3.2 Analysis block

The FRIS analysis block consists of two sub blocks: analysis for syntax highlighting

and full-text analysis (in “full” and “simplified” mode) for a collection of

information about elements in a source file.

The FRIS analyzers are built with the ability to support sublanguages. In this case,

the base language is Fortran, and sublanguages are any other languages, other than

Fortran, that are used in the program text, for example, the XML documentation

comments language and the OpenMP directives language.

Fig. 2 shows the general scheme of working of the analyzers stack, on the example

of analysis of a part of XML documentation comment. The base language analyzer

(Fortran) generates tokens, which are then passed through a tokens filter. If token

matches with one of registered sublanguages, the appropriate analyzer is called. The

output is a set of fully recognized tokens for all supported languages.

The peculiarity of work of a syntax highlighting analyzing block is that it is

essentially some kind of extended version of a lexical analyzer, since there are strict

requirements on the speed of operation of a syntax highlighting. Support for

arbitrary program library in FRIS is, in particular, in the ability of a visual

highlighting of their elements such as procedures, modules, data types, etc. Such

highlighting is performed in a syntax highlighting block based on the current

context. For any identifier under analysis the check depending on current scope is

performed, whether it belongs to arbitrary library, which elements necessary to

highlight. Then, if necessary, the identifier is highlighted with a defined earlier

color.

The peculiarity of full-text analysis is in the used analysis strategy. Since the

analysis is need to be performed in the real time, while the user modifies the text of

program, all analyzers must to work in the error suppression mode. It must be noted

that Fortran is very complicated language for analysis, because of its lexical and

syntactical peculiarities. The most striking examples are:

• the ability to use multiline tokens, for example, identifiers. Next is given

the sample of a multiline identifier “my_id”. The special attention must be

given the fact that in between a start and end lines of any multiline lexeme,

it is allowed to use comments and blank lines.

И.С. Раткевич. Языковой сервис FRIS для расширенной поддержки Fortran в Microsoft Visual Studio. Труды ИСП

РАН, том 27, вып. 3, 2015 г., с. 9-28

17

1 my_&

2 !comment

3

4 !another comment after blank line

5 &id

• the absence of reserved keywords. The decision whether identifier is a

keyword depends on a context of its usage in a statement. Therefore, it is

not statements that are identified by keywords, as in languages with

reserved keywords, but the keywords are identified by statements. Taking

into account that analysis is performed in a real time, it is impossible to

determine the identity of incomplete statement. For example, it is unclear,

whether “if” is a keyword that belongs to conditional statement, or it is a

name of an array, in the following part of statement: “if(”.

Fig. 2. The general analyzers operation scheme

The emphasized peculiarities greatly complicate the development of analyzers for

Fortran. But all of them are taken into account in FRIS. In particular, the optimistic

parsing strategy is used. The parser processes a source file statement-by-statement.

For every statement the abstract syntax tree (AST) is built. If the statement could

not be matched, e.g. as a result of that the user just not has time to completely type

it; the special AST is generated for it, which includes all mismatched tokens.

In conjunction with a parser the full AST builder is operating (Fig.3). It builds the

full AST from the individual statement ASTs. It also stores the AST that is already

built. The builder task is to track operations of opening and closing of syntactical

contexts, in particular their optimistic completion.

For example, if now the operator “if(…)then” is analyzed, then according to

standard, it could be completed only by “endif” statement. However, the user could

not have enough time to fully type this statement, then the builder will interpret the

“end” statement as a completion of a “if(…)then” operator. Similarly to it, if in the

end of parsing of source file the stack of open contexts of the builder is not empty,

I.S. Ratkevich. FRIS Language Service for Extended Fortran Support in Microsoft Visual Studio. Trudy ISP RAN /Proc.

ISP RAS, vol. 27, issue 3, 2015, pp. 9-28

18

then they are completing in a special mode – completion by the end of the file. It is

also have ability of priority processing of high level element statements. For

example, if the subroutine element is processed now, and as a result of a parsing the

function element definition statement is discovered, then the current subroutine

element is being completed with a special flag, and the function element processing

is being started.

Fortran Parser

(Returns AST per

statment)

AST_ASSIGN

=

Full AST builder

(builds file AST from

statement AST’s)

AST_ID

a

AST_ID

b

AST_PROGRAM

<virtual>

AST_ASSIGN

=

Fig.3. The FRIS parser operation scheme

Thus, the parser is always outputs the correct AST, which has no error nodes. This

allows simplifying the semantic analysis algorithm. The semantic analyzer walks

the AST and collects information about all needed Fortran elements, which then

stores in the recognized elements storage block.

3.3 The recognized elements storage block

The recognized elements storage block is a central storage for all known in the

current programming project elements (modules, data types, variables, etc.). It is

filled from two sources: as a result of a source files parsing, and as a result of

deserializing information about arbitrary libraries.

This block is essentially a kind of a symbol table. Its design must take into account

that information in it will be continuously updating as a result of the user editing of

source files.

Consider the proposed generic model of the storage block (Fig. 4).

It consists of following parts:

• the class for a symbol table description;

• the class for an interface description for a typical element of the

programming language;

• the class for an interface description for a typical scope of the programming

language;

• the classes describing specific elements of the programming language, that

implement interfaces of a typical element and of a typical scope, for

elements, which are scopes.

И.С. Раткевич. Языковой сервис FRIS для расширенной поддержки Fortran в Microsoft Visual Studio. Труды ИСП

РАН, том 27, вып. 3, 2015 г., с. 9-28

19

Symbol Table

General Element

Interface

General Scope

Interface

Specific element

descriptions

Fig. 4. The model of the recognized elements storage block

The class for a symbol table description must be built as indexed data storage, in

order to effectively processing operations of update and elements search. For

maximum flexibility it must store the references on the interface for a typical

element, instead of references to specific elements. The specific element could be

obtained from an abstract interface as a result of type casting. The following scheme

of a symbol table is proposed (Table 2).

Table 2. The model of a symbol table

Field Data type Description

Names map<long, string> Map unique identifier to string

Elements map<long, object> Map element unique identifier to element

object

Projects map<string,

map<string,

list<long>>>

Map program project name to map of

project file names to list of file elements

unique identifiers

ProjectDependencies map<string,

list<string>>

Map program project to program projects

it depends from

In this approach, firstly there is an access to all elements (Elements field). Secondly,

for any project there is a list of its dependencies from other projects, which allows

simplify a search procedure of needed elements, and to exclude from the search

result the elements that is not visible in target project. Thirdly, every project

contains a dictionary of its source files, and elements, which contained in every file

that allows to effectively performing the update operations. The update operation is

a result of a source file parsing operation, due to a text changes made by user. Thus,

since all elements that are connected with file is known, so their deletion from other

dictionaries and insertion a newly recognized elements, is a relatively simple task.

Next consider the proposed interface for a typical element of a programming

language (table 3).

Every element must have at least a name, a scope, where it’s defined, a description,

for example, that is obtained from documentation comments, and a location. An

element location consists from a declaration location and a definition location. Each

of which is in turn consists from a file name, and an element region in it.

Consider the proposed interface for a typical scope of the programming language

(table 4). The scope, in a general case, is a container of elements.

I.S. Ratkevich. FRIS Language Service for Extended Fortran Support in Microsoft Visual Studio. Trudy ISP RAN /Proc.

ISP RAS, vol. 27, issue 3, 2015, pp. 9-28

20

Table 3. The model of interface for a typical element of a programming language

Field Data type Description

Name string Name of element

Scope Scope Outer scope of element

Description string Description of element. For instance from documentation

comments

Location Location Element location: definition location, declaration location.

Location consists of file name and region. Region consists

of 4 integer indexes: start line, start line character index, end

line, end line character index.

Table4. The model of a typical scope of the programming language

Field Data type Description

Scope Scope Outer scope of this scope

Elements list<Element> List of elements of the scope

Every scope contains a reference to a parent scope and a list of elements that make

up this scope.

Every specific element of a programming language must be derived from an

interface for a typical element, and if it is a scope, from an interface of a typical

scope.

3.4 The elements serialization/deserialization block

The elements serialization/deserialization block is a key element for the

implementation of a mechanism to support arbitrary user libraries. The serialization

mechanism performs a saving of a given programming project in a form of two

special XML files: description of Fortran API and description of documentation

comments. The optional level of refinement could be additionally specified. In the

case, when the serialization is performed for creation a developer documentation of

a programming project, then all elements are saved, but in the case of creation a user

documentation or interface for a programming project as an external library, then

just externally visible elements are saved. It should be recalled that for each element

in the Fortran module, could be specified the access mode: public or private. The

public elements are externally accessible when the module is used, but the private

elements could be used just inside the module and inaccessible outside of it.

The deserialization mechanism operation is slightly different, because in

deserialization there is just one operation mode – reading all information describing

an arbitrary library. In this case, even if there will be provided XML files, that

contains full description of arbitrary library, only externally visible elements will be

read. This allows reducing the amount of memory needed to store a library

description, and also eliminates the need to store elements, which will not be

accessed to user under no circumstances, for example, private module elements, or

internal elements of procedures.

И.С. Раткевич. Языковой сервис FRIS для расширенной поддержки Fortran в Microsoft Visual Studio. Труды ИСП

РАН, том 27, вып. 3, 2015 г., с. 9-28

21

For serialization and deserialization are used the models for description of Fortran

API and XML documentation comments, that is developed by author and are

expressed in the form of appropriate XML Schema Definitions (XSD) [13], [14].

Let’s consider each of these models.

The model of Fortran API (Fig.5) allows describing external interfaces of any

library as a Fortran interfaces. The meaning and purpose some of the model

elements are given in table 5.

Fig. 5. The part of Fortran API XSD

Table 5. The description of some elements of the Fortran API model

Element (tag) Description

reflection Root tag

assemblies Describes set of projects that API contained in this file

assembly Describes individual project

apis Root for all API description

api Element description

apidata
Describes group and subgroup of element. I.e. for function: group –

method, subgroup - function

moduledata Module description switch

referencedata Reference element switch

typedata Derived type description switch

variabledata Variable description switch

proceduredata Procedure description switch

interfacedata Interface description switch

methoddata Method description switch

namelistdata Name list description switch

commonblockdata Common block description switch

imports Module imports description

elements List of inner elements

As can be seen from the above figure, tag “apis” contains a description of all project

elements. The tag “api” is used for a direct element description. In order to uniquely

I.S. Ratkevich. FRIS Language Service for Extended Fortran Support in Microsoft Visual Studio. Trudy ISP RAN /Proc.

ISP RAS, vol. 27, issue 3, 2015, pp. 9-28

22

identify the type of element: a module, a function, a subroutine, a data type and so

on, the special switches, like a “moduledata” tag, are used.

One more remark should be made regarding the tag “elements”, which is used to

describe the internal elements of current element. It’s allowed to specify here

references – fully qualified element names, and their description place next in a

main “apis” tag, and also it’s allowed to provide the description of child elements

directly in this tag.

It should be noted that description of Fortran API may be used for a creation of

Fortran procedure interfaces for their calls from other programming languages, that

is solves the inverse problem.

Consider the model of documentation comments. It conceptually consists of two

interconnected parts: a description of documentation tags for documenting program

elements (Fig.6), and a description of documentation comments XML file format

(Fig. 7). The meaning and purpose of the model elements are given in table 6.

Fig. 6. The usage of documentation tags for different Fortran elements

Fig.7. The part of Fortran Documentation XSD

For description of any element may be used 4 tags, two of which are high-level:

“summary” and “remarks”, and other two are nested, it means that they could be

used just inside of other tags: “see” and “para”. In addition to them, for description

of:

• derived type parameters is used “typeparam” tag;

• arguments of subroutines, functions and entry points is used “param” tag;

• result of function is used “result” tag.

И.С. Раткевич. Языковой сервис FRIS для расширенной поддержки Fortran в Microsoft Visual Studio. Труды ИСП

РАН, том 27, вып. 3, 2015 г., с. 9-28

23

Table 6. The elements description of the Fortran documentation model

Element (tag) Description

doc Root element

members Container for all documentation elements

member Contains documentation for single element

summary Element summary

remarks Additional information for element

see Internal tag, makes reference to given element

para Internal tag, creates paragraph in parent tag

typeparam Describes derived type parameter

param Describes argument of subroutine or function

result Describes function result

Thus, files for description of the model of Fortran API and documentation

comments form the basis not only for work with arbitrary libraries in Fortran, but

also form the basis for the generation of the reference documentation, for example

with a Sandcastle tool. It should be noted that Fortran API model can be used for

solving the inverse problem – description of API for a Fortran procedures for their

using from other programming languages.

3.5 The elements view model block

The elements view model block is a link between the IDE integration block and the

data storage block. It performs two basic functions: converts a data from a storage

block to a form required by the IDE, and performs various search operations in a

storage block.

The convert operation of stored data to the form required by the IDE produces

elements that are complemented by the properties of visual representation. For

example, such properties as text color and element icon, which used in various

completion lists, are set. In other words, the elements view model block contains

various aspects of data presentation to user. Thus the structure of the view model

block is analogue to the structure of the storage block. It also defines interfaces for

typical presentation elements and scopes, and a set of their specific implementations

for each element of the storage block.

The second function of this block is the search function. Here are performed various

operations of elements resolution in a scope, a search for elements with the

specified name and type, etc. That is, it performs the selection of needed elements

from the storage block that taking into account a different aspects of a programming

language. Then, selected data converted to the form required for user representation.

4. Proof of concept

The FRIS language service is built on the basis of the general model of a language

service, and implements all described blocks. Figures 8-13 are examples of work of

its various functions, proving the presented conception of a generalized language

service model, including providing extended support for user libraries.

I.S. Ratkevich. FRIS Language Service for Extended Fortran Support in Microsoft Visual Studio. Trudy ISP RAN /Proc.

ISP RAS, vol. 27, issue 3, 2015, pp. 9-28

24

Fig. 8. The extended support of user libraries (before and after)

Fig. 9. List Members

Fig. 10. Parameter Info and Complete Word

Fig. 11. Parameter Info for overloaded subroutine

Fig. 12. Complete word for a derived type name

И.С. Раткевич. Языковой сервис FRIS для расширенной поддержки Fortran в Microsoft Visual Studio. Труды ИСП

РАН, том 27, вып. 3, 2015 г., с. 9-28

25

Fig. 13. Code Snippet Sample

Consider the pivot table of the language services from Intel, PGI and FRIS (table 7).

Table 7. The Intel, PGI and FRIS language services comparison

Function Intel PGI FRIS

List Members No No Yes

Parameter Info

Yes, excluding
overloaded
procedures and
type bound
procedures

Yes, only for
intrinsic
procedures

Yes

Quick Info

Yes, excluding
fields and
procedures of
derived types

Yes, only for
intrinsic
procedures

Yes

Complete Word

Yes, only for
modules names,
functions names
and subroutines
names

Yes, only for
keywords
statements

Yes

Code Snippet [15]
Support

Yes, but only as
menu command or
shortcut

No
Yes. Snippets included
in Completion Lists

Documentation

comments support
No No

Yes. Documentation
included in all tooltips

Support of user

libraries
No No Yes

Thus, due to use of the developed general language service model, FRIS provides

extended support of a Fortran in Microsoft Visual Studio.

I.S. Ratkevich. FRIS Language Service for Extended Fortran Support in Microsoft Visual Studio. Trudy ISP RAN /Proc.

ISP RAS, vol. 27, issue 3, 2015, pp. 9-28

26

5. Conclusion

The report presents the general model of a language service for extended support of

a Fortran programming language developed by author. This model can be easily

applied not only to create new language services for other languages, but also to

create a language services in other IDEs.

All aspects that must be taken into account in development of a language service are

given in details, including the analysis of user requirements, the analysis of a data

sources for a language service, and the analysis of operation peculiarities of a

language service in a specific IDE.

As a result of executing described analysis kinds, in every particular case, the plan

of a language service development must be created. For a language service

development simplification, the general model of a language service is given and

each its block is described in details on example of its implementation in FRIS.

At last, the proof of proposed concept of constructing language services is given, on

example of comparison FRIS with existing language services from Intel and PGI.

The model that is used in FRIS provides its significant advantage over other

language services.

It especially should be noted that FRIS implements a model for supporting user

libraries. It includes a model of Fortran API and a model of documentation

comments, developed by author. The Fortran API model allows not only to describe

the interfaces of any library in terms of Fortran, but also allows solving the inverse

problem, by known Fortran interfaces obtain API for target language. The

documentation comments model allows user to document different Fortran elements

straight in the program text, and then obtain documentation in various types of

context help. The model of Fortran API in conjunction with the model of

documentation comments can be used to create a developer and/or user

documentation, for example with a Sandcastle tool.

References

[1]. The Fortran automatic coding system for the IBM 704 EDPM. Programmers reference

manual. IBM, 1956

[2]. ISO. ISO/IEC 1539-1:2004 Information technology - Programming languages - Fortran -

Part 1: Base Language, pp. 569

[3]. Intel Fortran Composer (Visual Fortran) URL: http://software.intel.com/en-

us/articles/intel-fortran-composer-xe-2013-sp1-release-notes

[4]. PGI Visual Fortran URL: https://www.pgroup.com/products/pvf.htm

[5]. Using IntelliSense URL: http://msdn.microsoft.com/en-

us/library/hcw1s69b(v=vs.80).aspx

[6]. Language Services URL: http://msdn.microsoft.com/en-us/library/bb165099.aspx

[7]. Model of a Language Service URL: http://msdn.microsoft.com/en-

us/library/bb166518(v=vs.100).aspx

[8]. Eric Woodruff’s Sandcastle Help File Builder Documentation URL:

http://ewsoftware.github.io/SHFB/html/bd1ddb51-1c4f-434f-bb1a-ce2135d3a909.htm

[9]. IVsLanguageInfo Interface URL: https://msdn.microsoft.com/en-

us/library/microsoft.visualstudio.textmanager.interop.ivslanguageinfo(v=vs.80).aspx

И.С. Раткевич. Языковой сервис FRIS для расширенной поддержки Fortran в Microsoft Visual Studio. Труды ИСП

РАН, том 27, вып. 3, 2015 г., с. 9-28

27

[10]. IVsColorizer Interface URL: https://msdn.microsoft.com/en-

us/library/microsoft.visualstudio.textmanager.interop.ivscolorizer(v=vs.80).aspx

[11]. Language Service Interfaces URL: http://msdn.microsoft.com/en-

us/library/bb164598(v=vs.80).aspx

[12]. Managed Package Framework Classes URL: http://msdn.microsoft.com/en-

us/library/bb164709(v=vs.80).aspx

[13]. W3C XML Schema Definition Language (XSD) 1.1 Part 1: Structures URL:

http://www.w3.org/TR/xmlschema11-1/

[14]. W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes URL:

http://www.w3.org/TR/xmlschema11-2/

[15]. Creating and Using IntelliSense Code Snippets URL: https://msdn.microsoft.com/en-

us/library/ms165392(v=vs.80).aspx

Языковой сервис FRIS для расширенной
поддержки Fortran в Microsoft Visual Studio

И.С. Раткевич <ratkevichis@gmail.com>,

Российский Федеральный Ядерный Центр – Всероссийский Научно

Исследовательский Институт Экспериментальной Физики,

607190, Россия, Нижегородская обл., г. Саров, пр-т Мира, 37

Аннотация. В данной статье рассматриваются вопросы построения языкового сервиса

для расширенной поддержки языка программирования Fortran в интегрированной

среде разработки Microsoft Visual Studio. Предлагается модель и общий подход к

построению языковых сервисов.

Предлагаемая общая модель языкового сервиса состоит из пяти блоков: блока

интеграции со средой разработки; блока анализа; блока хранения распознанных

элементов; блока сериализации/десериализации элементов; блока модели представления

элементов.

Блок интеграции с IDE соединяет языковой сервис с базовой инфраструктурой IDE. Он

отвечает за подписку языкового сервиса на события редактирования текста

пользователем в редакторе и за соответствующие отклики.

Блок анализа отвечает за проведение лексического, синтаксического и семантического

анализа. Он собирает всю необходимую информацию об элементах языка

программирования и помещает их в блок хранения распознанных элементов. Второй

задачей данного блока является предоставление информации для подсветки синтаксиса

редактируемого текста программы.

Блок хранения распознанных элементов является своеобразной базой данных всех

элементов, необходимых для работы языкового сервиса. В общем случае он является

разновидностью таблицы символов. Наполнение блока хранения может вестись из двух

источников: из блока анализа, как результат разбора файлов с текстами программ, и из

блока сериализации/десериализации элементов, как результат десериализации из ранее

существующего специализированного описания программы, в случае использования

модели API (Application Programming Interface) для произвольных библиотек.

Блок сериализации/десериализации элементов выполняет две функции. Во-первых, он

позволяет сохранять содержимое программных проектов в виде XML файлов описания

API и комментариев документирования к ним. Во-вторых, он позволяет

восстанавливать содержимое программных проектов из их XML моделей.

I.S. Ratkevich. FRIS Language Service for Extended Fortran Support in Microsoft Visual Studio. Trudy ISP RAN /Proc.

ISP RAS, vol. 27, issue 3, 2015, pp. 9-28

28

Блок модели представления элементов является связующим звеном, своеобразным

адаптером, элементов блока хранения, к тому виду, который необходим для

использования в блоке интеграции с IDE. Так распознанные элементы могут содержать

некоторую информацию, которая не требуется функциям технологии IntelliSense, или

наоборот, не содержать нужной информации. В модели представления элементов

организуются типы данных – обёртки для элементов блока хранения, соответствующие

требованиям блока интеграции с IDE. Также здесь реализуются всевозможные

функции выборки и поиска необходимой информации.

Доказательство работоспособности предложенной обобщённой модели приводится на

примере разработанного автором языкового сервиса FRIS. Изложенный материал

может быть в равной мере использован для построения языковых сервисов, как для

других языков программирования, так и для других средств разработки.

Ключевые слова: FRIS; Fortran Intelligent Solutions; Fortran; Visual Studio Extensibility;

Language Service; Visual Studio

DOI: 10.15514/ISPRAS-2015-27(3)-1

Для цитирования: Раткевич И.С. Языковой сервис FRIS для расширенной поддержки

Fortran в Microsoft Visual Studio. Труды ИСП РАН, том 27, вып. 3, 2015 г., стр. 9-28 (на

английском языке). DOI: 10.15514/ISPRAS-2015-27(3)-1.

Список литературы
[1]. The Fortran automatic coding system for the IBM 704 EDPM. Programmers reference

manual. IBM, 1956

[2]. ISO. ISO/IEC 1539-1:2004 Information technology - Programming languages - Fortran -

Part 1: Base Language, pp. 569

[3]. Intel Fortran Composer (Visual Fortran) URL: http://software.intel.com/en-

us/articles/intel-fortran-composer-xe-2013-sp1-release-notes

[4]. PGI Visual Fortran URL: https://www.pgroup.com/products/pvf.htm

[5]. Using IntelliSense URL: http://msdn.microsoft.com/en-us/library/hcw1s69b(v=vs.80).aspx

[6]. Language Services URL: http://msdn.microsoft.com/en-us/library/bb165099.aspx

[7]. Model of a Language Service URL: http://msdn.microsoft.com/en-

us/library/bb166518(v=vs.100).aspx

[8]. Eric Woodruff’s Sandcastle Help File Builder Documentation URL:

http://ewsoftware.github.io/SHFB/html/bd1ddb51-1c4f-434f-bb1a-ce2135d3a909.htm

[9]. IVsLanguageInfo Interface URL: https://msdn.microsoft.com/en-

us/library/microsoft.visualstudio.textmanager.interop.ivslanguageinfo(v=vs.80).aspx

[10]. IVsColorizer Interface URL: https://msdn.microsoft.com/en-

us/library/microsoft.visualstudio.textmanager.interop.ivscolorizer(v=vs.80).aspx

[11]. Language Service Interfaces URL: http://msdn.microsoft.com/en-

us/library/bb164598(v=vs.80).aspx

[12]. Managed Package Framework Classes URL: http://msdn.microsoft.com/en-

us/library/bb164709(v=vs.80).aspx

[13]. W3C XML Schema Definition Language (XSD) 1.1 Part 1: Structures URL:

http://www.w3.org/TR/xmlschema11-1/

[14]. W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes URL:

http://www.w3.org/TR/xmlschema11-2/

[15]. Creating and Using IntelliSense Code Snippets URL: https://msdn.microsoft.com/en-

us/library/ms165392(v=vs.80).aspx

