
Хазеев Мансур, Ривера Виктор, Маццара Мануэль, Чичигин Александр. Применимость AutoProof: учебный

пример верификации ПО. Труды ИСП РАН, 2016, том 28, выпуск 2, с. 111-126.

111

Usability of AutoProof: a case study of
software verification

Mansur Khazeev <m.khazeev@innopolis.ru>

Victor Rivera <v.rivera@innopolis.ru>

Manuel Mazzara <m.mazzara@innopolis.ru>

Alexander Tchitchigin <a.chichigin@innopolis.ru>

Innopolis University, Software Engineering Lab.

420500, Russia, Innopolis, Universitetskaya Str. 1

Abstract. Verification tools are often the result of several years of research effort. The

development happens as a distributed effort inside academic institutes relying on the ability of

senior investigators to ensure continuity. Quality attributes such as usability are unlikely to be

targeted with the same accuracy required for commercial software where those factors make a

financial difference. In order for such tools to become of widespread use, it is therefore

necessary to spend an extra effort and attention on users' experience, and allow software

engineers to benefit out of them without the necessity of understanding the mathematical

machinery in full detail. In order to put the spotlight on usability of verification tools we chose

an automated verifier for the Eiffel programming language, AutoProof, and a well-known

benchmark, the Tokeneer problem. The tool is used to verify parts of the implementation of the

Tokeneer so to identify AutoProof's strengths and weaknesses, and finally propose the

necessary updates. The results show the efficacy of the tool in verifying a real piece of software

and automatically discharging nearly two thirds of verification conditions. At the same time,

the case study shows the demand for improved documentation and emphasizes the need for

improvement in the tool itself and in the Eiffel IDE.

Keywords: static verification; formal specification; Eiffel, Autoproof; Design by Contract

DOI: 10.15514/ISPRAS-2016-28(2)-7

For citation: Khazeev Mansur, Rivera Victor, Mazzara Manuel, Tchitchigin Alexander.

Usability of AutoProof: a case study of software verification. Trudy ISP RAN/Proc. ISP RAS,

vol. 28, issue 2, 2016, pp. 111-126. DOI: 10.15514/ISPRAS-2016-28(2)-7

1. Introduction

Tools for software verification allow the application of theoretical principles in

practice, in order to ensure that nothing bad will ever happen (safety). The extra effort

required by the use of these tools is certainly not for free and comes with increased

development costs [1]. There is a common belief in industry that developing software

Khazeev M., Rivera V., Mazzara M., Tchitchigin A. Usability of AutoProof: a case study of software verification. Trudy

ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 111-126.

112

with high level of assurance is too expensive, therefore not acceptable, especially for

non safety-critical or financially-critical applications.

Tools and techniques for the formal development of software have played a key role

on demystifying this belief. There are several approaches, for instances abstract

interpretation and model checking [2], [3] that seek the automation to formally

proving certain conditions of systems. However, these techniques tend to verify

simple properties only. On the other end of the spectrum, there are interactive

techniques for verification such theorem provers [4]. These techniques aim at more

complex properties but demand the interaction of users to help the verification.

Nowadays, there are new approaches that aim at finding a good trade-off between

both techniques, e.g. auto-active: users are not needed during the verification process

(it is automatically performed); they are required instead to provide guidance to the

proof using annotations. AutoProof [5], is a static auto-active verifier for functional

properties of object-oriented programs. Using AutoProof, users write code and equip

classes with contracts and annotations to help the tool to prove certain properties.

The main goal resented in this paper is to provide insights on how easy/difficult is for

users (mainly engineers without deep knowledge of formal verification) to use current

methodologies and tools for the development of software with high level of assurance,

in particular on the use of the AutoProof tool.

Generally, to prove the correctness of a program one needs some mechanisms to

express what the program is supposed to do and clearly state it in the specifications

that are used later to verify the program. Eiffel programming language natively

supports these mechanisms by means of contracts. Eiffel is an object-oriented

programming language, which directly implements the concepts of Design-by-

Contract (DbC) [1], [6]. The key concept is viewing the relationship between a class

and its clients as a formal agreement, expressing each party's rights and obligations.

This is realized equipping methods with pre- and post-conditions, and classes with

invariants. The key feature of the Eiffel language is indeed the idea that all the

methods might and should contain contracts.

Contracts and annotations used in Eiffel are used by AutoProof to statically verify the

consistency of the classes. To demonstrate the usability of the tool, the Tokeneer

project [7] was implemented in Eiffel and AutoProof was used to verify the

consistency of the code. The Tokeneer project is a system specified and implemented

by National Security Agency (NSA). Initially, NSA carried out this challenge to prove

that it is possible to develop secure systems rigorously in a cost effective manner.

Since its development, it became a testing range for different software development

methodologies and verification tools. Results of the project are publicly available.

This paper reports on the use of AutoProof to verify an Eiffel implementation of

Tokeneer and also reports on how easy/difficult is for users to use the tool, e.g. the

burden of helping the tool by means of annotations in the code.

The rest of the paper is organized as follows: Section II introduces the Tokeneer

project, Eiffel and the AutoProof tool. Section III describes the methodology used to

verify the implementation of the Tokeneer project. Section IV presents empirical

Хазеев Мансур, Ривера Виктор, Маццара Мануэль, Чичигин Александр. Применимость AutoProof: учебный

пример верификации ПО. Труды ИСП РАН, 2016, том 28, выпуск 2, с. 111-126.

113

results helping to draw conclusions. Section V is devoted to related work and Section

VI concludes and mentions future work.

2. Preliminaries

2.1 The Tokeneer Project

In 2002, with the aim to prove/disprove the common believe in industry that

development of software of high level of assurance is too expensive and therefore not

feasible, the National Security Agency (NSA) asked Altran to undertake a research

project to develop part of an existing secure system, the Tokeneer System, in

accordance with Altran's Correctness by Construction development process. The

system was specified using Z notation [8] and implemented in Ada [9]. The project

was successfully delivered in 2003 within 260 days of effort, and later, in 2008, all

the results were made available by NSA to the software development and security

communities in order to demonstrate the possibility to develop secure systems in a

cost effective manner. It includes the ``Core'' Tokeneer ID System Software, test

cases derived from the system test specification, ``Support'' Tokeneer ID System

Software and test tokens and biometric data, project documents. Since the delivery,

the Tokeneer project has become a milestone point and a testing range for different

verification tools before applying them in industrial projects. Despite the fact that

after delivery 4 bugs1 were found, the system is still deemed to be very secure.

Tokeneer is a secure enclave consisting of a set of system components, some housed

inside the enclave and some outside, as depicted in Figure 1.

1 According to [7]

Khazeev M., Rivera V., Mazzara M., Tchitchigin A. Usability of AutoProof: a case study of software verification. Trudy

ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 111-126.

114

Fig. 1. The Tokeneer System.

The ID Station (TIS) is part of the larger Tokeneer system. It has four connected

peripherals, namely, a fingerprint reader, a smartcard reader (users use Tokens -

smartcards- as identification), a door and visual display. The objective of the enclave

is to ensure that anyone who enters the enclave has a proper access, and no one else

can access to the enclave.

In order to ensure the entrance of users to the enclave, TIS implements a series of

protocols and checks (the use of smart cards and biometrics) to grant or deny the

entrance to it. This paper discusses one of these protocols: the enrollment to the ID

Station. The protocol starts in a state where the user is not enrolled. Users can request

enrollment and then insert a FLOPPY (it retains an internal view of the last data

written) for the system to proceed. The system reads the information in the floppy and

either fails the enrollment process, in which case takes the process to the initial state,

or correctly validates the data in the floppy.

2.2 Eiffel

Eiffel is a real complex object oriented programming language that natively supports

Design-by-Contract methodology. Users can specify the behavior of Eiffel classes by

equipping them with contracts: pre- and post-conditions and class invariants that are

represented as assertions.

Хазеев Мансур, Ривера Виктор, Маццара Мануэль, Чичигин Александр. Применимость AutoProof: учебный

пример верификации ПО. Труды ИСП РАН, 2016, том 28, выпуск 2, с. 111-126.

115

Fig.2 ACCOUNT Eiffel class.

Figure 2 depicts a reduced implementation of a Bank Account. In Eiffel, creation

procedures are listed under the keyword create, for class ACCOUNT, routine make

is used as a creation procedure. The class defines a class attribute balance to represent

the current balance of the account. It also defines two routines (methods), deposit and

withdraw. deposit implements a deposit of amount of money to the account and

withdraw implements withdrawing money. Eiffel encourages software developers to

express formal properties of classes by writing assertions. Routine pre-conditions

express the requirements that clients must satisfy whenever they call a routine. They

are introduced in Eiffel by the keyword require. Routine deposit imposes a pre-

condition on the call, the client must pass as an argument a non-negative number (i.e.

amount_not_negative: amount >= 0) for the routine to work correctly: a negative

value might invalidate the invariant of the class. Routine post-conditions, introduced

in Eiffel by the keyword ensure, express conditions that the routine (the supplier)

guarantees on method exit, assuming the pre-condition. Routine deposit guarantees

that the balance of the account will be the previous value of the balance (expressed in

Eiffel by the keyword old: the value on entrance of the routine) plus the amount being

deposited. Routine withdraw imposes the constraint to the caller that the argument

must be less than or equal to the current balance of the account to avoid having

Khazeev M., Rivera V., Mazzara M., Tchitchigin A. Usability of AutoProof: a case study of software verification. Trudy

ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 111-126.

116

negative value in the balance. The routine ensures that, after execution, the new value

of balance will be the value on routine entry minus the amount withdrawn.

A class invariant must be satisfied by every instance of the class whenever the

instance is externally accessible: after creation, and after any call to an exported

routine of the class (public routines). The invariant appears in a clause introduced by

the keyword invariant. Class ACCOUNT's invariant imposes the restriction that class

attribute balance can never be negative (i.e. non_negative_balance: balance >= 0).

2.3 AutoProof

AutoProof [5] is a static verifier of contracts for Eiffel programs. It follows the auto-

active paradigm where verification is done completely automated, similar to model

checking [3], but users are expected to feed the classes providing additional

information in the form of annotations to help the proof. AutoProof identifies

software issues without the need of executing the code, therefore opening a new

frontier for ``static debugging'', software verification and reliability, and in general

for software quality.

AutoProof verifies the functional correctness of Eiffel classes. It translates Eiffel code

to Boogie programs [10] and calls the Boogie tool to generate verification conditions:

logic formulas whose validity entails correctness of the input programs. Finally,

retrieves the answer back to Eiffel. AutoProof verifies that routines satisfy pre- and

post-conditions, maintenance of class invariants, loops and recursive calls

termination, integer overflow and non-Void (null in other programming languages)

references calls. The tool also supports most of the Eiffel language constructs: in-

lined assertions such as check (assert in other programming languages), types, multi-

inheritance, polymorphism.

3. Verification of Tokeneer using AutoProof

The Tokeneer project was implemented in Eiffel following the specifications file

41_2.pdf (see [7]) of the Tokeneer System and equipping classes with contracts. This

research work encompasses only the enrolment process of the whole Tokeneer

System therefore it implements only the entities involved in this process.

One of the main parts of TIS is the ID_STATION (see Figure 8) – it describes how

all components of the system are related to each other: one of the components is

implemented in class INTERNAL_S (not shown here) whose responsibility is to

keep knowledge of the status of user entry and the enclave and to hold a timeout when

relevant; another component is implemented on class FLOPPY (not shown here) that

retains an internal view of the last data written to the floppy as well as the current data

on the floppy. ID_STATION displays the configuration data on the screen which is

implemented in SCREEN_DISPLAY. There are a number of messages that may

appear on the TIS screen. The Real World types (described in [7] Specification

document, section 2.7.1) of the system such as messages that appear on the display

and screen, were implemented all together in class CONST which implements the

Хазеев Мансур, Ривера Виктор, Маццара Мануэль, Чичигин Александр. Применимость AutoProof: учебный

пример верификации ПО. Труды ИСП РАН, 2016, том 28, выпуск 2, с. 111-126.

117

constants used in the TIS. And finally, a number of interactions between all these

entities within the enclave are implemented in ENCLAVE_OPERS.

AutoProof does not make any assumptions out of box therefore users are expected to

feed the Eiffel classes for a succeed verification.

Fig. 3. Initialization of ID STATION Eiffel class.

This is expressed by means of Eiffel's note clause. note clause enables users to attach

addition information to the class that is ignored by the Eiffel's compiler. AutoProof

uses this information to succeed in the verification. For instance, AutoProof's

annotation status defines which procedure is used to initialize newly created objects:

Figure 3 depicts procedure make with annotation note (e.g. note status: creator) to

help Autoproof to discharge the corresponding proof obligations related to creation

procedures: the procedure will be called only when an object of this class is being

created, AutoProof needs to verify a creation routine only once.

note clause is also used to define models queries to express the abstract state space of

a classes. Model queries are part of model-based contracts to help users to write

abstract and concise specifications [11], they are used to specify the behavior of the

class. In Eiffel, this is specified by adding a note clause at the beginning of the class

followed with a keyword model: and listing one or more attributes of the class. Model

queries are also used to describe frame conditions: which allocations are allowed to

be modified by procedures.

In Eiffel, frame conditions are listed using the modify clause, which lists the model

queries that the feature is allowed to modify, as shown in Figure 7 (i.e.

modify_model("current_display", Current)).

Khazeev M., Rivera V., Mazzara M., Tchitchigin A. Usability of AutoProof: a case study of software verification. Trudy

ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 111-126.

118

 RequestEnrolment

EnrolContext

Ξ KeyStore

Ξ AuditLog

Ξ Internal

enclaveStatus = notEnrolled

floppyPresence = absent

currentScreen′.screenMsg = insertEnrolmentData

currentDisplay′ = blank

Fig. 4. Z schema of RequestEnrolment.

According to RequestEnrolment (a Z-schema that is a part of the formal

specification of the project Tokeneer), which is presented in Figure 4, requesting

enrolment involves EnrolContext, KeyStore, AuditLog, Internal. Schemas in Z

consist of an upper part, in which some variables are declared, and a lower part, which

describes the relationship between values and variables. The notation Ξ indicates an

operation in which the state does not change, and the apostrophe indicates the state of

the variable after the change [12]. RequestEnrolment specifies that the ID station

will request enrolment by displaying a request string on the screen and keeping the

display blank. This is only possible while there is no Floppy present. Therefore,

initially floppyPresence = absent and enclaveStatus set to notEnrolled. An ensure

clause was used in the creation procedure to guarantee this after the initialization of

ID_STATION object:

Fig. 5. ensure clause in feature make.

Figure 6 depicts the class invariant for class ID_STATION. It states that a message

displayed on the display outside the enclave is one of the available from the list of

messages (i.e. constants.display_message.has(current_display)) and that class

attribute constants is attached to an object (i.e. constants /= Void).

Хазеев Мансур, Ривера Виктор, Маццара Мануэль, Чичигин Александр. Применимость AutoProof: учебный

пример верификации ПО. Труды ИСП РАН, 2016, том 28, выпуск 2, с. 111-126.

119

Fig. 6. Invariants of ID STATION Eiffel class.

Figure 7 shows the implementation of procedure set_current_display. Its first pre-

condition was added to satisfy the invariant ensuring that argument v belongs to the

allowed displayed messages. The second pre-condition restricts the procedure to

change values only to model query current_display.

Fig. 7. Feature equipped with modify clause.

Figure 8 shows the final version of class ID_STATION: with the respective

annotations for AutoProof to successfully verify the class. In class ID_STATION,

class attributes current_screen and current_display implements the physical screen

and display, respectively, of the enclave.

Khazeev M., Rivera V., Mazzara M., Tchitchigin A. Usability of AutoProof: a case study of software verification. Trudy

ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 111-126.

120

Fig. 8. Verified ID STATION Eiffel class.

4. Empirical Results

The usability of a verification tool cannot be considered in isolation and, in particular,

cannot be hived off by the effectiveness of the tool itself. First, as a general

observation, the cost of using an instrument can only be justified by its return, which

can ultimately be linked to financial consideration by top management. Second, and

this aspect is less general and more peculiar to the auto-active verification approach,

a tool like AutoProof is as much effective and usable as is its ability to discharge

verification conditions completely automatically, without feeding the code of

annotation overhead or requiring particular tweaking. Finally, the necessity for users

to add further annotations and dedicate extra effort (and considerable time) is, by

itself, an obstacle to adoption and (technically) a usability issue. Verification tools

should require minimal annotational effort and give valuable feedback when

verification fails.

The case study analyzed in this paper presented good results in term of automatic

discharge of verification conditions, though not comparable to others seen in literature

[13].

Хазеев Мансур, Ривера Виктор, Маццара Мануэль, Чичигин Александр. Применимость AutoProof: учебный

пример верификации ПО. Труды ИСП РАН, 2016, том 28, выпуск 2, с. 111-126.

121

Fig. 9. Verifications results.

In total there were 38 generated proofs. Of these, 22 (58\%) were discharged

automatically (see figure 9), 8 (21\%) could not be satisfied, and the rest (21\%) failed

due to internal errors, which in our case were basically caused by the attempt to create

objects in the contract, and that is not allowed by the tool. As observed before, the

success of verification is unsurprisingly linked to the complexity of programs [13].

Previous literature mostly dealt with students users and university projects. The use

of Tokeneer as a benchmark demands for detailed comparisons with different

verification efforts (for example, [14]).

5. Related Work

Formal/mathematical notations have existed for a long time and have been used to

specify and verify systems. Examples are process algebras [15], specification

languages like Z [16], B [17] and Event-B [18]. The Vienna Development Method

(VDM) is one of the earliest attempts to establish a formal method for the

development of computer systems [19]. A survey of these (and others) formalisms

can be found in [20] while a discussion on the methodological issues of a number of

formal methods is presented in [21].

All these approaches (and others described in the literature) still leave an open issue,

i.e., they are built around strict formal notations which affect the development process

from the very beginning. These approaches demonstrate a low level of flexibility. To

overcome this problem, a seamless methodological connection built on top of a

portfolio of diverse notations and methods is presented in [22]. Another approach is

presented in [14], [23] using [24], where users start the development of system from

a strict formal notation (i.e. Event-B), to then automatically translate it to Java code

with JML [25] specifications embedded (following Design-by-Contract

methodology). Even though this approach enables users with less mathematical

Discharged

automatically

58%

Failed

(weak assertions)

21%

Errors

(internal)

21%

Khazeev M., Rivera V., Mazzara M., Tchitchigin A. Usability of AutoProof: a case study of software verification. Trudy

ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 111-126.

122

expertise to work on formal development, it does not give a seamlessly methodology

for the development as presented in this paper.

On the other side, Design-by-contract [6] when combined with AutoProof technology

offers the pros of both rigorous methodologies and supporting tools able to semi-

automate the process. Before this to be available for the average developer it is

however necessary to improve the users' experience. A comparison between different

approaches (for example Event-b/Rodin and Design-by-contract/AutoProof) is

beyond the scope of this paper and it is left as future work.

6. Conclusion

AutoProof allows for “static debugging”, i.e. debugging becomes possible without

the need of executing the program. The most effective way to release correct software

is a combination of static debugging and traditional run-time debugging. Being all

human activities (therefore including programming and testing itself) error-prone,

there is no magic or free lunches out there. Abandoning testing and adopting a proof-

oriented approach does not make miracles, debugging remains a trial-and-error long

and laborious process. AutoProof does not change the rules of the game: developers

will have to try, observe the results and make changes as a consequence. A proof-

oriented approach does not make the process smoother and necessarily simpler.

However, it makes it more accurate and robust, therefore effective. Adjustment can

be now focused on the implementation side (possibly sinergically with run-time

debugging), on the specification side (the contracts used to annotate the code as

integral part of the code itself), or in the proof itself (fine-tuning may be necessary

for AutoProof and its behind-the-curtains machinery to be able to prove correctly).

All this comes with a cost: the willingness and ability of the user to use extra tools

and being able to master them, and possibly invest extra time in the process. On the

other side, it is necessary for the tools to be simple to master and to provide intelligible

feedback.

The Tokeneer project case study showed the efficacy of AutoProof in verifying a real

piece of software, the complexity of which can be compared not only with most of

the commercial Off-the-Shelf software, but also with safety and financial-critical

applications, both in terms of computational logic and architectural organization.

AutoProof is capable to verify industrial software and may well be adopted in

commercial companies and its use injected into the development process. However,

some obstacles have been identified that could prevent its broader adoption.

 As result of an academic effort, documentation is not at par with commercial

software, in particular for what concerns the size of the library of correctly verified

examples: tutorials on the official website are quite useful, but not enough. On top of

this, the tool itself has limitations. First, existing implementations need to be modified

in order to be verified. This would represent an unsurmountable obstacle in most

institutions since the overall cost of code adaptation may overrun the saves occurring

to the testing phase. This consideration may be different, however, for safety-critical

Хазеев Мансур, Ривера Виктор, Маццара Мануэль, Чичигин Александр. Применимость AutoProof: учебный

пример верификации ПО. Труды ИСП РАН, 2016, том 28, выпуск 2, с. 111-126.

123

systems. Second, the Eiffel IDE - necessary for functioning - calls for increased

stability and robustness.

7. Acknowledgments

We would like to thank Innopolis University for logistic and financial support, and

the laboratories of Software Engineering (SE) and Service Science and Engineering

(SSE) for the intellectual engagement and vivid discussions.

References
[1]. B. Meyer, Touch of Class: Learning to Program Well with Objects and Contracts. Springer

Publishing Company, Incorporated, 1 ed., 2009.

[2]. P. Cousot and R. Cousot, “Abstract interpretation: A unified lattice model for static

analysis of programs by construction or approximation of fixpoints,” in Proceedings of

the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages,

POPL ’77, (New York, NY, USA), pp. 238–252, ACM, 1977.

[3]. E. M. Clarke, Jr., O. Grumberg, and D. A. Peled, Model Checking. Cambridge, MA, USA:

MIT Press, 1999.

[4]. D. W. Loveland, Automated Theorem Proving: A Logical Basis (Fundamental Studies in

Computer Science). sole distributor for the U.S.A. and Canada, Elsevier North-Holland,

1978.

[5]. J. Tschannen, C. A. Furia, M. Nordio, and N. Polikarpova, “AutoProof: Auto-active

functional verification of object-oriented programs,” in 21st International Conference,

TACAS 2015, London, UK, April 11-18, 2015. Proceedings, pp. 566–580, 2015.

[6]. B. Meyer, Object-oriented software construction, ch. 11: Design by Contract: building

reliable software. Prentice Hall PTR, 1997.

[7]. AdaCore, “Tokeneer.” http://www.adacore.com/sparkpro/tokeneer/download, accessed

in April 2016.

[8]. J.-R. Abrial, S. Schuman, and B. Meyer, “Specification Language,” in On the

Construction of Programs, R. M. McKeag and A. M. Macnaghten, editors, pp. 343–410,

Cambridge University Press, 1980.

[9]. J. Barnes, High Integrity Software: The SPARK Approach to Safety and Security. Boston,

MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2003.

[10]. K. R. M. Leino, “This is boogie 2,” tech. rep., June 2008.

[11]. N. Polikarpova, C. A. Furia, and B. Meyer, “Specifying reusable components,” in

Proceedings of the 3rd International Conference on Verified Software: Theories, Tools,

and Experiments (VSTTE’10) (G. T. Leavens, P. O’Hearn, and S. Rajamani, eds.), vol.

6217 of Lecture Notes in Computer Science, pp. 127–141, Springer, August 2010.

[12]. J. Spivey, “An introduction to Z and formal specifications,” Software Engineering

Journal, 1989.

[13]. C. A. Furia, C. M. Poskitt, and J. Tschannen, “The AutoProof verifier: Usability by non-

experts and on standard code,” in Proc. Formal Integrated Development Environment (F-

IDE 2015), vol. 187, pp. 42–55, Electronic Proceedings in Theoretical Computer Science

(EPTCS), 2015.

[14]. V. Rivera, S. Bhattacharya, and N. Cata˜ no, “Undertaking the tokeneer challenge in

Event-B,” To appear in 4th FME Workshop on Formal Methods in Software Engineering

(FormaliSE), 2016.

Khazeev M., Rivera V., Mazzara M., Tchitchigin A. Usability of AutoProof: a case study of software verification. Trudy

ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 111-126.

124

[15]. J. C. M. Baeten, “A brief history of process algebra,” Theor. Comput. Sci., vol. 335, no.

2-3, pp. 131–146, 2005.

[16]. J. Abrial, S. A. Schuman, and B. Meyer, “Specification language,” in On the Construction

of Programs, pp. 343–410, 1980.

[17]. J. Abrial, The B-book - assigning programs to meanings. Cambridge University Press,

2005.

[18]. J.-R. Abrial, Modeling in Event-B: System and Software Engineering. New York, NY,

USA: Cambridge University Press, 1st ed., 2010.

[19]. C. B. Jones, Software Development: A Rigorous Approach. Englewood Cliffs, N.J., USA:

Prentice Hall International, 1980.

[20]. “On modelling and analysis of dynamic reconfiguration of dependable real-time systems,”

in Proceedings of the 2010 Third International Conference on Dependability, DEPEND

’10, (Washington, DC, USA), pp. 173–181, IEEE Computer Society, 2010.

[21]. M. Mazzara, “Deriving specifications of dependable systems: toward a method,” in

Proceedings of the 12th European Workshop on Dependable Computing, EWDC, 2009.

[22]. R. Gmehlich, K. Grau, A. Iliasov, M. Jackson, F. Loesch, and M. Mazzara, “Towards a

formalism-based toolkit for automotive applications,” 1st FME Workshop on Formal

Methods in Software Engineering (FormaliSE), 2013.

[23]. V. Rivera, N. Cata˜ no, T. Wahls, and C. Rueda, “Code generation for Event-B.” To

appear in International Journal on STTT, 2016.

[24]. V. Rivera and N. Cata˜ no, “Translating Event-B to JML-Specified Java programs,” in

29th ACM SAC, (Gyeongju, South Korea), March 24-28, 2014.

[25]. G. T. Leavens, A. L. Baker, and C. Ruby, “Preliminary design of jml: A behavioral

interface specification language for java,” SIGSOFT Softw. Eng. Notes, vol. 31, pp. 1–

38, May 2006.

Применимость AutoProof: учебный пример
верификации ПО

Мансур Хазеев <m.khazeev@innopolis.ru>

Виктор Ривера <v.rivera@innopolis.ru>

Мануэль Маццара <m.mazzara@innopolis.ru>

Александр Чичигин <a.chichigin@innopolis.ru>

Университет Иннополис,

420500, Россия, респ. Татарстан, г. Иннополис, ул. Университетская, д.1.

Аннотация. Очень часто инструменты статической верификации являются результатом

многолетних научно-исследовательских работ. По этой причине разработки ведутся с

распределением задач внутри учебных заведений и с расчетом на способность старших

исследователей обеспечивать её непрерывность. В такой ситуации некоторые атрибуты

качества, такие как удобство и простота использования программного обеспечения,

чаще всего, не рассматриваются на должном уровне, что плохо сказывается на

возможности дальнейшей коммерциализации продукта. Для того, чтобы данные

инструменты получили широкое применение необходимо обратить внимание и

направить усилия при дальнейшей доработке на упрощение механизма взаимодействия

пользователей с приложением, для того, чтобы дать инженерам программного

Хазеев Мансур, Ривера Виктор, Маццара Мануэль, Чичигин Александр. Применимость AutoProof: учебный

пример верификации ПО. Труды ИСП РАН, 2016, том 28, выпуск 2, с. 111-126.

125

обеспечения возможность пользоваться инструментом без необходимости полного

понимания всех математических механизмов во всех деталях. Для того, чтобы обратить

внимание общественности на важность удобства использования инструментов

верификации, мы применили инструмент AutoProof к хорошо известному проекту

Tokeneer. Данный инструмент использовался для верификации части имплементации

реального проекта Tokeneer, в ходе чего были выявлены сильные и слабые стороны

AutoProof, и, как результат, был составлен список необходимых улучшений. Результат

данной работы иллюстрирует эффективность инструмента при верификации фрагмента

реального программного обеспечения: он позволил автоматически проверить

практически две трети всех свойств. В то же время, данное исследование показало

потребность в доработке документации к данному инструменту и подчеркнуло

необходимость улучшения как самого инструмента, так и среды Eiffel IDE.

Ключевые слова: статическая верификация, формальная спецификация, Eiffel,

Autoproof, контрактное программирование

DOI: 10.15514/ISPRAS-2016-28(2)-7

Для цитирования: Хазеев Мансур, Ривера Виктор, Маццара Мануэль, Чичигин

Александр. Применимость AutoProof: учебный пример верификации ПО. Труды ИСП

РАН, том 28, вып. 2, 2016 г., стр. 111-126 (на английском). DOI: 10.15514/ISPRAS-2016-

28(2)-7

Список литературы
[1]. B. Meyer, Touch of Class: Learning to Program Well with Objects and Contracts. Springer

Publishing Company, Incorporated, 1 ed., 2009.

[2]. P. Cousot and R. Cousot, “Abstract interpretation: A unified lattice model for static

analysis of programs by construction or approximation of fixpoints,” in Proceedings of

the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages,

POPL ’77, (New York, NY, USA), pp. 238–252, ACM, 1977.

[3]. E. M. Clarke, Jr., O. Grumberg, and D. A. Peled, Model Checking. Cambridge, MA, USA:

MIT Press, 1999.

[4]. D. W. Loveland, Automated Theorem Proving: A Logical Basis (Fundamental Studies in

Computer Science). sole distributor for the U.S.A. and Canada, Elsevier North-Holland,

1978.

[5]. J. Tschannen, C. A. Furia, M. Nordio, and N. Polikarpova, “AutoProof: Auto-active

functional verification of object-oriented programs,” in 21st International Conference,

TACAS 2015, London, UK, April 11-18, 2015. Proceedings, pp. 566–580, 2015.

[6]. B. Meyer, Object-oriented software construction, ch. 11: Design by Contract: building

reliable software. Prentice Hall PTR, 1997.

[7]. AdaCore, “Tokeneer.” http://www.adacore.com/sparkpro/tokeneer/download, accessed

in April 2016.

[8]. J.-R. Abrial, S. Schuman, and B. Meyer, “Specification Language,” in On the

Construction of Programs, R. M. McKeag and A. M. Macnaghten, editors, pp. 343–410,

Cambridge University Press, 1980.

[9]. J. Barnes, High Integrity Software: The SPARK Approach to Safety and Security. Boston,

MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2003.

[10]. K. R. M. Leino, “This is boogie 2,” tech. rep., June 2008.

Khazeev M., Rivera V., Mazzara M., Tchitchigin A. Usability of AutoProof: a case study of software verification. Trudy

ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 111-126.

126

[11]. N. Polikarpova, C. A. Furia, and B. Meyer, “Specifying reusable components,” in

Proceedings of the 3rd International Conference on Verified Software: Theories, Tools,

and Experiments (VSTTE’10) (G. T. Leavens, P. O’Hearn, and S. Rajamani, eds.), vol.

6217 of Lecture Notes in Computer Science, pp. 127–141, Springer, August 2010.

[12]. J. Spivey, “An introduction to Z and formal specifications,” Software Engineering

Journal, 1989.

[13]. C. A. Furia, C. M. Poskitt, and J. Tschannen, “The AutoProof verifier: Usability by non-

experts and on standard code,” in Proc. Formal Integrated Development Environment (F-

IDE 2015), vol. 187, pp. 42–55, Electronic Proceedings in Theoretical Computer Science

(EPTCS), 2015.

[14]. V. Rivera, S. Bhattacharya, and N. Cata˜ no, “Undertaking the tokeneer challenge in

Event-B,” To appear in 4th FME Workshop on Formal Methods in Software Engineering

(FormaliSE), 2016.

[15]. J. C. M. Baeten, “A brief history of process algebra,” Theor. Comput. Sci., vol. 335, no.

2-3, pp. 131–146, 2005.

[16]. J. Abrial, S. A. Schuman, and B. Meyer, “Specification language,” in On the Construction

of Programs, pp. 343–410, 1980.

[17]. J. Abrial, The B-book - assigning programs to meanings. Cambridge University Press,

2005.

[18]. J.-R. Abrial, Modeling in Event-B: System and Software Engineering. New York, NY,

USA: Cambridge University Press, 1st ed., 2010.

[19]. C. B. Jones, Software Development: A Rigorous Approach. Englewood Cliffs, N.J., USA:

Prentice Hall International, 1980.

[20]. “On modelling and analysis of dynamic reconfiguration of dependable real-time systems,”

in Proceedings of the 2010 Third International Conference on Dependability, DEPEND

’10, (Washington, DC, USA), pp. 173–181, IEEE Computer Society, 2010.

[21]. M. Mazzara, “Deriving specifications of dependable systems: toward a method,” in

Proceedings of the 12th European Workshop on Dependable Computing, EWDC, 2009.

[22]. R. Gmehlich, K. Grau, A. Iliasov, M. Jackson, F. Loesch, and M. Mazzara, “Towards a

formalism-based toolkit for automotive applications,” 1st FME Workshop on Formal

Methods in Software Engineering (FormaliSE), 2013.

[23]. V. Rivera, N. Cata˜ no, T. Wahls, and C. Rueda, “Code generation for Event-B.” To

appear in International Journal on STTT, 2016.

[24]. V. Rivera and N. Cata˜ no, “Translating Event-B to JML-Specified Java programs,” in

29th ACM SAC, (Gyeongju, South Korea), March 24-28, 2014.

[25]. G. T. Leavens, A. L. Baker, and C. Ruby, “Preliminary design of jml: A behavioral

interface specification language for java,” SIGSOFT Softw. Eng. Notes, vol. 31, pp. 1–

38, May 2006.

