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Abstract. Null pointer dereferencing is a well-known bug in object-oriented programs. It can
be avoided by adding special validity rules to a language in which programs are written. Are
the rules sufficient to ensure absence of such exceptions? This work focuses on null safety for
intra-procedural context where no additional type annotations are needed and formalizes the
rules in Isabelle/HOL proof assistant. It then proves null-safety preservation theorem for big-
step semantics in a computer-checkable way. Finally, it demonstrates that with such rules null-
safe and null-unsafe semantics are equivalent.

Keywords: null safety; void safety; static analysis; Eiffel; formal methods; big-step operational
semantics; preservation theorem; operational semantics equivalence.

DOI: 10.15514/ISPRAS-2016-28(5)-2

For citation: Kogtenkov A.V. Mechanically Proved Practical Local Null Safety. Trudy ISP
RAN/Proc. ISP RAS, vol. 28, issue 5, 2016. pp. 27-54. DOI: 10.15514/ISPRAS-2016-28(5)-2

1. Introduction

In his talk at a conference in 2009 Tony Hoare called his invention of the null
reference in 1965 a “billion-dollar mistake™ ([8]). The reason is simple: most object-
oriented languages suffer from a problem of null pointer dereferencing. What does it
mean in practice? It is possible that at run-time some variables (or expressions in
general) do not reference any existing object, or are null. On the other hand the core
of object-oriented languages is in the ability to make a call on an object. Given that
there is no object when the reference is null, the run-time should signal to the program
about the issue.

Provided that most popular languages do not prevent null-pointer dereferencing at
compile time, it remains one of the day-to-day issue discovered in open source and
private software. As of May 2016 a public database of cybersecurity vulnerabilities
known as Common Vulnerabilities and Exposures (CVE®) [3] operated by MITRE
and funded by Computer Emergency Readiness Team (CERT) has 727 entries
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mentioning null pointer dereference bugs explicitly. The distribution by years is
shown in figure 1.
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Fig. 1. Null pointer issues (such as null pointer dereferencing) in Common Vulnerabilities
and Exposures database

A solution to this problem was proposed in [15] as an extension of the type system of
Eiffel with a set of so called certified attachment patterns (CAP). Similar approach
was proposed for Spec#, but was not adopted for inclusion into C# and the Common
Runtime Language because of difficulties caused by required changes in the
underlying platform and unsoundness of the prototype implementation ([2]). Indeed,
it was discovered that a simple extension of the type system with “non-null” types
does not allow for safe initialization of objects ([22]) and the void-safety property can
be compromised. (In Eiffel null references are known as void references, hence the
name “void safety”. In this paper void and null are used interchangeably.) The same
paper proposed a fix by introducing special annotations [Free] and [Unclassified] to
source code and some new rules that should be checked by a compiler. Because the
cases when the annotation is required are rare, an attempt to use a light-weight
solution that does not require any additional annotation is implemented in [5]. Even
though both approaches were shown to be usable, neither is accompanied with a
formal machine-checkable soundness proof of the proposed type systems combined
with additional restrictions placed on source code.
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Current work formalizes the part related to certified attachment patterns, relaxes void
safety rules for local intra-procedural context and proves that the rules ensure void
safety with a generic proof assistant Isabelle/HOL.

2. Overview

Existing proposals ([2, 15, 22]) that address void safety issue in languages supporting
null references use a type system extended with a notion of detachable and attached
types for expressions that may and may not produce a null value. This extended type
system is then uniformly applied to the language (e.g., [4]) meaning that types of
variables are specified explicitly. This type information is then used to check
reattachment validity rules. For example, an assignment x := y would be valid only
when a type of y conforms to a type of x. If the type of x is attached, the type of y
should be attached as well.

This rule makes perfect sense for class attributes that can be accessed in different
features. Type information is essential in that case because objects can be aliased at
run-time and it would be impossible to do type checks at compile time modularly.
However, for local variables there is no aliasing, or, more precisely, the locals can be
changed only in a current feature. As a result it should be possible to get rid of type
annotations altogether. It turns out that CAPs are absolutely sufficient for local
variables and attachment annotations can be safely discarded.

The CAPs for local variables can also be applied to function’s Result. For example,
one can replace the code on the left with the code on the right:

Joo: X

do foo: X
if attached something as r then do .
Result ‘= r Result := something
else if not attached Resulf then
Result := something_else_attached en dResult = something_else_attached
end
end end

This allows not only for less code in new classes, but also for keeping original code
unchanged if it follows this pattern.

Certified attachment patterns in [4] treat every boolean connective as a single use
case: their combinations or nesting are not supported. Even though it might be a good
practice to avoid complex expressions and to replace them with short and simple ones,
when the first version of the compiler supporting void-safety was released, some users
complained about missing cases. Moreover, complex expressions might be useful
when code is not written but is generated automatically — then it can be arbitrary
complex. This work addresses the demand by replacing arbitrary boolean connectives
with conditional expressions and specifying CAPs in terms of these expressions. As
a result, expressions of any complexity or nesting can be supported.
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Even though simple branches and loop conditions were taken care by the original
CAPs, the rules did not cover loop bodies. Simple analyses like definite assignment
required by Java [7] can be done in one pass because on every iteration a variable can
only become assigned, not the reverse. This does not work for void safety. A local
variable can become attached or void on different iterations, or even to flip-flop on
every iteration from attached state to detached and back as shown in the example on
figure 2.

from
X := something_attached
y := Void
until
whatever
loop
tmp =y
yi=x
X :=tmp
end
x.foo

Fig. 2. Example of an issue with loop CAPs

If safety checks rely only on type declarations and x is of a detachable type, there are
no guarantees that it will be attached after the loop (the original rules are quite
pessimistic). As demonstrated by this work, the rules for loops could be based on
fixed-point computation to meet program developer’s expectations.

A set of CAPs specified in [4] do ensure void safety. However, they cannot be used
in practice for any large scale application without provision for rules to escape void
safety checks. It is just physically impossible to write 285 (or any other number of)
classes in one go without intermediate compilation and testing. If at some point a
feature is returning a value of a deferred class and there are no effective descendants
of this class yet, the program will not compile. The solution adopted in [6] is to rely
on exceptions, including forced checks of assertions. This triggers so called “design
mode” when compiler ignores attachment status in type checks. Modeling the mode
in the formalization essentially affects proofs but makes it possible to show soundness
of real-life analysis.

To my knowledge this is the first attempt to formalize void safety rules and program
semantics with attachment properties in a proof assistant environment. Moreover, this
is the first time a formal void safety model is mechanically checked.

Presented formalization is done with big-step semantics style that is known to be
suitable for proving preservation property, but to have issues with proving progress
property. To address this, two different semantics are considered: void-unsafe and
void-safe. It is demonstrated that both are equivalent as soon as void safety rules are
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satisfied. A similar proof scheme can be applied to small-step semantics to prove
progress property in that formalism if required.

In order to remain sound the formalization relies on attachment properties of
expressions. Therefore, extending the approach to an inter-procedural context
requires non-local void safety guarantees that can be achieved with a void-safe type
system. This is done in Eiffel by augmenting its type system with attached and
detachable marks added to type declarations and by specifying conformance and
initialization rules that ensure an expression of an attached type always yields an
object. Abstracting away language dissimilarities, the proposed rules can be used in
other languages including mainstream ones as soon as they strengthen their type
systems to be not only type-safe, but also null-safe.

All presented void safety rules are also implemented by me in the compiler [6] and
are in production.

3. Formalization

Isabelle/HOL was successfully used in different projects starting from algebraic
topology to verification of an operating system micro-kernel ([9]). It is build on top
of a logic-neutral core called Pure with a specialized formalism of Higher-Order
Logic (HOL). Talking about safety properties it was used to verify type soundness of
JinjaThreads using operational semantics for concurrent execution of Java-like
programs ([11, 12, 13]). Some decisions used in that formalization are adopted in the
current work, some are new.

Even though selection of Isabelle/HOL is both voluntary (I knew it better) and
traditional (it was used to formalize and prove type safety of Jinja), there are some
other features that make it more attractive compared to other proof assistants:

e ability to write forward proofs in Isar language that makes reasoning closer
to conventional textbooks;

e proof automation allowing for finding direct (i.e. not involving case
analysis or induction) proofs automatically without diving into low-level
details;

¢ built-in document preparation system enabling to type set all formulas (e.g.
in this paper) directly from verified lemmas and preventing from using
them for unfinished or failed proof scripts.

3.1 Translation of source language

Source language syntax is modeled in Isabelle/HOL with appropriate constructors of
a datatype expression (figure 3). In most cases there is one-to-one relation between
source language and Isabelle/HOL terms with two important points of divergence:
one for voidness tests and the other one for operator expressions.
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exrpression =
Value value — Value (constant)

Local name — Local variable

expression ;; exrpression — Sequence
name ::= expression — Assignment

expression.name (expression list) — Feature call

if expression then expression else expression end

|
|
|
|
create name | — Creation instruction
|
| - Conditional expression
|
|

until expression loop expression end — Loop
attached type expression as name — Object test
Exception — Exception

Fig. 3. Datatype expression

Voidness tests are source language expressions that check if a particular expression
evaluates to Void at run-time or not:

expression I= Void

However, there is a more powerful construct that can be used instead of voidness
tests: object tests. The most general form of an object test has 3 parts: a type, an
expression and an object test variable:

attached {SOME_TYPE} expression as my_variable

The type is used to determine whether an expression is attached to an object of a type
that conforms to the given one. If this is the case then the expression value is attached
to the variable my_variable and the object test evaluates to True. Otherwise, it

evaluates to False. The key observation here is that if the object test succeeds, both
expression and my_variable are attached. Therefore, the type part of object test is

irrelevant in most of the following discussion. When the type part is absent, the object
test behaves like a regular voidness test. So the test expression /= Void is translated

into
attached None expression as unique_variable

where unique_variable is a unique name not used anywhere else in the code.

The optional type part is still reflected in the formal semantics of the object test
expression (see section 5.1).
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3.2 Practical considerations

3.2.1 Design mode and unreachable code

As mentioned in section 2, there should be means to develop void-safe applications
gradually. The most important issue is with features that take or return values of
attached types. If there are no suitable effective classes yet, one cannot call such
features or properly initialize their results. The idea to address such a need is to treat
some code as unreachable. If the code is unreachable, there is no harm to skip void
safety checks. In [6] the following constructs are used as indicators of unreachable
code:

o enforced check: check False then end
¢ infinite loop: from ... until False loop ... end

o false postcondition: ensure False

Note that in general assertion checks are optional at run-time. However, to preserve
soundness of void safety rules the assertion ensure False is always checked at run-
time and triggers an exception. As a result, clients calling a feature with such a
postcondition can rely on the fact that it never returns normally.

[12] proposes to model definite assignment property in presence of exceptions in Jinja
with a type set option. A value None corresponds to an exceptional state and a value
Some x — to a normal state. x is then a set of names of local variables that are
definitely assigned. This approach perfectly works to model exceptional cases and
unreachable code during attachment analysis too. But instead of using somewhat ad
hoc rules to handle set option, a new type fopset is introduced. It is obtained from a
regular set type by adding a new top element. The operations are defined as shown in
figure 4.

XCT =True XuT =T
TLC[A] =False Tux =T
Ac[B) =acp AIUIBI=[AUB]
T XNT =X
ze T =True
TNX =X

ve' [Al=eed [ inip—1anB)

Fig. 4. Operations on topset.

The type fopset is proved to be a complete lattice and a distributive lattice. These

properties are essential in proofs involving fixed point of a transfer function (section
4.1).
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Transitions of a local variable status from detachable to attached and back is modeled
by two operations similar to insertion to a set and removal from a set. But neither
insertion nor removal changes a top element T :

Aor=AU{z}] Ter=T
Aoz =An[{z}] Tez=T

3.2.2 Operator transformation

A source code snippet, where a variable is considered attached because of a previous
test to Void or when it is an object test local (see [4]), is called an attachment scope of
this variable. The following kinds of scopes exist:
1. Control flow scope — an attachment scope based on language constructs that
change execution flow.

2. Operator scope — an attachment scope based on semistrict boolean
operators.

In practice both kinds of attachment scopes are applied together. An exhaustive list
of scope combinations involving at most one unary and at most one binary boolean
operator in a conditional instruction is given in figure 5.

1 if attached x and then ... else ... end
if and [then] attached x then ... else ... end
2 if attached x and then then ... else ... end
if not attached x or then ... else ... end
3 if or [else] notattachedx then ... else ... end
if implies  not attached x then ... else ... end
4 if not attached x or else then ... else ... end
if attached x implies then ... else [... end

Fig. 5. Scope combinations (code fragments where variable x is considered attached are
marked with . . . ).

The language standard [4] specifies scopes of object test locals in terms of instructions
and boolean operators, there are § clauses in total: 3 for expressions, 2 for conditional
instructions and expressions, 1 for loops and 2 for assertion clauses. It might be
tempting to mimic the rules in the logical framework and then prove that they are
sound. But this approach has several drawbacks:

e The formalization would be limited to the selected set of boolean operators.
Applying results to another language with different set of boolean operators
would not be straightforward if some operators of that other language are
not covered.

e There are 3 semistrict boolean operators, 2 regular operators and one unary
operator. Adding them to the formalization would mean either addition of 6
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new constructors to the datatype expression (figure 3) or addition of 2 new
constructors to this datatype and introduction of new datatypes for
operators with specific operator kinds. In both cases all induction-based
proofs would have to be performed for new constructors.

e There is already some redundancy in the current operators because some of
them can be expressed in terms of others using, for example, properly
adapted De Morgan’s laws.

e The rules as specified in the standard are not general enough and do not
allow for deeper analysis of expressions. For example, they do not cover
code like if not not attached x then ... end but cover its equivalent
if attached x then ... end.

Generalization can be done with just 3 variants of expression: truth constants,
conditional expressions and sequences. Every boolean expression can be translated
into a conditional expression with nested boolean constants and optional sequences.
The conversions of the boolean operators mentioned earlier and some others added
for completeness are listed in figure 6. Following the terminology used in [4] they are
called unfolded forms of boolean operators.

Operator Original expression Translation
Negation not ¢ if ¢ then False else True end (1)
Conjunction el and then e2 if e/ then e2 else False end 2)
el and e2 if ¢l then e2 else ¢2; False end (3)
Disjunction el or else e2 if ¢/ then True else ¢2 end (@]
el ore2 if ¢/ then e2; True else e2 end (5)
Implication el implies e2 if ¢ then e2 else True end (6)
not el or e2 if ¢] then e2 else ¢2; Trueend (7)
Converse not ¢/ and then ¢2  if e/ then False else ¢2 end ()
nonimplication not e/ and e2 if ¢/ then e2; False else ¢2 end (9)

Fig. 6. Unfolded forms of boolean operators

It turns out that all unfolded forms of boolean operators are variants of the following
patterns:

if x then y; Const else z end
if x then y else z; Const end

where Const is either True or False. So instead of reasoning in terms of various
forms of boolean operators and their combinations it is sufficient to reason in terms
of special forms of conditional expressions. This approach does not only go beyond
single-level scope definitions, but also allows for ternary operations in addition to
unary and binary ones.
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The special form of the branches ending with a boolean constant is captured by two
functions defined in Isabelle/HOL as:

is_false (c ;; False.) = True

is_false _ = False is_true _ = False

is_true (c ;; True.) = True

The cases from figure 6, when instead of an expression followed by a constant there
is just a single constant False or True, can be represented by the sequences
unit ;; False, orunit ;; True. respectively. It would be possible to handle constants
False and True directly, however it would just add one more case in the function
definitions without any additional benefit.

The functions is_false and is_true can be also generalized by adding other variants

of expressions that knowingly produce fixed boolean constants, for example
is_true (if bthen e; else ea end) = (if (is_true b) then is_true e;)

V (if (is_false b) then is_true ea) V (is_true e; A is_true es)

This and other more complicated cases, however, are covered by optimization and
code transformation techniques familiar from compiler technology, such as common
sub-expression elimination, constant propagation, invariant code motion and others
([17, 18]).

Read-only scopes. General rules that define scopes are intermingled with the rules
of an attachment status transfer function if (unlike [4]) the scopes are seen as means
to determine potential attachment status of an arbitrary variable, not just a read-only
one. For the sake of simplicity, consider the scopes of read-only variables first
because they may be defined without bringing general attachment rules into play.
Scopes are defined for two cases: when an associated expression evaluates to True
and when it evaluates to False:

Definition 3.1 (Scope function). 4 function that computes a set of read-only variables
that are considered attached for an expression that evaluates to a particular boolean
value is called a scope function.

A scope function for an expression e that evaluates to True (False) is called positive
(negative) and is denoted +|e] (—|¢]).

The rules to compute scope function are shown in figure 7. Only expressions that can
produce non-empty sets of attached variables are listed. In all other cases the
associated sets are empty. The notation[{...}] is used for sets adjusted to handle

design mode (section 3.2.1).
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+[attached t Local n’ as n] = [{n’,n}] (10)

+|attached t e as n] = [{n}] (11)
if e is not a variable

+[] =[] (12)

-] =T1a] (13)

—[b) U +[ez] ifis_false eq
+[if b then ey else ez end) = { +[b] U +[eq] ifis_falsees  (14)

[o] otherwise
—[b) U —[ez] ifis_true e

—[if b then ey else ex end) = { +[b] U —[ey] if is_true es (15)
[2] otherwise

Fig. 7. Scope rules for read-only variables

The rules for object tests follow the explanations ealier: if an object test evaluates to
True. (positive scope function), the corresponding object test variable is attached.
Moreover, if the object test expression is a variable it is also known to be attached.
Two other cases cover general conditional expressions. Positive and negative scope
functions recursively depend on each other. If a conditional expression does not
evaluate to a boolean constant in at least one of its branches, nothing can be said about
attachment status of object test locals involved in its sub-expressions. The reason is
that information whether an object test succeeded, be it a conditional expression b or
one of the branch expressions e; or e, is lost in that case.

Consider one of the cases when a branch expression meets a condition to produce a
known constant value, for example, is_false e; . Because this is the rule for positive

scope function +[if b then e else e, end], the computed sets correspond to the case
when the conditional expression evaluates to True. . From the condition is_false e;

we know that » could not have been evaluated to True,. . Also, we know that the only
case to get True,. for the whole expression is to get True, for es. Therefore, a set of

attached variables in that case is a union of the negative scope function for » and a
positive scope function for es.

Other cases can be explained the same way. As an example let’s see how the rules
work for double negation:
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-+ [not not attached x|
= +[if not attached x then False else True end] by (6)
= —[not attached x] L +[True] by (14)
= —[not attached x| by (12)
= —[if attached x then False else True end] by (6)
= +][attached x| LI —[False] by (15)
= +[attached x| by (13)

What if for a given conditional expression both is_false e; and is_false ez would be

true? Would the positive scope function yield a consistent result? For sub-expressions
the function gives +[e;] = [@] and +[ex] = [&]. So the result for the whole

conditional is +[b] and —[b] at the same time that looks weird. The puzzle is solved

by noticing that in this case the whole conditional expression evaluates to False,,
and does not fit the assumption that it produces T'rue. (see definition 3.1).

4. Attachment properties

4.1 Transfer function

Given a set of attached variables A, a transfer function A > ¢ computes a set of
attached variables for a given expression e. It is defined inductively as 5 mutually
recursive functions:
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. > - the transfer function itself (figure 8)

. >+ - computes a set of attached variables with an assumption that the expression

> evaluates to true/false (positive/negative scope) (figure 10)

. >>> - computes a set of attached variables for a given list of expressions (used to
model arguments in feature calls) (figure 11)

tells if a given expression is attached (figure 9)

Ly
A > Value v =A
A D> Local n =A
AD ey ;e =AD> e > ey
A D> create n =A&n
A > attachedteasn =AD>e
A > Exception =T
Abnice :{(Abe)@n ifA—e
(A>e)on otherwise
A>e.f(a) =A>eD>D>a
A ifcthene; elseesend=A>+c>er MMA>—cD> eg
A > until e loop b end =ApDx (—e>b)>+e

Fig. 8. Transfer function

Let’s have a look at the most interesting cases. For an assignment a variable is added
to a set of attached variables after the assignment if the source expression is attached
and is removed from the initial set otherwise.

An attachment status of an expression is T'rue if it is a value other than Void , a local
in the set of attached variables, or, a conditional expression with both branches
attached (figure 9). Note that an attachment status of a conditional branch takes into
account whether it is positive or negative.

A — Value v = v # Void,
A — Local n =nec' A
A= ifcthenej elseesend=A>+c—>e1 NAD>—c—eo
A— = True
Fig. 9. Attachment status function

A similar formula is used for the transfer function on a conditional expression: one
branch is evaluated with an assumption that a condition is true (the part A >+ b) and
the other one — when it is false (the part A >— b).
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A special value T is used for an exception to indicate that all variables can be safely
considered as attached.

Positive and negative transfer functions (figure 10) differ from a regular transfer
function only in two cases: for object tests and for conditional expressions. They
mimic the scope function discussed in section 3.2.2.

A >+ attached T Local n" as n = A U [{n’, n}|

A >+ attached T e as n =A>elU[{n}] ifeisnota variable
AD>—bD>+ e if is_false ey

AD>+ifctheney elseesend = CA>+b>+ e if is_false e
A > if b then eq else e; end otherwise
AD>—bD>— e if is_true eq

AD>—ifcthenejelseesend = CA>+b>— e if is_true ey

A D> if b then ey else es end  otherwise
AD+e =A>e
A>—e =ADe
Fig. 10. Transfer functions for positive and negative scopes

For a loop the transfer function is specified using a loop operator. A loop body is
evaluated in a negative branch of an exit condition and the effect of the loop as a
whole is evaluated in a positive branch of the same condition. The loop operator is
defined as a greatest fixed point for AX. X>— e > b where e is an exit condition and
b is a loop body:

Apx (—e>b)=gfp (MX.ANNXD>—e>b)

The strange form of a loop function reflects what is implemented in the compiler. It
reuses the same set of classes and functions for both conditional expressions and for
loops. The transfer function for loops is then implemented by iterating over a loop
until it stabilizes. A theorem from HOL-Library states that in this case the result is
equal to the greatest fixed point. The theorem depends on monotonicity of the
function. Firstly, observe that the loop function is monotone on both arguments, but
we need only monotonicity on the last one:

Lemma 4.1 (Loop function monotonicity). mono f = mono (AX. AN fX)

Then, instead of proving lemmas with a specific loop function, a generalized version
can be used: loop_operator fA = gfp (Ax. AT1fx). The loop operator is monotone
and idempotent on both arguments:

Lemma 4.2 (Loop operator monotonicity). mono (loop_operator f)

Proof. From monotonicity of greatest fixed point. []
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Lemma 4.3 (Loop operator unfolding).

mono f = loop_operator f A = loop_function f A (loop_operator fA)
Lemma 4.4 (Loop operator idempotence).

mono f = loop_operator f (loop_operator f x) = loop_operator f x
As one would expect, an application of a loop operator produces a smaller set of
attached variables:
Lemma 4.5. mono f —> loop_operator fA <A

loop_operator f A < loop_operator f (fA)

To conclude this section let’s look at the rules for an expression list modeling
arguments. Arguments of a call are subject to chained processing even though it might
seem unnecessary. It turns out that an attachment status of an object test local could
be affected because of the rules for “design mode” (section 3.2.1). The transfer
function for every argument is evaluated in the context of a previous one (figure 11)

or in the context of a target (for the first argument). The same effect can be achieved
by using Isabelle/HOL function fold.

Ap>[] = A A (e-es) = A> e es

Fig. 11. Transfer functions for argument lists

Lemma 4.6. A >>es=fold (AeX. X>e)es A

According to [12] for subsequent proofs it is more convenient to use the direct
definition of the transfer function rather than the one based on fold. This work adopts
the same approach.

Here is an essential property of the transfer function that will be used later: it is
monotonic. Intuitively this means that the more attached variables are known before
an expression, the more there are after the expression:

Lemma 4.7 (Transfer function monotonicity). mono (AX. X > c)

Proof. By structural induction on all 5 mutually recursive function definitions. ]

4.2 Expression validity

Validity rules are specified in Isabelle/HOL using an inductive predicate
T''Ake:T

where I is an environment, A — a set of attached variables, e — an expression being
checked, T' — either Attached or Detachable — an attachment status of the
expression e . Attached means the expression produces a value that is not Void ,
Detached means this value may be Void . If the predicate is true, the expression
satisfies void safety rules in the given environment and attachment set and its type is
T . The rules to compute predicate are shown in figure 12.
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v # Void, v = Void,
VALUE 444 VALUE et
I', A+ Value v : Attached I', A+ Value v : Detachable
nel A -necl A

OCALgtt OCAL et

L L
I'y A& Local n : Attached I', AF Local n : Detachable

ExcepTiON

I', A Exception : Attached
I', At ey : Attached NT', A > e & ey : Attached

SEQ
T'At ey ;; e0: Attached

I'NAkFe: T
AsSIGN CREATE
I'JAF n:=e: Attached I', A= create n : Attached

T,At e:Attached N\T,A> et al]Ts
At e. f (a): Attached
I'NAkFe:T
T', At attached t e as n : Attached T
')At b: Attached N\T,A>+bte; : T NI, A>—bley: T
T, Al ifbthen ey else es end : upper_bound T, To i
T,Ax (—er>b)Fe: Attached NT, A >* (— e > b) >— e b : Attached
I', At until e loop b end : Attached
IAbe:TAT,A>etes[]Ts

7A Z A ons
T AF[ [ o T AFe-es[|T-Ts RGO

Fig. 12. Void safety rules

CALL

EST

OOP

There are two rules for local variables: if a local variable name is in the set of attached
variables, the corresponding expression is of an attached type (LocAL,; ), otherwise
it is of a detachable type (LocAL et ).

An attachment type of a conditional expression is computed as an upper bound of
attachment types of both positive and negative branches (Ir). The upper bound is
Detachable if any of the operands is Detachable , and Attached otherwise.

The validity predicate is properly defined, i.e. it cannot be true for attached and
detachable types at the same time:

Lemma 4.8 (Attachment type uniqueness). A valid expression has one attachment
type:TAbe:TANT,Are: T'—T=T'

If an input set of attached variables becomes larger, computed attachment type for an
expression may only become “more attached”. Therefore, an attachment type
computed for a larger attachment set conforms to the attachment type for a smaller
one.

Lemma 4.9 (Attachment type monotonicity).
A<BAT,Abe: Ty — dTg.I',Bte:TgANTg —,Tx
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Proof. The proof is done by structural induction on the predicate definition. It relies
on monotonicity of transfer function (lemma 4.7) for compound expressions such as
sequences and calls. For a conditional expression, types of both branches can be
obtained thanks to lemma 4.8 and the resulting type will be computed as their upper
bound, preserving monotonicity property. Validity of a loop expression follows from
monotonicity of a loop operator (lemma 4.2). (]

If a loop is valid in a given context, it is valid in a context obtained by a single or
multiple application of the loop exit condition and loop body:

Lemma 4.10. 4 loop remains valid after applying its transfer function to a set of
attached variables one or any number of times.

T AR untileloopcend: T =—T,A>—e> ct untileloop cend : T

T,Atuntileloopcend : T =T, A>x* (—e>c) b until e loop c end : T

Proof. Follows from monotonicity of transfer function and expression validity
predicate (lemmas 4.7 and 4.9), idempotence of loop operator (lemma 4.4) and lemma
4.5.0
A notion of void-safe expressions is defined using the expression validity predicate
with or without an associated context:
Definition 4.1 (Void-safe expression). An expression e is void-safe with type T in an
environemnt I iff there is type that satisfies expression validity predicate with an
empty set of attached variables:

Fke:T=T, [ Fe:T
An expression e is void-safe in an environemnt U iff there is type T' with which e is

void-safe in an environment I':
T’'ktey.=3T.Tte:T

In the context of null safety, if a local variable is considered attached at compile time,
it should have an associated object at run-time. This property is captured by the notion
of a valid state.

4.3 State validity

A state of a program is modeled by two functions: a function that maps local variable
names to their value (a stack) and a function that maps memory addresses to object
values (a heap). This work discusses only local variables, so the heap part can be
arbitrary. Information about local variable types is available from an environment
denoted in earlier formulas as I'.

Definition 4.2. 4 local state | is valid w.r.t. an environment I iff for every local in T’
the state | has a value for this local:

T'F1/¥ =VYname T.T name = |T| — (3v.  name = |v|)

Definition 4.3. 4 local state | is valid w.r.t. an attachment set A iff for every local in
A the state | has an attached value for this local provided that A is not T :

AFIVA=Z=A4AT — (Vnne' A— 3v.ln=|v] Av# Void,))
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Definition 4.4 (Void-safe state). For an environment I" with an attachment set A, a
state (1, h) is void-safe iff for any local variable name in A there is a local variable
of this name inl attached to an object:

AR (LR) s=THIVENAFLYA

For an environment T, a state s is attachment-valid iff it is void-safe for " with an
empty attachment set:
Thsys =T, [2]Fs/s
Most important properties of the state validity function are anti-monotonicity and
what could be said about state validity if the corresponding attachment set changes:
Lemma 4.11 (Attachment state anti-monotonicity).
B<ANA#ETANAFLYA = BFI/A
Lemma 4.12. Detaching, attaching and updating a local:
AF 1A = A S namet I(name v value) /*
value # Void, NAF1/s* = A ® name & l(name — value) \/s*

value # Void, NAF 1/, = A l(name — value) \/s*
5. Local null safety

5.1 Big-step semantics

The big-step semantics is defined in Isabelle/HOL as an inductive predicate on
transitions from an initial expression-state pair to a resulting one (figures 13 and 14).
The rules are similar to those used in type system soundness proofs (e.g., [11, 12,
13]). The key differences are in the additional rules for object tests and in a modified
rule for feature calls.

44



A.B. KorreHkoB. ABTOMaTHYECKOE J0Ka3aTeILCTBO OE30MACHOCTH JIOKANIBHBIX MyCThIX yka3ateneid. Tpyast ICIT PAH,
Tom 28, BhIm. 5, 2016, cp. 27-54.

A.V. Kogtenkov. Mechanically Proved Practical Local Null Safety. Trudy ISP RAN/Proc. ISP RAS, vol. 28, issue 5,
2016, pp. 27-54.

Iln=|v]
v L
T+ (Value v, (I, m)) = (Value v, (I, m)) T+ (Local n, (I, m)) = (Value v, (l,m)) -

Tt (e1, s) = {(unit, s’y AT (e2, sy = (e2’, 5"")

SE
D (e155e2,5) = (e2',s") ¢
Tk (e, s) = (Value v, (I, m))
ASSIGN
TF (nu=e,s) = (unit, (I(n—v), m))
T'n=|T]| Ainstancem T = [(m’, V)]
- 7~ CREATE
T & (create n, (I, m)) = (unit, (I(n—v), m'))
I'n=|T] A instance m T = None
CREATE 74

T' & (create n, (I, m)) = (Exception, (I, m))
T+ (e, s) = (Value v, se) A v # Void, AT F {es, se) [=] (map Value vs, s')
Tk {e.f (es),s) = (unit,s’)
Tk (b, s) = (Truec, s'y AT I {e1, sy = {e1’, s"")
T' & (if b then ey else ez end, s) = {e1’, 5"’
& (b, s) = (Falsec, s'y AT F {ea, s"y = (ea’, s"")
T & (if b then ey else ez end, s) = (e2', 5"
T+ (e, s) = (Truec, s")
T+ (until e loop b end, s) = (unit, s")
T+ (e, s) = (Falsec, se) AT F (b, se) = (unit, s¢) A
T+ (until e loop b end, sc) = {(c’, s")
T+ (until e loop b end, sy = (c', s")
T'F (e, s) = (Value v, (I, m)) A v # Void,, A v has_type T
T' & (attached T e as n, s) = (Truec, (I(n — v), m))
T+ (e, s) = (Value v, (I, m)) A = (v # Voidy N\ v has_type T)
T' & (attached T e as n, s) = (Falsec, (I, m))
T+ (e, s) = (Value v, sc) AT I (es, se) [=] {es’, s")
Tk (e-es,s) [=] (Value v - es’, s")

ALL

IFTrye

IFraise

LooP7 e

Loorpaise

TESTT e

TESTFaise

ARGN ARGCons

CE(s) =1

Fig. 13. Big-step semantics: regular cases

An object test evaluates to T'rue if its object test expression is attached and is of an
expected type (TESTr, v ). In that case the local storage is updated for an object test
local to have a computed value. The specification uses an abstract function has_type
that is not instantiated. Therefore, all the proofs do not depend on the actual run-time
type check.

If any of the conditions is not met, e.g. a value is void or its type is not expected, the
state is not changed and the object test evaluates to False (TESTrgise)-

Note that there is only one (non-exceptional) rule for a feature call. This is the major
difference from traditional big-step semantics specifications. What if a target of a call
will be Void ? Would not it mean that excution may be stuck? The answer is given in
section 5.3.

Exception propagation rules (figure 14) are not different from the rules used in type
soundness proofs.
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T+ {e1, s) = (Exception, s')
- EXCEPTION - SEQeqx
I & (Exception, s) = (Exception, s) 'k (e1 3; e2, s) = (Exception, s')
T+ (e, sy = (Exception, s')
T+ (n:=e,s) = (Exception, s’)
T+ (e, s) = (Exception, s")
T+ {e.f (es),s) = (Exception, s')
'+ (e, s) = (Value v, se) AT & {es, se) [=] (map Value vs @ (Exception - es'), s')
T+ {e.f (es),s) = (Exception, s')
T (b, s) = (Exception, s)
T\ (if b then ey else e2 end, s) = (Exception, s")
T+ (e, s) = (Exception, s') T+ (e, s) = (Exception, s')
T+ (attached t e as n, s) = (Exception, s') T+ (e es, s) [=] (Exception - es, s")
T+ (e, s) = (Exception, s")
T I (until e loop b end, s) = {Exception, s")
Tt (e, s) = (Falsec, se) AT & (b, se) = (Exception, s")
T+ (until e loop b end, sy = (Exception, s’)

ASSIGN¢y

CALLeg

CaLLy rg—ex

IFey

TESTes ARGey

Loopey

LooPraise-cx

Fig. 14. Big-step semantics: exception propagation

Conventionally the big-step semantics is shown to end up for a given expression in a
final state, meaning an exception or a value.
Definition 5.1 (Final expression). An expression is called final if it is an exception or
a value:

Final e = e = Exception V Fv. e = Value v

Lemma 5.1 (Finality of big-step semantics). If there is a big-step transition for an

expression e from state s to an expression ¢’ and state s' then e’ is final:
Tk {e,s) = (¢/,s') = Final ¢

5.2 Preservation theorem

Anti-monotonicity of attachment state allows to prove that as soon as a state is valid
in one of the branches of a conditional expression, it is valid for the expression as a
whole. Intuitively there is more information in one branch of a conditional expression
and therefore there are more attached variables, so if a state is valid for one branch it
is valid for the whole expression with less attached variables.

Lemma 5.2. If a local statel is valid in a context of either branch of a conditional
expression, it is valid in the context of the whole expression:

Ab+cD e bl ANADtcD> e #T = AD ifcthene; 61S€€2€I’ld|‘l\/sA
ADb—cD ekl ANA>—c>es#T = A ifcthene else ey end - 1/s4

Proof. Follows from the definition of transfer function and lemma 4.11.[]

The big-step semantics preserves valid state for both exceptional (denoted by T , see
section 3.2.1) and non-exceptional attachment sets (denoted by [a]):

Lemma$5.3.TF (e, s5) = (¢/,s) AT, Tks\/,=T,TkFs'\/
Lemma 54.T'+ (e,s) = (e/,s') AL, [a] Fs /s = 3b.T, [b] Fs' /s
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From the other hand, if a final expression (definition 5.1) is not an exception, an
attachment set for the initial expression remains non-exceptional:
Lemma 5.5.

TH{e,s)= (e, s N\[,Are:T Ne'#Exception NA+T = A>e#T
Proof. By structural induction on big-step semantics predicate for all mutually
recursive transfer functions. []

The main result of this section is an attachment preservation theorem telling that if an
expression is void-safe and its evaluation starts in a void-safe state and completes,
then it either results in an exception or in a value that is not void if the expression type
is attached. The following lemma states this formally.
Lemma 5.6 (Attachment preservation step).
T,Absy/sANA=T[a]l AT F{e,s) = (e/,s AT, Al e:T A e’ # Exception =
AT T, A>ete’:T'NT'—,T
Proof. The proof is done by structural induction on big-step semantics predicate and
uses lemmas 4.12, 5.1 and 5.2. For every induction case is shows that a state remains
valid using lemmas 5.3 and 5.4 and taking into account preservation of non-
exceptional attachment set (lemma 5.5) and applying an inductive hypothesis to finish
the proof. [J
Replacing variables with initial state values, the lemma gives:
Theorem 5.1 (Attachment preservation).
Tk (e, @) = (¢/,s") AT e: Attached =
e’ = Exception V/ (Av. e’ = Value v A\ v # Void,,)

5.3 Equivalence of safe and unsafe semantics

Ideally void safety should be a corollary of two theorems: preservation and progress.
The third one — determinism — cannot be proved in most concurrent environments, so
it is not considered here. Unfortunately a progress theorem cannot be proved with
classical big-step semantics because it deals only with final states (lemma 5.1).
Therefore, it is impossible to describe intermediate states. At least two options exist:

e Use clocked big-step semantics [20] or similar abstraction that
distinguishes between stuck state and divergence (e.g., [1, 19, 21]).

e Use small-step semantics.

The first option is straightforward: the current rules can be adapted to distinguish
between stuck state and divergence. The main drawback is missing support for
concurrency that cannot be easily expressed with big-step semantics.

The second option is more attractive because it allows for proving a progress theorem
directly. Unfortunately, it is not applicable to the current formalization because it does
not provide type information. In the big-step rules for conditional expressions and
loops the semantics is specified with an assumption that branch or exit conditions are
evaluated to a boolean value, i.e. no initial or intermediate type information is
required to state the rule. For small-step semantics this is not the case: for intermediate
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steps to be sound we need to know that these intermediate steps preserve the property
that the expression type is boolean.

Can the requirement to have type information in the semantics rules be avoided, so
that only the part of interest is kept for consideration? Here is an idea. Let’s assume
that the type system is sound. Then both type preservation and progress theorems are
true w.r.t. the associated small-step semantics. Assume that the original semantics is
specified not taking void safety into account. Then consider a semantics that expects
void safety. If both, void-safety aware and void-safety unaware, semantics can be
shown to be equivalent for programs that satisfy void safety rules, preservation and
progress theorems can be derived for the void-safe semantics from their void-unsafe
counterparts.

The approach can be demonstrated with big-step semantics as well. To this end two
semantics definitions are considered. The void-safe version is the one described in
section 5.1. The void-unsafe version differs from the safe one just by a single rule.
The rule makes sure that if in a void-unsafe program a target of a call is Void , an
exception is raised (figure 15). The exception here is the famous
NullPointerException.

'+ (e, s) = (Value v, s¢) A v # Voidy, AT &= {es, se) [=] (map Value vs, s") c

Safe: 'k {e.f (es),s) = {(unit, s'}

ALL

Tk (e, s) =' (Value v, se) A v # Void, AT | {(es, se) [=]’ (map Value vs, s') c
Tk (e.f (es),s) =" (unit,s")
'k {e, s) = (Value v, s") A v = Void, unsafe
'k {e.f (es),s) ="' (Exception, s') fail

Unsafe: unsafe

ALL

Fig. 15. Feature call rule in safe and unsafe big-step semantics

It turns out that if an expression is null-safe, it gives exactly the same result regardless

of the semantics behind. This effectively demonstrates absence of

NullPointerException in null-safe programs.

Theorem 5.2 (Semantics equivalence). Void-safe (= ) and void-unsafe (=' )

semantics of a void-safe program with an initial void-safe state are equivalent:
FkFeveATEso/s = TH{e so)="(v,s) =TF (e, s0) = (v, 5)

5.4 Practical results

The core part of the local code analysis described in the paper is implemented in 19
Eiffel classes of about 2.5KLOC in total. Instead of immutable attachment sets it uses
mutable ones, optimized with bitwise operations. Branching instructions, such as
loops, and conditional instructions and expressions, share the same code base that
explains a form of the loop transfer function (section 4.1). All code is open source
and is available at https://dev.eiffel.com/Source Code.

First void safety checks were added to Eiffel in EiffelStudio 6.3 at the time when
public libraries almost reached a million lines of code. Migration of public libraries

48



A.B. KorreHkoB. ABTOMaTHYECKOE J0Ka3aTeILCTBO OE30MACHOCTH JIOKANIBHBIX MyCThIX yka3ateneid. Tpyast ICIT PAH,
Tom 28, BhIm. 5, 2016, cp. 27-54.

took several releases and is still an ongoing work for few remaining libraries that are
not completely void-safe.

The current work suggests relaxed rules for local variable declarations and Result
where no special type annotations are required. All attachment information is derived
by static code analysis. This analysis was implemented in [6]. In contrast to previous
releases, no changes to public libraries were required. This confirms theoretical
soundness of the approach in practice. The rules also remove unneeded annotation
burden from programmers and allow for simpler code.

All theories code is proved with Isabelle 2016 and 1is available at
https://bitbucket.org/kwaxer/void_safety/ (tag 1.2.2).

6. Related work

Three key ingredients of void safety — a type system that allows for specifying
attachment properties, certified attachment patterns that allow for expressions of
otherwise detachable type to be used when attached values are expected, and validity
rules for safe reattachment and initialization — were already used by [4] in 2006.
Research efforts were then mostly focused on making sure the typing rules do ensure
soundness: [15] explains why the rules work, [2] reports issues with object
initialization in a naive implementation, [22] proposes a solution that requires
introduction of new concepts into the type system to represent partially initialized
objects with explicit additional annotations, [14] discusses how additional
annotations can be avoided if strict modularity is not required. None of the papers
went into the details of usability and user experience, inspecting if the rules are
reasonable for real-life cases. Nor did the papers discuss how to perform the
development of large systems where a complete set of classes is not readily available.
This work addresses the first issue by proposing a set of rules for local variables and
demonstrates that all the required information for them can be derived from the code.
The second issue is solved by changing validity rules to respect exceptional behavior
at run-time.
Type system soundness of conventional object-oriented languages became a hot
research area with release of Java that claimed to be absolutely type-safe (cf. [10] that
explicitly states undefined behavior in certain cases). [12] presented a formal proof
for a subset of Java in Isabelle/HOL using big-step semantics. Unfortunately big-step
semantics is not good for reasoning about concurrent programs. [13] updated the
proof to use small-step semantics instead and formalized Java memory model. The
current work focuses on void safety rules introduced in Eiffel. Its concurrency model
is quite different from Java. Even though [16] formalized the semantics in Maude, its
correctness is not formally proved. So, the work uses big-step semantics to describe
and to reason about void safety guarantees.
An algorithm to compute a set of attached variables might seem to be quite similar to
definite assignment rules of [7] and formalized by [12]. However, it differs in several
important aspects. Contemporary definite assignment and presented here transfer
functions do take into account context of branches with different outcome of
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preceding conditions, while formalization in [12, 13] does not. Moreover, a set of
definitely assigned variables does not depend on initial set of variables. Such a set is
useless because an uninitialized variable cannot be used as a source of a reattachment.
This is different for void safety. Both an attached or detachable variable can be used
as a source or as a target of a reattachment. Finally, described here void safety rules
rely on computation of greatest fixed points for loops. This is not needed for definite
assignment computation. More similarity with type soundness proofs can be seen in
monotonicity of a transfer function, though for void safety this property is also
essential for showing that validity rules can be programmatically checked by a
compiler.

Leaving concurrency aside, big-step semantics does not distinguish between stuck
and diverging states. [20, 21] demonstrate how to deal with that, so the big-step
semantics could be changed accordingly. Instead, this work shows that safe and
unsafe versions of big step semantics become equivalent when void safety rules are
met.

7. Conclusion
Certified attachment patterns are an essential part of void safety guarantees in modern

OO languages. This work formalizes them in Isabelle/HOL and proves some safety
properties w.r.t. big-step semantics. The novelty of the work is in:

e Generalization of attachment rules for boolean operators. (In particular
similar scheme can be used to adapt definite assignment rules described in
[12] and later used in [13] to prove Java-like type system soundness to match
current Java rules [7].)

¢ Introduction of “design mode” to void safety rules required to analyze real-
world programs.

o Specification of void safety rules for loops.

e Demonstration of theoretical and practical uselessness of attachment
annotations for local variables.

e Mechanically verified preservation theorem for void-safe programs and
conditional equivalence of void-safe and void-unsafe semantics that can be
applied to show complete void safety (both for local contexts only).

The work covers only one part of three key elements of a void-safe language. It needs
to be extended to deal with the other two, namely:

e Type system — required to show safety with regular feature calls.

o Initialization — required to show safety for object creation when some
objects are in an intermediate half-initialized state.
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AHHoOTamus. PasbIMeHOBaHHE ITyCTOTO YyKa3aTelsi — 3TO XOpOLIO H3BECTHas OIInOKa,
BCTPEUAIOIIAsACsS B O0BEKTHO-OPHEHTHPOBAHHBIX MporpaMmax. Ee MoxHO H30exarh IyTeMm
Jno0aBiIeHUsT K S3bIKy, Ha KOTOPOM IHILIETCS IIPOrpaMMa, CIEUUaJbHbIX IPaBHII
HPWIOKUMOCTH. JIOCTATOYHO JM O3THX NpaBWJI JUIl TapaHTHH OTCYTCTBHUS TaKUX
UCKJIIOUHMTEIIbHBIX cUTyaunii? JlaHHas craThs NMOCBsIleHa 6E30MaCHOCTH MYCThIX yKa3aTesel
BO BHYTPHIIPOLIEAYPHOM KOHTEKCTE, B KOTOPOM HE TpeOyIOoTCsS KaKHe-JIN00 TOIOIHUTEIbHEIE
aHHOTanuH. [IpaBnia popMaIM3yIOTCSl B CHCTEME aBTOMAaTHIECKOTO J0Ka3aTeNbCTBA TEOPEM
Isabelle/HOL. 3aTtem mnoka3plBaeTCs TeOpeMa O COXPAaHEHMH O€30MacHOCTH ITyCTHIX
yKazaTelel B KpyIHOIIAroBoi ceMaHTHKe. HakoHel, IEMOHCTpHPYETCS, YTO NMPU HAIUIUH
TaKUX MPaBUJI CEMAHTHKH ¢ O€30MACHOCTBIO MYCTHIX yKa3arelei U 6e3 Hee SKBUBAJICHTHBI.
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