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Abstract. The paper presents an overview of approaches used in verifying correctness of
multicore microprocessors caches. Common properties of memory subsystem devices and
those specific to caches are described. We describe the method to support memory
consistency in a system using cache coherence protocol. The approaches for designing a test
system, generating valid stimuli and checking the correctness of the device under verification
(DUV) are introduced. Adjustments to the approach for supporting generation of out-of-order
test stimuli are provided. Methods of the test system development on different abstraction
levels are presented. We provide basic approach to device behavior checking —
implementing a functional reference model, reactions of this model could be compared to
device reactions, miscompare denotes an error. Methods for verification of functionally
nondeterministic devices are described: the «gray box» method based on elimination of
nondeterministic behavior using internal interfaces of the implementation and the novel
approach based on the dynamic refinement of the behavioral model using device reactions.
We also provide a way to augment a stimulus generator with assertions to further increase
error detection capabilities of the test system. Additionally, we describe how the test systems
for devices, that support out of order execution, could be designed. We present the approach
to simplify checking of nondeterministic devices with out-of-order execution of requests
using a reference order of instructions. In conclusion, we provide the case study of using
these approaches to verify caches of microprocessors with “Elbrus” architecture and
“SPARC-V9” architecture.
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1. Introduction

The key feature of modern microprocessor architecture is multicoreness —
combining several computational cores on a single system on a chip (SOC). To
reduce time needed to access RAM (Random Access Memory), device can
incorporate several levels of cache hierarchy. Access to smaller caches could be
executed faster than access to larger caches of the next level of the hierarchy.
Caches can keep data for a single computational core or serve as data storage for
several of them at the same time. A memory subsystem of a multicore
microprocessor must maintain coherence of the memory. Task of maintaining
correct state of memory is usually solved by implementing cache coherence
protocol that defines a set of data states and actions on transitions between states in
a cache [1]. To optimize the design and the implementation of coherency protocol,
caches can include a local directory — the device which keeps information on states
of data in different components of the memory subsystem. Sufficient complexity of
protocols and their implementations in multilevel memory subsystems can lead to
hard to find errors.

To ensure the robustness of a microprocessor, one must thoroughly verify its
memory subsystem. The importance of the functional verification — the checking
of correspondence between specifications of designs and their implementations —
is obvious for many reasons. This activity could be found out to take more than 70%
out of the total design development time. Two main approaches to functional
verification of microprocessors are formal verification and simulation-based
methods [2]. Formal methods are exhaustive and based on analyzing static formal
model. Models are large and formal verification techniques face the “combinatorial
explosion” issue. Simulation-based methods are not exhaustive, but they are much
more flexible and thereby employed at different stages. We can verify not only the
static model of system, but also implementation. The object of simulation-based
verification is RTL (Register Transfer Level) model of device.

One of the approaches to microprocessor verification is execution of test programs
on the microprocessor model and on the reference implementation of its instruction
set, and comparison between them. Such approach is called system verification. It
should be noticed that caches are often invisible from the point of view of a
programmer. That is why designing programs capable for sufficient verification of a
microprocessor caches is a complex task.

One way to shorten the design of microprocessors is the application of unit-based
verification. It is assumed that system is divided into a set of components and the
general functionality of the components does not change [3]. Such a way of
verification is called stand-alone verification. This paper addresses the problem of
stand-alone verification of microprocessor caches of different levels.

The rest of the paper is organized as follows. Section 2 suggests an approach to the
problem. Section 3 presents the test stimui generation methods. Section 4 reviews
the existing techniques for designing test oracles. Section 5 describes a case study
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on using the suggested approach in an industrial setting. Section 6 concludes the
paper.

2. Common View on Stand-alone Verification of Microprocessor
Caches

The object of stand-alone verification is model of the device under verification
(DUV) implemented in hardware description language (usually, Verilog or VHDL).
It defines the behavior of the device on a register transfer level. The device
specification defines a set of stimuli and reactions based on the state of the device.
To check the correctness of the device it is included in a test system — a program
that generates test stimuli, checks validity of reactions and determines verification
quality. Based on its functions test system can be divided into separate modules —
stimulus generator, correctness checking module (test oracle) and coverage
collector. Methods of estimation of verification quality are similar to that of other
devices: information on functional code coverage is used to identify unimplemented
test scenarios and refine stimulus generation by adding new test scenarios and
improving existing stimulus generator. This approach is called coverage driven
constrained random verification. Besides this, there are some approaches to
microprocessor caches verification. In paper [4] authors propose using
decomposition and abstraction for standalone verification. In our previous projects,
we have used the decomposition methods for L2-cache verification: L2-cache was
divided into several submodules for which reference cycle-accurate bit-to-bit
models and test systems were implemented [3]. This approach allowed to find bugs
in submodules, but did not give the chance to check the cache in general. We also
can use a SystemC reference model as presented in [5] but it is employing if
SystemC models are used in other stages of an ASIC design flow. In paper [6] the
approach to test oracle development for nondeterministic models is presented.
However, this approach refers only test oracle developing of in-order cache
execution and has no recommendation for caches with out-of-order execution. In
such a way, the main goal of this work lies in developing some new techniques of
standalone verification of microprocessor caches with different ordering of stimulus
execution.

Cache behavior exhibits a set of properties that should be considered while
designing a test system for verification of the device:

e Transactions (or requests) in the microprocessor system can be separated
into three groups: primary requests — requests from subscribers (other
caches, cores, etc.) to perform an operation with the memory (load/store),
secondary requests — responses of the test system to some reaction of the
cache, and reactions — output transactions from the cache

e A device implements a part of cache coherence protocol

e A device works independently with different cache lines — areas of
memory of fixed size
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e Requests that work with the same cache line are serialized. It means that
requests complete in the same order as they are received

e Device implements data eviction mechanism and protocol to determine
victim line (usually some variant of least recent used algorithm (LRU)).
Using these properties of the device under testing while designing a test system
could lead to the simplified structure using separate stimulus generators — the
primary requests generator and the secondary requests generator. We also can use
the fact that requests are serialized for checking the correctness of caches with out-
of-order execution.

3. Test Stimuli Generation

3.1 The common approach

Test stimuli are usually generated at more abstract level than register transfers and
interface signals. Based on the logical and functional similarity, groups of device
ports are combined into interfaces. Interfaces are used to transfer transaction level
packets [7]. To transform packets between different representations on signal and
transaction level, serializer and deserializer modules are implemented[8].

Test system should generate stimuli similar to that in a real system. Should be noted
that primary requests in real microprocessor are consequences of some memory
access operation (loading, storing data, eviction, prefetch, atomic swap, etc).
Secondary requests are answers for reaction packets from the device. It is usually
convenient to use only a sequence of primary requests as a test sequence, and
generate secondary requests automatically in corresponding modules. Properties of
secondary requests could be changed based on secondary request generation
modules configuration.

In the test system interfaces are combined into groups that represent working with
some devices. A test system should simulate the state of these devices to generate
correct responses from it.

3.2 Generation of Primary Requests for Caches with Out-of-
order Execution

Properties of the devices that support out-of-order execution should be considered
while designing a stimulus generator:

e Order of primary request can be different from the order of memory
accesses in initial program

e Primary request could be divided into several messages accepted at
different times. Messages for one primary request are identified by
common value of tag field

e Request canceling mechanism is present.
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To support out-of-order execution of memory access requests in a cache common
approach was augmented. The module responsible for transferring of primary
requests was replaced with high-level module that includes components working
with interfaces of primary request parts. The order of the request for the module is
identical to that of the test program, and reordering of request parts is executed
based on module settings.

4. Correctness Checking

Let us consider the existing approaches to reaction checking. Richard Ho suggested
two main methods: self-checking tests and co-simulation [9]. Co-simulation is a
method for reaction checking in which an independent reference model is used
along with the target design model [4]. The two models are co-simulated using the
same stimuli and their reactions are verified.

A reference model is implemented either in general purpose programming language
(C, C++) or in specialized hardware verification language (SystemVerilog, “e”,
Vera). If test stimuli are the same, difference in model and device reactions means
an error somewhere in the system[8]. Reference models could be cycle-accurate or
untimed functional. To implement the cycle-accurate model, behavior of the device
must be specified on a register transfer level. Behavior of caches usually defined on
a higher level of abstraction, because cache is not an essential part of a
computational pipeline of a microprocessor. A cache is not a subject of strict
temporal requirements. Besides this, the development of cycle-accurate model is
labor-intensive when the design specification is changing and no stable through the
verification phase. To simplify the development of reference models TLM
(Transaction Level Modeling) is often used [4]. To verify caches we also propose to
implement functional models working on transaction level.

4.1 Checking of nondeterministic caches

If one wants to develop functional model of cache, its specification must have
property of transaction level indeterminism. That is, identical transaction level
traces of stimuli (a set of RTL traces is mapped into this single transaction level
trace) must cause identical transactional reaction trace. It should be noted that
caches often include a set of components (eviction arbiter, primary request arbiter
serving different requesters), that do not hold that property. That is, different RTL
traces that are mapped into the single transaction level trace could lead to different
reaction traces. There are several methods to check the behavior of nondeterministic
devices.

4.1.1 “Gray box” checking

One of the ways to solve aforementioned problem is to replace usual “black box”
method of device verification. That is, we should not consider only external
interfaces of the device while analysing its behavior. To determine which variant of
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behavior was happened in the cache one could use “hints” from the implementation.
To use this approach, a set of internal interfaces and signals is defined and its
behavior is specified. This interfaces must be chosen in a way that information on
their state could be used to eliminate nondeterminism. In general, for caches such
signals are the results of primary request arbitration and the interfaces of finite
automata of the cache eviction mechanism. Additionally, that information can be
used in a request generator and for the estimation of verification quality. This
method is usually easy to implement. Drawbacks of this methods are additional
requirements for specification and reliance on interfaces that could also exhibit
erroneous behaviour.

4.1.2 Dynamic refinement of transaction level model

Another approach is to create additional instances of model for each variant of
behavior in case of nondeterministic choice in the device [6]. Each reaction is
checked against every spawned device model. If reaction is impossible for one
variation of behavior, then it is removed from set. If set of possible states after some
reaction becomes empty, the system must return an error. In general, this approach
may cause exponential growth of number of states with each consecutive choice.
However, for caches it could be implemented efficiently, because of several
properties of caches: serialization of requests and cache line independence.
Information on which nondeterministic choice was made in the device (for use in a
request generator or for verification quality estimation) could also be extracted from
reactions. The strong point of the approach compared to “gray box” method is
elimination of reliance on implementation details of the device. Drawback is
additional complexity of implementation.

4.1.3 Assertions

A test system generator imitates an environment of DUV. It also should be noticed
that interaction between the device and its environment must adhere to some
protocol. Based on that protocol, we can include functional requirements of
protocols as an assertions in the generator. Then, violation of an assertion signals an
error. Usage of assertions is an effective method of detection of a broad class of
errors. In addition, to assertions that are common for all memory subsystem devices,
several cache-specific assertions could be included. They represent invariants of
cache coherence protocol. To check this invariants, coherence of states of a single
cache line is analyzed in all parts of test system after each change.

4.2 Checking caches with out-of-order execution

Caches that support out-of-order request execution exhibit properties of limited
nondeterminism. That is the memory access request are received in the device in
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multiple parts from several interfaces, with different unspecified timing
characteristics. On the other hand, there is the “reference” order of memory access
operations presented in original test program. If out-of-order execution introduces
error to the canonical order, device must be cleaned and erroneous transactions must
be restarted. Results of operations that completed successfully are deterministic.
Based on these properties of the device, we propose to implement models of two
types:

e “Ignoring the cancelled transactions” mode

e  Strict checking mode
In the first mode the result of checking is delayed until the moment of the request
full completion. If completion was unsuccessful, checks are not made. In the strict
mode we use the approaches which is similar to the dynamic refinement of model.
Set of possible device states is maintained, and it is augmented with each stimulus
and reaction. The number of possible states is limited by the number of
simultaneously executed out-of-order requests. Shortcomings of the first mode are
delays between erroneous transaction and the execution of actual checking and
reduction of the set of errors that could be detected (for example, unnecessary
cancel of request will not be detected). On the other hand, implementing that mode
is much simpler task, so verification could be started sooner.

5. Case Study

The approaches described above were used for stand-alone verification of L2-
cache[3] and the L3-cache[6] of the microprocessor with “Elbrus” architecture and
L1Data-cache (L1dc) of the microprocessor with “SPARC-V9” architecture. The
test systems for stand-alone verification of this caches were developed using
Universal Verification Methodology (UVM) [10].

5.1 Checking the “SPARC-V9” L1Data-cache with out-of-order
execution

L1dc supports out-of-order execution of memory access operations. The test system
structure for L1DC is presented in fig. 1.

| Core, ROB Model |

Interfaces with ROB$

Stimuli N
Lldc Models L1ldc RTL L1dc Checker

Reactions

x Interfaces with L2 i
[ e ]

Fig. 1. The principal structure of the test sytem forL1Data-cache of the “SPARC-V9”
microprocessor.
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The test sequences for L1dc are the memory access assembly instructions. They are
sent to computational core and the reordering buffer (Core, ROB Model). In this
module, the instructions are split into multiple messages (containing either operation
type, address or data). These messages are reordered and sent to DUV. Additionally,
this module keeps information about initial order of instructions received, to send
completion messages in correct order.

5.2 Checking the “Elbrus” L3-cache with nondeterministic
behavior

The test stimulus generator was developed to verify the L3-cache of the “Elbrus”
microprocessor[6]. It is based on simplified model of microprocessor core with the
L2-cache and the model of system commutator that simulates work in
multiprocessor environment. If multiple cores request access to a single cache line,
then the order of their execution is unspecified and defined by the device
microarchitecture. Internal structure of a cache is also a subject of change, due to
changes to requirements of physical design. To verify the device the approach based
on dynamic refinement of behavioral model was chosen. To supplement that
approach, a set of assertions were implemented in stimulus generator to check
validity of the system state. The approach allowed using the same test system with
minimal alteration for the next iteration of the “Elbrus” microprocessor.

6. Conclusion

The approaches described in this paper allows avoiding some shortcomings. It could
help to avoid excessive subdivision of the verified unit on small subdevices and
developing cycle-accurate models of them (as we done in our previous projects) on
the one hand and the development and maintaining of complex cycle-accurate
reference models of caches on the other. The approaches were used for stand-alone
verification of caches of microprocessors developed by MCST. Stand-alone
verification allowed finding several errors in different caches. The intermediate
results of application introduced approaches in the multicore microprocessor caches
verification if presented in table 1. We already had verified the L3-cache of the
“Elbrus” microprocessor using another approach and we could find new 7 errors
more with help of developed tests system based on nondeterministic caches
checking approach.

Verified caches
L2-cache L3-cache L1 data cache
“Elbrus” “Elbrus” “SPARC-V9”

Number of bugs 4 7 12

The test systems are developed as a UVM-environment. They were implemented to
be flexible enough to set both the pseudorandom and directed test sequences. Using
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of aforementioned approaches while developing test systems helped find some new
errors and simplify the test system development. Approaches could be used to verify
other caches of different multicore microprocessors regardless of its architectures.

Our future research is connected with improving the error diagnostics and
localization of found bugs.
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AnHoramus. B cratee mnpuBemeH 0030p METOIOB, NPHMEHSEMBIX IIPH IIPOBEpKE
KOPPEKTHOCTH TOBEICHUSI K3ILI-MAMATEll MHOTOSAEPHBIX MHKPOMpoIeccopoB. OMucaHbI
oOmue CBOHCTBAa YCTPOMCTB MOJACHCTEMBI HNaMATH MHKPOINPOLECCOpa, a TAaKkKe CBOMCTBa,
crienu(UYHbIC JUIS KIII-MaMATeH, 1 METOJ| TIOJICPKKH COTIACOBAHHOCTU COCTOSIHUS ITaMATH
B CHCTEME Ha OCHOBaHMU IIPOTOKOJIA KOTepeHTHOcTH. IlpencraBieHbl HOAXOABI K
NIPOEKTUPOBAHUIO TECTOBOM CHCTEMBI, I€HEpallUd KOPPEKTHBIX TECTOBBIX BO3JCHCTBUH M
NIPOBEpKE  IPABWIBHOCTH  IIOBEIEHHUsA  TECTHPYeMOro  ycTpoiictBa.  IIpemioskeHbl
Mou(pUKAMK OOIIEro MoAXoAa K TIeHepaliH TECTOBBIX BO3JCHCTBHII ST YCTPOUCTB C
BHEOUEPEHBIM HCHONHEHHEM HHCTpyKuuil. IlpuBeneHbI crmocoObl pa3pabOTKH TECTOBBIX
CHCTEM Ha Pa3UYHBIX YPOBHAX aOCTpakiuu. B craThe omucaH OCHOBHOM cIOCOO MPOBEPKU
MOBEACHUs yCTPOMCTBA HAa YpPOBHE TpPaH3aKUMH — pa3paboTKa 3TAIOHHOW MOBEICHYECKOU
MOZENH AJIsl HOCIEAYIOIETO CPABHEHHS PEAKIMI YCTPONCTBA € 3TAJTOHHBIMHU; PACXOXKACHUS
B PEAKIMIX CHTHAIMBHPYIOT 00 omubke. BrineneHs! kpuTepun NPUMEHHMOCTH IaHHOTO
noaxona. Onucansl METOABI BEpUPHUKAINY YCTPOHCTB, MOBEACHUE KOTOPHIX (DYHKINOHATIBHO
HE JIETePMHHHPOBAHO Ha YPOBHE TPAaH3aKLUI: METOJ| «CEeporo SIuKa», Oasupyromuiicss Ha
aHanM3e BHYTPCHHHX UHTEpQEHCOB YCTPOWCTBA, MJIsI YCTPaHEHHS BO3HMKArOUIeH
HEOMNpPEAENEeHHOCTH B TOBEAEHMU YycTpoiicTBa. Kpome Toro, mpuBegeH HOBBI METOZ,
OCHOBAHHBIH Ha JUHAMMYECKOM YTOUHEHHM MOBEIEHYECKOH MOJENH Ha OCHOBE PEaKINU
ycrpoiictBa.  Taike  paccMOTpEHbl  NMPEUMYILIECTBA  MCIIOJIB30BAHUS  YTBEP)KIACHHUH
YTBEpXKICHHS B T€HEPAaTOpe TECTOBBIX BO3JAEHCTBUI B KaueCTBE JOMOJIHUTENBHBIX METOJOB
oOHapyxeHHs: omHOOK. B paboTe mpuBeneH METOJ, MO3BOJIIONMH YIPOCTHTH IPOBEPKY
MOBEJCHUS YCTPOWCTB C BHEOUCPEAHBIM MCIOIHEHHUEM MHCTPYKLUH, OCHOBaHHBIHM
(OpPMHUPOBAaHUY STANOHHON oOuepeny WX BBHINONHEHUS. B 3akmodeHHe INpencTaBIeHBI
pe3yabTaThl MPUMEHEHHS MPEUIOKECHHBIX IOJXOAO0B K BEpPHUHKAIMU  KOII-TTAMITEH
MHOT'OS,IEPHBIX MUKPOIIPOLIECCOPOB apXUTEKTYPHI «DIp0pyc» u «SPARC-V9».
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