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Abstract. Null pointer dereferencing is a well-known bug in object-oriented programs. It can 
be avoided by adding special validity rules to a language in which programs are written. Are 
the rules sufficient to ensure absence of such exceptions? This work focuses on null safety for 
intra-procedural context where no additional type annotations are needed and formalizes the 
rules in Isabelle/HOL proof assistant. It then proves null-safety preservation theorem for big-
step semantics in a computer-checkable way. Finally, it demonstrates that with such rules null-
safe and null-unsafe semantics are equivalent. 
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1. Introduction 
In his talk at a conference in 2009 Tony Hoare called his invention of the null 
reference in 1965 a “billion-dollar mistake” ([8]). The reason is simple: most object-
oriented languages suffer from a problem of null pointer dereferencing. What does it 
mean in practice? It is possible that at run-time some variables (or expressions in 
general) do not reference any existing object, or are null. On the other hand the core 
of object-oriented languages is in the ability to make a call on an object. Given that 
there is no object when the reference is null, the run-time should signal to the program 
about the issue. 
Provided that most popular languages do not prevent null-pointer dereferencing at 
compile time, it remains one of the day-to-day issue discovered in open source and 
private software. As of May 2016 a public database of cybersecurity vulnerabilities 
known as Common Vulnerabilities and Exposures (CVE®) [3] operated by MITRE 
and funded by Computer Emergency Readiness Team (CERT) has 727 entries 
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mentioning null pointer dereference bugs explicitly. The distribution by years is 
shown in figure 1. 

 

Fig. 1. Null pointer issues (such as null pointer dereferencing) in Common Vulnerabilities 
and Exposures database 

A solution to this problem was proposed in [15] as an extension of the type system of 
Eiffel with a set of so called certified attachment patterns (CAP). Similar approach 
was proposed for Spec#, but was not adopted for inclusion into C# and the Common 
Runtime Language because of difficulties caused by required changes in the 
underlying platform and unsoundness of the prototype implementation ([2]). Indeed, 
it was discovered that a simple extension of the type system with “non-null” types 
does not allow for safe initialization of objects ([22]) and the void-safety property can 
be compromised. (In Eiffel null references are known as void references, hence the 
name “void safety”. In this paper void and null are used interchangeably.) The same 
paper proposed a fix by introducing special annotations [Free] and [Unclassified] to 
source code and some new rules that should be checked by a compiler. Because the 
cases when the annotation is required are rare, an attempt to use a light-weight 
solution that does not require any additional annotation is implemented in [5]. Even 
though both approaches were shown to be usable, neither is accompanied with a 
formal machine-checkable soundness proof of the proposed type systems combined 
with additional restrictions placed on source code. 
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Current work formalizes the part related to certified attachment patterns, relaxes void 
safety rules for local intra-procedural context and proves that the rules ensure void 
safety with a generic proof assistant Isabelle/HOL. 

2. Overview 
Existing proposals ([2, 15, 22]) that address void safety issue in languages supporting 
null references use a type system extended with a notion of detachable and attached 
types for expressions that may and may not produce a null value. This extended type 
system is then uniformly applied to the language (e.g., [4]) meaning that types of 
variables are specified explicitly. This type information is then used to check 
reattachment validity rules. For example, an assignment  would be valid only 
when a type of  conforms to a type of . If the type of  is attached, the type of  
should be attached as well. 
This rule makes perfect sense for class attributes that can be accessed in different 
features. Type information is essential in that case because objects can be aliased at 
run-time and it would be impossible to do type checks at compile time modularly. 
However, for local variables there is no aliasing, or, more precisely, the locals can be 
changed only in a current feature. As a result it should be possible to get rid of type 
annotations altogether. It turns out that CAPs are absolutely sufficient for local 
variables and attachment annotations can be safely discarded. 
The CAPs for local variables can also be applied to function’s Result. For example, 
one can replace the code on the left with the code on the right: 

 

This allows not only for less code in new classes, but also for keeping original code 
unchanged if it follows this pattern. 
Certified attachment patterns in [4] treat every boolean connective as a single use 
case: their combinations or nesting are not supported. Even though it might be a good 
practice to avoid complex expressions and to replace them with short and simple ones, 
when the first version of the compiler supporting void-safety was released, some users 
complained about missing cases. Moreover, complex expressions might be useful 
when code is not written but is generated automatically – then it can be arbitrary 
complex. This work addresses the demand by replacing arbitrary boolean connectives 
with conditional expressions and specifying CAPs in terms of these expressions. As 
a result, expressions of any complexity or nesting can be supported. 
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Even though simple branches and loop conditions were taken care by the original 
CAPs, the rules did not cover loop bodies. Simple analyses like definite assignment 
required by Java [7] can be done in one pass because on every iteration a variable can 
only become assigned, not the reverse. This does not work for void safety. A local 
variable can become attached or void on different iterations, or even to flip-flop on 
every iteration from attached state to detached and back as shown in the example on 
figure 2. 

 

Fig. 2. Example of an issue with loop CAPs 

If safety checks rely only on type declarations and x is of a detachable type, there are 
no guarantees that it will be attached after the loop (the original rules are quite 
pessimistic). As demonstrated by this work, the rules for loops could be based on 
fixed-point computation to meet program developer’s expectations. 
A set of CAPs specified in [4] do ensure void safety. However, they cannot be used 
in practice for any large scale application without provision for rules to escape void 
safety checks. It is just physically impossible to write 285 (or any other number of) 
classes in one go without intermediate compilation and testing. If at some point a 
feature is returning a value of a deferred class and there are no effective descendants 
of this class yet, the program will not compile. The solution adopted in [6] is to rely 
on exceptions, including forced checks of assertions. This triggers so called “design 
mode” when compiler ignores attachment status in type checks. Modeling the mode 
in the formalization essentially affects proofs but makes it possible to show soundness 
of real-life analysis. 
To my knowledge this is the first attempt to formalize void safety rules and program 
semantics with attachment properties in a proof assistant environment. Moreover, this 
is the first time a formal void safety model is mechanically checked. 
Presented formalization is done with big-step semantics style that is known to be 
suitable for proving preservation property, but to have issues with proving progress 
property. To address this, two different semantics are considered: void-unsafe and 
void-safe. It is demonstrated that both are equivalent as soon as void safety rules are 
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satisfied. A similar proof scheme can be applied to small-step semantics to prove 
progress property in that formalism if required. 
In order to remain sound the formalization relies on attachment properties of 
expressions. Therefore, extending the approach to an inter-procedural context 
requires non-local void safety guarantees that can be achieved with a void-safe type 
system. This is done in Eiffel by augmenting its type system with attached and 
detachable marks added to type declarations and by specifying conformance and 
initialization rules that ensure an expression of an attached type always yields an 
object. Abstracting away language dissimilarities, the proposed rules can be used in 
other languages including mainstream ones as soon as they strengthen their type 
systems to be not only type-safe, but also null-safe. 
All presented void safety rules are also implemented by me in the compiler [6] and 
are in production. 

3. Formalization 
Isabelle/HOL was successfully used in different projects starting from algebraic 
topology to verification of an operating system micro-kernel ([9]). It is build on top 
of a logic-neutral core called Pure with a specialized formalism of Higher-Order 
Logic (HOL). Talking about safety properties it was used to verify type soundness of 
JinjaThreads using operational semantics for concurrent execution of Java-like 
programs ([11, 12, 13]). Some decisions used in that formalization are adopted in the 
current work, some are new. 
Even though selection of Isabelle/HOL is both voluntary (I knew it better) and 
traditional (it was used to formalize and prove type safety of Jinja), there are some 
other features that make it more attractive compared to other proof assistants: 

 ability to write forward proofs in Isar language that makes reasoning closer 
to conventional textbooks; 

 proof automation allowing for finding direct (i.e. not involving case 
analysis or induction) proofs automatically without diving into low-level 
details; 

 built-in document preparation system enabling to type set all formulas (e.g. 
in this paper) directly from verified lemmas and preventing from using 
them for unfinished or failed proof scripts. 

3.1 Translation of source language 
Source language syntax is modeled in Isabelle/HOL with appropriate constructors of 
a datatype  (figure 3). In most cases there is one-to-one relation between 
source language and Isabelle/HOL terms with two important points of divergence: 
one for voidness tests and the other one for operator expressions. 
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Fig. 3. Datatype expression 

Voidness tests are source language expressions that check if a particular expression 
evaluates to  at run-time or not: 

 

However, there is a more powerful construct that can be used instead of voidness 
tests: object tests. The most general form of an object test has 3 parts: a type, an 
expression and an object test variable: 

 

The type is used to determine whether an expression is attached to an object of a type 
that conforms to the given one. If this is the case then the expression value is attached 
to the variable  and the object test evaluates to True. Otherwise, it 

evaluates to False. The key observation here is that if the object test succeeds, both 
 and  are attached. Therefore, the type part of object test is 

irrelevant in most of the following discussion. When the type part is absent, the object 
test behaves like a regular voidness test. So the test  is translated 

into 

 
where  is a unique name not used anywhere else in the code. 

The optional type part is still reflected in the formal semantics of the object test 
expression (see section 5.1). 
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3.2 Practical considerations 

3.2.1 Design mode and unreachable code 

As mentioned in section 2, there should be means to develop void-safe applications 
gradually. The most important issue is with features that take or return values of 
attached types. If there are no suitable effective classes yet, one cannot call such 
features or properly initialize their results. The idea to address such a need is to treat 
some code as unreachable. If the code is unreachable, there is no harm to skip void 
safety checks. In [6] the following constructs are used as indicators of unreachable 
code: 

 enforced check:  

 infinite loop:  

 false postcondition:  
Note that in general assertion checks are optional at run-time. However, to preserve 
soundness of void safety rules the assertion  is always checked at run-
time and triggers an exception. As a result, clients calling a feature with such a 
postcondition can rely on the fact that it never returns normally. 
[12] proposes to model definite assignment property in presence of exceptions in Jinja 
with a type . A value  corresponds to an exceptional state and a value 

 – to a normal state.  is then a set of names of local variables that are 
definitely assigned. This approach perfectly works to model exceptional cases and 
unreachable code during attachment analysis too. But instead of using somewhat ad 
hoc rules to handle , a new type  is introduced. It is obtained from a 
regular  type by adding a new top element. The operations are defined as shown in 
figure 4. 

 

Fig. 4. Operations on topset. 

The type  is proved to be a complete lattice and a distributive lattice. These 
properties are essential in proofs involving fixed point of a transfer function (section 
4.1). 

A.V. Kogtenkov. Mechanically Proved Practical Local Null Safety. Trudy ISP RAN/Proc. ISP RAS, vol. 28, issue 5, 
2016, pp. 27-54. 

34 

Transitions of a local variable status from detachable to attached and back is modeled 
by two operations similar to insertion to a set and removal from a set. But neither 
insertion nor removal changes a top element : 

 

3.2.2 Operator transformation 

A source code snippet, where a variable is considered attached because of a previous 
test to or when it is an object test local (see [4]), is called an attachment scope of 
this variable. The following kinds of scopes exist: 

1. Control flow scope – an attachment scope based on language constructs that 
change execution flow. 

2. Operator scope – an attachment scope based on semistrict boolean 
operators. 

In practice both kinds of attachment scopes are applied together. An exhaustive list 
of scope combinations involving at most one unary and at most one binary boolean 
operator in a conditional instruction is given in figure 5. 

 

Fig. 5. Scope combinations (code fragments where variable x is considered attached are 
marked with  . . . ). 

The language standard [4] specifies scopes of object test locals in terms of instructions 
and boolean operators, there are 8 clauses in total: 3 for expressions, 2 for conditional 
instructions and expressions, 1 for loops and 2 for assertion clauses. It might be 
tempting to mimic the rules in the logical framework and then prove that they are 
sound. But this approach has several drawbacks: 

 The formalization would be limited to the selected set of boolean operators. 
Applying results to another language with different set of boolean operators 
would not be straightforward if some operators of that other language are 
not covered. 

 There are 3 semistrict boolean operators, 2 regular operators and one unary 
operator. Adding them to the formalization would mean either addition of 6 
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new constructors to the datatype  (figure 3) or addition of 2 new 
constructors to this datatype and introduction of new datatypes for 
operators with specific operator kinds. In both cases all induction-based 
proofs would have to be performed for new constructors. 

 There is already some redundancy in the current operators because some of 
them can be expressed in terms of others using, for example, properly 
adapted De Morgan’s laws. 

 The rules as specified in the standard are not general enough and do not 
allow for deeper analysis of expressions. For example, they do not cover 
code like  but cover its equivalent 

. 
Generalization can be done with just 3 variants of expression: truth constants, 
conditional expressions and sequences. Every boolean expression can be translated 
into a conditional expression with nested boolean constants and optional sequences. 
The conversions of the boolean operators mentioned earlier and some others added 
for completeness are listed in figure 6. Following the terminology used in [4] they are 
called unfolded forms of boolean operators. 

 

Fig. 6. Unfolded forms of boolean operators 

It turns out that all unfolded forms of boolean operators are variants of the following 
patterns: 

 

where  is either True or False. So instead of reasoning in terms of various 
forms of boolean operators and their combinations it is sufficient to reason in terms 
of special forms of conditional expressions. This approach does not only go beyond 
single-level scope definitions, but also allows for ternary operations in addition to 
unary and binary ones. 
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The special form of the branches ending with a boolean constant is captured by two 
functions defined in Isabelle/HOL as: 

 

The cases from figure 6, when instead of an expression followed by a constant there 
is just a single constant False or True, can be represented by the sequences 

 or  respectively. It would be possible to handle constants 
False and True directly, however it would just add one more case in the function 
definitions without any additional benefit. 
The functions  and  can be also generalized by adding other variants 

of expressions that knowingly produce fixed boolean constants, for example 

 

This and other more complicated cases, however, are covered by optimization and 
code transformation techniques familiar from compiler technology, such as common 
sub-expression elimination, constant propagation, invariant code motion and others 
([17, 18]). 
Read-only scopes.  General rules that define scopes are intermingled with the rules 
of an attachment status transfer function if (unlike [4]) the scopes are seen as means 
to determine potential attachment status of an arbitrary variable, not just a read-only 
one. For the sake of simplicity, consider the scopes of read-only variables first 
because they may be defined without bringing general attachment rules into play. 
Scopes are defined for two cases: when an associated expression evaluates to True 
and when it evaluates to False: 
Definition 3.1 (Scope function). A function that computes a set of read-only variables 
that are considered attached for an expression that evaluates to a particular boolean 
value is called a scope function. 
A scope function for an expression  that evaluates to  ( ) is called positive 
(negative) and is denoted  ( ). 

The rules to compute scope function are shown in figure 7. Only expressions that can 
produce non-empty sets of attached variables are listed. In all other cases the 
associated sets are empty. The notation  is used for sets adjusted to handle 
design mode (section 3.2.1). 
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Fig. 7. Scope rules for read-only variables 

The rules for object tests follow the explanations ealier: if an object test evaluates to 
 (positive scope function), the corresponding object test variable is attached. 

Moreover, if the object test expression is a variable it is also known to be attached. 
Two other cases cover general conditional expressions. Positive and negative scope 
functions recursively depend on each other. If a conditional expression does not 
evaluate to a boolean constant in at least one of its branches, nothing can be said about 
attachment status of object test locals involved in its sub-expressions. The reason is 
that information whether an object test succeeded, be it a conditional expression  or 
one of the branch expressions  or , is lost in that case. 

Consider one of the cases when a branch expression meets a condition to produce a 
known constant value, for example, . Because this is the rule for positive 
scope function +[if b then e1 else e2 end], the computed sets correspond to the case 
when the conditional expression evaluates to . From the condition  

we know that  could not have been evaluated to . Also, we know that the only 
case to get  for the whole expression is to get for . Therefore, a set of 

attached variables in that case is a union of the negative scope function for  and a 
positive scope function for . 

Other cases can be explained the same way. As an example let’s see how the rules 
work for double negation: 
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What if for a given conditional expression both  and  would be 
true? Would the positive scope function yield a consistent result? For sub-expressions 
the function gives  and . So the result for the whole 

conditional is  and  at the same time that looks weird. The puzzle is solved 

by noticing that in this case the whole conditional expression evaluates to  
and does not fit the assumption that it produces  (see definition 3.1). 

4. Attachment properties 

4.1 Transfer function 
Given a set of attached variables , a transfer function  computes a set of 
attached variables for a given expression . It is defined inductively as 5 mutually 
recursive functions: 
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 the transfer function itself (figure 8) 

 
 

computes a set of attached variables with an assumption that the expression 
evaluates to true/false (positive/negative scope) (figure 10) 

 computes a set of attached variables for a given list of expressions (used to 
model arguments in feature calls) (figure 11) 

 tells if a given expression is attached (figure 9) 

 

Fig. 8. Transfer function 

Let’s have a look at the most interesting cases. For an assignment a variable is added 
to a set of attached variables after the assignment if the source expression is attached 
and is removed from the initial set otherwise. 
An attachment status of an expression is  if it is a value other than , a local 
in the set of attached variables, or, a conditional expression with both branches 
attached (figure 9). Note that an attachment status of a conditional branch takes into 
account whether it is positive or negative. 

 

Fig. 9. Attachment status function 

A similar formula is used for the transfer function on a conditional expression: one 
branch is evaluated with an assumption that a condition is true (the part ) and 
the other one – when it is false (the part ). 
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A special value  is used for an exception to indicate that all variables can be safely 
considered as attached. 
Positive and negative transfer functions (figure 10) differ from a regular transfer 
function only in two cases: for object tests and for conditional expressions. They 
mimic the scope function discussed in section 3.2.2. 

 

Fig. 10. Transfer functions for positive and negative scopes 

For a loop the transfer function is specified using a loop operator. A loop body is 
evaluated in a negative branch of an exit condition and the effect of the loop as a 
whole is evaluated in a positive branch of the same condition. The loop operator is 
defined as a greatest fixed point for  where  is an exit condition and 

 is a loop body: 

 

The strange form of a loop function reflects what is implemented in the compiler. It 
reuses the same set of classes and functions for both conditional expressions and for 
loops. The transfer function for loops is then implemented by iterating over a loop 
until it stabilizes. A theorem from HOL-Library states that in this case the result is 
equal to the greatest fixed point. The theorem depends on monotonicity of the 
function. Firstly, observe that the loop function is monotone on both arguments, but 
we need only monotonicity on the last one: 
Lemma 4.1 (Loop function monotonicity).  

Then, instead of proving lemmas with a specific loop function, a generalized version 
can be used: . The loop operator is monotone 
and idempotent on both arguments: 
Lemma 4.2 (Loop operator monotonicity).  

Proof. From monotonicity of greatest fixed point.  
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Lemma 4.3 (Loop operator unfolding).  

 
Lemma 4.4 (Loop operator idempotence). 

 
As one would expect, an application of a loop operator produces a smaller set of 
attached variables: 
Lemma 4.5.  

To conclude this section let’s look at the rules for an expression list modeling 
arguments. Arguments of a call are subject to chained processing even though it might 
seem unnecessary. It turns out that an attachment status of an object test local could 
be affected because of the rules for “design mode” (section 3.2.1). The transfer 
function for every argument is evaluated in the context of a previous one (figure 11) 
or in the context of a target (for the first argument). The same effect can be achieved 
by using Isabelle/HOL function fold. 

 

Fig. 11. Transfer functions for argument lists 

Lemma 4.6.  

According to [12] for subsequent proofs it is more convenient to use the direct 
definition of the transfer function rather than the one based on . This work adopts 
the same approach. 
Here is an essential property of the transfer function that will be used later: it is 
monotonic. Intuitively this means that the more attached variables are known before 
an expression, the more there are after the expression: 
Lemma 4.7 (Transfer function monotonicity).  

Proof. By structural induction on all 5 mutually recursive function definitions.  

4.2 Expression validity 
Validity rules are specified in Isabelle/HOL using an inductive predicate 

 
where  is an environment,  – a set of attached variables,  – an expression being 
checked,  – either  or  – an attachment status of the 
expression .  means the expression produces a value that is not , 

 means this value may be . If the predicate is true, the expression 
satisfies void safety rules in the given environment and attachment set and its type is 

. The rules to compute predicate are shown in figure 12. 
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Fig. 12. Void safety rules 

There are two rules for local variables: if a local variable name is in the set of attached 
variables, the corresponding expression is of an attached type ( ), otherwise 
it is of a detachable type ( ). 
An attachment type of a conditional expression is computed as an upper bound of 
attachment types of both positive and negative branches ( ). The upper bound is 

 if any of the operands is , and  otherwise.  
The validity predicate is properly defined, i.e. it cannot be true for attached and 
detachable types at the same time: 
Lemma 4.8 (Attachment type uniqueness). A valid expression has one attachment 
type:  

If an input set of attached variables becomes larger, computed attachment type for an 
expression may only become “more attached”. Therefore, an attachment type 
computed for a larger attachment set conforms to the attachment type for a smaller 
one. 
Lemma 4.9 (Attachment type monotonicity).  
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Proof. The proof is done by structural induction on the predicate definition. It relies 
on monotonicity of transfer function (lemma 4.7) for compound expressions such as 
sequences and calls. For a conditional expression, types of both branches can be 
obtained thanks to lemma 4.8 and the resulting type will be computed as their upper 
bound, preserving monotonicity property. Validity of a loop expression follows from 
monotonicity of a loop operator (lemma 4.2).  
If a loop is valid in a given context, it is valid in a context obtained by a single or 
multiple application of the loop exit condition and loop body: 
Lemma 4.10. A loop remains valid after applying its transfer function to a set of 
attached variables one or any number of times: 

 
Proof. Follows from monotonicity of transfer function and expression validity 
predicate (lemmas 4.7 and 4.9), idempotence of loop operator (lemma 4.4) and lemma 
4.5.  
A notion of void-safe expressions is defined using the expression validity predicate 
with or without an associated context: 
Definition 4.1 (Void-safe expression). An expression  is void-safe with type  in an 
environemnt  iff there is type that satisfies expression validity predicate with an 
empty set of attached variables: 

 
An expression  is void-safe in an environemnt  iff there is type  with which  is 
void-safe in an environment : 

 
In the context of null safety, if a local variable is considered attached at compile time, 
it should have an associated object at run-time. This property is captured by the notion 
of a valid state. 

4.3 State validity 
A state of a program is modeled by two functions: a function that maps local variable 
names to their value (a stack) and a function that maps memory addresses to object 
values (a heap). This work discusses only local variables, so the heap part can be 
arbitrary. Information about local variable types is available from an environment 
denoted in earlier formulas as . 
Definition 4.2. A local state  is valid w.r.t. an environment  iff for every local in  
the state  has a value for this local: 

 
Definition 4.3. A local state  is valid w.r.t. an attachment set  iff for every local in 

 the state  has an attached value for this local provided that  is not : 
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Definition 4.4 (Void-safe state). For an environment  with an attachment set , a 
state  is void-safe iff for any local variable name in  there is a local variable 
of this name in  attached to an object: 

 
For an environment , a state  is attachment-valid iff it is void-safe for  with an 
empty attachment set: 

 
Most important properties of the state validity function are anti-monotonicity and 
what could be said about state validity if the corresponding attachment set changes: 
Lemma 4.11 (Attachment state anti-monotonicity).  

 
Lemma 4.12. Detaching, attaching and updating a local: 

 

5. Local null safety 

5.1 Big-step semantics 
The big-step semantics is defined in Isabelle/HOL as an inductive predicate on 
transitions from an initial expression-state pair to a resulting one (figures 13 and 14). 
The rules are similar to those used in type system soundness proofs (e.g., [11, 12, 
13]). The key differences are in the additional rules for object tests and in a modified 
rule for feature calls. 
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Fig. 13. Big-step semantics: regular cases 

An object test evaluates to  if its object test expression is attached and is of an 
expected type ( ). In that case the local storage is updated for an object test 
local to have a computed value. The specification uses an abstract function  
that is not instantiated. Therefore, all the proofs do not depend on the actual run-time 
type check. 
If any of the conditions is not met, e.g. a value is void or its type is not expected, the 
state is not changed and the object test evaluates to  ( ). 
Note that there is only one (non-exceptional) rule for a feature call. This is the major 
difference from traditional big-step semantics specifications. What if a target of a call 
will be ? Would not it mean that excution may be stuck? The answer is given in 
section 5.3. 
Exception propagation rules (figure 14) are not different from the rules used in type 
soundness proofs. 
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Fig. 14. Big-step semantics: exception propagation 

Conventionally the big-step semantics is shown to end up for a given expression in a 
final state, meaning an exception or a value. 
Definition 5.1 (Final expression). An expression is called final if it is an exception or 
a value: 

 
Lemma 5.1 (Finality of big-step semantics). If there is a big-step transition for an 
expression  from state  to an expression  and state  then  is final: 

 

5.2 Preservation theorem 
Anti-monotonicity of attachment state allows to prove that as soon as a state is valid 
in one of the branches of a conditional expression, it is valid for the expression as a 
whole. Intuitively there is more information in one branch of a conditional expression 
and therefore there are more attached variables, so if a state is valid for one branch it 
is valid for the whole expression with less attached variables. 
Lemma 5.2. If a local state  is valid in a context of either branch of a conditional 
expression, it is valid in the context of the whole expression: 

 
Proof. Follows from the definition of transfer function and lemma 4.11.  
The big-step semantics preserves valid state for both exceptional (denoted by , see 
section 3.2.1) and non-exceptional attachment sets (denoted by ): 

Lemma 5.3.  

Lemma 5.4.  
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From the other hand, if a final expression (definition 5.1) is not an exception, an 
attachment set for the initial expression remains non-exceptional: 
Lemma 5.5. 

 
Proof. By structural induction on big-step semantics predicate for all mutually 
recursive transfer functions.  
The main result of this section is an attachment preservation theorem telling that if an 
expression is void-safe and its evaluation starts in a void-safe state and completes, 
then it either results in an exception or in a value that is not void if the expression type 
is attached. The following lemma states this formally. 
Lemma 5.6 (Attachment preservation step). 

Proof. The proof is done by structural induction on big-step semantics predicate and 
uses lemmas 4.12, 5.1 and 5.2. For every induction case is shows that a state remains 
valid using lemmas 5.3 and 5.4 and taking into account preservation of non-
exceptional attachment set (lemma 5.5) and applying an inductive hypothesis to finish 
the proof.  
Replacing variables with initial state values, the lemma gives: 
Theorem 5.1 (Attachment preservation). 

 

5.3 Equivalence of safe and unsafe semantics 
Ideally void safety should be a corollary of two theorems: preservation and progress. 
The third one – determinism – cannot be proved in most concurrent environments, so 
it is not considered here. Unfortunately a progress theorem cannot be proved with 
classical big-step semantics because it deals only with final states (lemma 5.1). 
Therefore, it is impossible to describe intermediate states. At least two options exist: 

 Use clocked big-step semantics [20] or similar abstraction that 
distinguishes between stuck state and divergence (e.g., [1, 19, 21]). 

 Use small-step semantics. 
The first option is straightforward: the current rules can be adapted to distinguish 
between stuck state and divergence. The main drawback is missing support for 
concurrency that cannot be easily expressed with big-step semantics. 
The second option is more attractive because it allows for proving a progress theorem 
directly. Unfortunately, it is not applicable to the current formalization because it does 
not provide type information. In the big-step rules for conditional expressions and 
loops the semantics is specified with an assumption that branch or exit conditions are 
evaluated to a boolean value, i.e. no initial or intermediate type information is 
required to state the rule. For small-step semantics this is not the case: for intermediate 
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steps to be sound we need to know that these intermediate steps preserve the property 
that the expression type is boolean. 
Can the requirement to have type information in the semantics rules be avoided, so 
that only the part of interest is kept for consideration? Here is an idea. Let’s assume 
that the type system is sound. Then both type preservation and progress theorems are 
true w.r.t. the associated small-step semantics. Assume that the original semantics is 
specified not taking void safety into account. Then consider a semantics that expects 
void safety. If both, void-safety aware and void-safety unaware, semantics can be 
shown to be equivalent for programs that satisfy void safety rules, preservation and 
progress theorems can be derived for the void-safe semantics from their void-unsafe 
counterparts. 
The approach can be demonstrated with big-step semantics as well. To this end two 
semantics definitions are considered. The void-safe version is the one described in 
section 5.1. The void-unsafe version differs from the safe one just by a single rule. 
The rule makes sure that if in a void-unsafe program a target of a call is , an 
exception is raised (figure 15). The exception here is the famous 
NullPointerException. 

 

Fig. 15. Feature call rule in safe and unsafe big-step semantics 

It turns out that if an expression is null-safe, it gives exactly the same result regardless 
of the semantics behind. This effectively demonstrates absence of 
NullPointerException in null-safe programs. 
Theorem 5.2 (Semantics equivalence). Void-safe ( ) and void-unsafe ( ) 
semantics of a void-safe program with an initial void-safe state are equivalent: 

 

5.4 Practical results 
The core part of the local code analysis described in the paper is implemented in 19 
Eiffel classes of about 2.5KLOC in total. Instead of immutable attachment sets it uses 
mutable ones, optimized with bitwise operations. Branching instructions, such as 
loops, and conditional instructions and expressions, share the same code base that 
explains a form of the loop transfer function (section 4.1). All code is open source 
and is available at https://dev.eiffel.com/Source_Code. 
First void safety checks were added to Eiffel in EiffelStudio 6.3 at the time when 
public libraries almost reached a million lines of code. Migration of public libraries 
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took several releases and is still an ongoing work for few remaining libraries that are 
not completely void-safe. 
The current work suggests relaxed rules for local variable declarations and Result 
where no special type annotations are required. All attachment information is derived 
by static code analysis. This analysis was implemented in [6]. In contrast to previous 
releases, no changes to public libraries were required. This confirms theoretical 
soundness of the approach in practice. The rules also remove unneeded annotation 
burden from programmers and allow for simpler code. 
All theories code is proved with Isabelle 2016 and is available at 
https://bitbucket.org/kwaxer/void_safety/ (tag 1.2.2). 

6. Related work 
Three key ingredients of void safety – a type system that allows for specifying 
attachment properties, certified attachment patterns that allow for expressions of 
otherwise detachable type to be used when attached values are expected, and validity 
rules for safe reattachment and initialization – were already used by [4] in 2006. 
Research efforts were then mostly focused on making sure the typing rules do ensure 
soundness: [15] explains why the rules work, [2] reports issues with object 
initialization in a naïve implementation, [22] proposes a solution that requires 
introduction of new concepts into the type system to represent partially initialized 
objects with explicit additional annotations, [14] discusses how additional 
annotations can be avoided if strict modularity is not required. None of the papers 
went into the details of usability and user experience, inspecting if the rules are 
reasonable for real-life cases. Nor did the papers discuss how to perform the 
development of large systems where a complete set of classes is not readily available. 
This work addresses the first issue by proposing a set of rules for local variables and 
demonstrates that all the required information for them can be derived from the code. 
The second issue is solved by changing validity rules to respect exceptional behavior 
at run-time. 
Type system soundness of conventional object-oriented languages became a hot 
research area with release of Java that claimed to be absolutely type-safe (cf. [10] that 
explicitly states undefined behavior in certain cases). [12] presented a formal proof 
for a subset of Java in Isabelle/HOL using big-step semantics. Unfortunately big-step 
semantics is not good for reasoning about concurrent programs. [13] updated the 
proof to use small-step semantics instead and formalized Java memory model. The 
current work focuses on void safety rules introduced in Eiffel. Its concurrency model 
is quite different from Java. Even though [16] formalized the semantics in Maude, its 
correctness is not formally proved. So, the work uses big-step semantics to describe 
and to reason about void safety guarantees. 
An algorithm to compute a set of attached variables might seem to be quite similar to 
definite assignment rules of [7] and formalized by [12]. However, it differs in several 
important aspects. Contemporary definite assignment and presented here transfer 
functions do take into account context of branches with different outcome of 
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preceding conditions, while formalization in [12, 13] does not. Moreover, a set of 
definitely assigned variables does not depend on initial set of variables. Such a set is 
useless because an uninitialized variable cannot be used as a source of a reattachment. 
This is different for void safety. Both an attached or detachable variable can be used 
as a source or as a target of a reattachment. Finally, described here void safety rules 
rely on computation of greatest fixed points for loops. This is not needed for definite 
assignment computation. More similarity with type soundness proofs can be seen in 
monotonicity of a transfer function, though for void safety this property is also 
essential for showing that validity rules can be programmatically checked by a 
compiler. 
Leaving concurrency aside, big-step semantics does not distinguish between stuck 
and diverging states. [20, 21] demonstrate how to deal with that, so the big-step 
semantics could be changed accordingly. Instead, this work shows that safe and 
unsafe versions of big step semantics become equivalent when void safety rules are 
met. 

7. Conclusion 
Certified attachment patterns are an essential part of void safety guarantees in modern 
OO languages. This work formalizes them in Isabelle/HOL and proves some safety 
properties w.r.t. big-step semantics. The novelty of the work is in: 

 Generalization of attachment rules for boolean operators. (In particular 
similar scheme can be used to adapt definite assignment rules described in 
[12] and later used in [13] to prove Java-like type system soundness to match 
current Java rules [7].) 

 Introduction of “design mode” to void safety rules required to analyze real-
world programs. 

 Specification of void safety rules for loops. 

 Demonstration of theoretical and practical uselessness of attachment 
annotations for local variables. 

 Mechanically verified preservation theorem for void-safe programs and 
conditional equivalence of void-safe and void-unsafe semantics that can be 
applied to show complete void safety (both for local contexts only). 

The work covers only one part of three key elements of a void-safe language. It needs 
to be extended to deal with the other two, namely: 

 Type system – required to show safety with regular feature calls. 

 Initialization – required to show safety for object creation when some 
objects are in an intermediate half-initialized state. 



А.В. Когтенков. Автоматическое доказательство безопасности локальных пустых указателей. Труды ИСП РАН, 
том 28, вып. 5, 2016, стр. 27-54. 

51 

References 
[1]. Nada Amin and Tiark Romp. “Type Soundness Proofs with Definitional Interpreters”. In: 

OOPSLA. 2016. url: https://www.cs.purdue.edu/homes/ rompf/papers/amin-
draft2016a.pdf. Submitted. 

[2]. Mike Barnett et al. “Specification and Verification: The Spec# Experience”. In: Commun. 
ACM 54.6 (June 2011). Ed. by Moshe Y. Vardi, pp. 81–91. issn: 0001-0782. doi: 
10.1145/1953122.1953145. 

[3]. Common Vulnerabilities and Exposures. http://cve.mitre.org/. 2016. (Visited on 2016-05-
25). 

[4]. Ecma International. ECMA-367: Eiffel analysis, design and programming language. 2nd. 
Geneva, Switzerland: Ecma International, June 2006. url: http://www.ecma-
international.org/publications/standards/Ecma367.htm. 

[5]. Eiffel Software. EiffelStudio 7.3 Releases. https://dev.eiffel.com/ 
EiffelStudio_7.3_Releases. July 2013. (Visited on 2016-05-14). 

[6]. Eiffel Software. EiffelStudio 16.05 Releases. https://dev.eiffel.com/ 
EiffelStudio_16.05_Releases. July 2016. (Visited on 2016-09-15). 

[7]. James Gosling et al. The Java Language Specification, Java SE 8 Edition. 1st. Addison-
Wesley Professional, 2014. isbn: 9780133900699. 

[8]. Tony Hoare. “Null references: The billion dollar mistake”. In: Presentation at QCon 
London (2009). 

[9]. Projects – Isabelle Community wiki. https://isabelle.in.tum.de/ community/Projects. Apr. 
2016. (Visited on 2016-09-15). 

[10]. ISO. ISO/IEC 14882:2014(E): Information technology — Programming languages — 
C++. 4th. Geneva, Switzerland: International Organization for Standardization, Dec. 15, 
2014. 

[11]. Gerwin Klein. “Verified Java Bytecode Verification”. PhD thesis. Institut für Informatik, 
Technische Universität München, 2003. url: http://www4.in. tum.de/~kleing/diss/. 

[12]. Gerwin Klein and Tobias Nipkow. “A Machine-checked Model for a Java-like Language, 
Virtual Machine, and Compiler”. In: ACM Trans. Program. Lang. Syst. 28.4 (July 2006), 
pp. 619–695. issn: 0164-0925. doi: 10.1145/1146809.1146811. 

[13]. Andreas Lochbihler. “A Machine-Checked, Type-Safe Model of Java Concurrency : 
Language, Virtual Machine, Memory Model, and Verified Compiler”. PhD thesis. 
Karlsruher Institut für Technologie, Fakultät für Informatik, July 2012. doi: 
10.5445/KSP/1000028867. url: http://digbib.ubka.unikarlsruhe.de/volltexte/1000028867. 

[14]. Bertrand Meyer. Targeted expressions: safe object creation with void safety. 
http://se.ethz.ch/~meyer/publications/online/targeted.pdf. July 2012. (Visited on 2016-
09-24). 

[15]. Bertrand Meyer, Alexander Kogtenkov, and Emmanuel Stapf. “Avoid a Void: The 
Eradication of Null Dereferencing”. In: Reflections on the Work of C.A.R. Hoare. Ed. by 
A.W. Roscoe, Cliff B. Jones, and Kenneth R. Wood. History of Computing. Springer 
London, 2010, pp. 189–211. isbn: 978-1-84882-912-1. doi: 10.1007/978-1-84882-912-
1_9. 

[16]. Benjamin Morandi et al. “Prototyping a Concurrency Model”. In: Proceedings of the 2013 
13th International Conference on Application of Concurrency to System Design. ACSD 
’13. Washington, DC, USA: IEEE Computer Society, 2013, pp. 170–179. isbn: 978-0-
7695-5035-0. doi: 10.1109/ACSD.2013.21. url: 
http://dx.doi.org/10.1109/ACSD.2013.21. 

A.V. Kogtenkov. Mechanically Proved Practical Local Null Safety. Trudy ISP RAN/Proc. ISP RAS, vol. 28, issue 5, 
2016, pp. 27-54. 

52 

[17]. Robert Morgan. Building an Optimizing Compiler. Newton, MA, USA: Digital Press, 
1998. isbn: 1-55558-179-X. 

[18]. Steven S. Muchnick. Advanced Compiler Design and Implementation. San Francisco, CA, 
USA: Morgan Kaufmann Publishers Inc., 1997. isbn: 1-55860320-4. 

[19]. Scott Owens et al. “Functional Big-Step Semantics”. In: Programming Languages and 
Systems: 25th European Symposium on Programming, ESOP 2016, Held as Part of the 
European Joint Conferences on Theory and Practice of Software, ETAPS 2016, 
Eindhoven, The Netherlands, April 2-8, 2016, Proceedings. Ed. by Peter Thiemann. 
Berlin, Heidelberg: Springer Berlin Heidelberg, 2016, pp. 589–615. isbn: 978-3-662-
49498-1. doi: 10.1007/978-3-662-494981_23. url: http://dx.doi.org/10.1007/978-3-662-
49498-1_23. 

[20]. Jeremy Siek. Big-step, diverging or stuck? http://siek.blogspot.ch/2012/07/big-step-
diverging-or-stuck.html. July 2012. (Visited on 2016-09-15). 

[21]. Jeremy Siek. Type Safety in Three Easy Lemmas. http://siek.blogspot.ch/2013/05/type-
safety-in-three-easy-lemmas.html. May 2013. (Visited on 2016-09-15). 

[22]. Alexander J. Summers and Peter Müller. “Freedom Before Commitment: A Lightweight 
Type System for Object Initialisation”. In: Proceedings of the 2011 ACM International 
Conference on Object Oriented Programming Systems Languages and Applications. Ed. 
by . OOPSLA ’11. Portland, Oregon, USA: ACM,2011,pp.1013–1032.isbn:978-1-4503-
0940-0.doi:10.1145/2048066.2048142. 
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Аннотация. Разыменование пустого указателя – это хорошо известная ошибка, 
встречающаяся в объектно-ориентированных программах. Ее можно избежать путем 
добавления к языку, на котором пишется программа, специальных правил 
приложимости. Достаточно ли этих правил для гарантии отсутствия таких 
исключительных ситуаций? Данная статья посвящена безопасности пустых указателей 
во внутрипроцедурном контексте, в котором не требуются какие-либо дополнительные 
аннотации. Правила формализуются в системе автоматического доказательства теорем 
Isabelle/HOL. Затем доказывается теорема о сохранении безопасности пустых 
указателей в крупношаговой семантике. Наконец, демонстрируется, что при наличии 
таких правил семантики с безопасностью пустых указателей и без нее эквивалентны. 
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