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Abstract. The majority of software vulnerabilities originate from buffer overflow. 
Techniques to eliminate buffer overflows and limit their damage include secure 
programming, source code audit, binary code audit, static and dynamic code generation 
features. Modern compilers implement compile-time and execution time protection schemes, 
that include variables reordering, inserting canary value, and separate stack for return 
addresses. Our research is targeted to finding the breaches in the compiler protection 
methods. We tested MSVC, gcc, and clang and found that two of these compilers have flaws 
that allow exploiting buffer overwrite under certain conditions. 
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1. Introduction 
Even though there is a lots of progress in mitigating attacks against buffer overflows 
and in building static analysis tools that attempt to detect these vulnerabilities, 
buffer overflows remain one of the top ranking vulnerabilities year over year [1]. 
Writing beyond the buffer boundaries results in an undesired modification of 
adjacent memory locations. This data corruption can be exploited by an attacker to 
change the control flow of the program [2]. 
Software flaws that allow buffer overflow are produced by the developers. There are 
two kinds of countermeasures against buffer overflows [2]. First group is targeted to 
finding a problem before software is deployed: secure programming, source code 
audit, binary code audit, automatic testing (including testing with static analysis 
tools). 
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There are various static analysis techniques that address buffer overflow problem 
[3], [4], [5]. Static techniques extract constraints from the code and try to find 
incorrect memory accesses. However, these techniques produce many false 
positives due to the challenges faced by static analysis, such as the limited precision 
of alias analysis and limited loop unrolling. They may also produce false negatives 
due to the limited ability of constraint solvers, that are used to recover the malicious 
inputs [6]. 
Another approach is reducing the damage caused by the overflow. It includes the 
attempts of stopping an application after overflow is detected and reducing bug 
exploitability chances (address space randomization, non-executable data 
segments). 
Wilander and Kamkar describe in their paper [7] several code generation 
approaches for preventing buffer overflow exploitation: reordering local variables, 
inserting canary values, additional stack for return addresses, checking return 
addresses range, checking function pointers range, and wrapping unsafe library 
functions. 
Variables reordering and canary values protecting the return address have low 
runtime overhead and greatly reduce the exploitability of the overflow bugs. 
Nowadays these techniques are adopted by the commodity compilers Microsoft 
Visual C++ (MSVC) and GNU C Compiler (gcc) [8], [9]. 
Attacker can try to bypass the protection using other kind of attack (format string, 
double free, integer overflow) or bruteforcing the canary value [10], [11], [12], [13]. 
After bypassing protection scheme an attacker can overwrite instruction pointer and 
therefore hijack the control flow. This kind of threat is well known and many prior 
researches focused on this problem [14]. 
Another possible threat is overwriting the stack frame pointer (SFP) [15]. SFP is 
often copied to the stack pointer (SP) in the epilog of the function. When SP gets 
incorrect value, then function returns to the address stored in stack pointed by such 
fake SP. There are some other possibilities for overwriting SP that result in reading 
incorrect return address from the ”stack“. 
Overwriting stack and frame pointers may also alter function execution before exit, 
because it accesses local variables through these pointers. Attacker may substitute 
an address to overwrite variables in another memory region or output sensitive data 
from the program. 
In our work we address stack and frame pointer attacks, related to the buffer 
overflow problem. Modern compilers try to reduce attacks damage. We decided to 
test the compilers and stated the main research question: can stack canaries protect 
from overwriting stack and frame pointers? 
Finally, this work makes the following contributions: 

 Survey of the prolog/epilog code generation techniques in modern 
compilers. 
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 Set of the snippets for generating different stack frame manipulation 
samples. 

 Description of MSVC stack protection bug, which allows attacking callee-
saved registers. Attacker can exploit this bug to pass by the stack 
protection. 

 Description of MSVC and clang stack protection bugs, that allow 
overwriting stack pointer by calling vulnerable function. 

2. Protection Against Stack Buffer Overflows Through the Code 
Generation 
We investigated code generation techniques for local buffer overflow prevention. 
Traditional stack frame includes arguments of the function, return address, saved 
value of frame pointer register, and local variables [7]. On x86 stack grows from 
higher to lower addresses. Therefore local buffer overflow in a specific function 
may overwrite its return address (Figure 1). 

 

Fig. 1. Stack frame protection methods. Red frames are vulnerable. Green frames are safe. 
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There are multiple methods to protect from the control flow hijacking through the 
buffer overflow [7]. Modern compilers adopted embedding canary value into the 
stack frame, local variables reordering, and copying function arguments. 
The structure of stack frame with these protection methods is shown in Figure 1. 

2.1 Canary Value 
Canary value is a local variable embedded into the stack frame to detect buffer 
overflows. When canary value is changed it means that some code accessed the 
stack frame through the wrong pointer. StackGuard concept invented by Crispin 
Cowan [16] is designed for using canary values to detect and stop stack-based 
buffer overflows targeting the return address. 
Canary value is placed ”below“ the return address to detect when it is changed by 
user’s code. Overflow of the buffer, located in the lower addresses stack frame, 
targeted to overwrite the return address, will also overwrite canary value and the 
attack will be detected. Function checks the canary value before reading the return 
address from the stack. Program is terminated when canary value is incorrect, 
preventing buffer overflow exploitation. 
Compiler developers enhanced this protection scheme. Canary value now protects 
not only the return address but also saved frame pointer. Prior protection schemes 
used predictable canary values. Attacker could ”overwrite“ them with the same 
values. Random canary values used in modern compilers provide efficient 
protection from return address and frame pointer overwriting [17], [18]. 
Canary values is not intended to protect other local variables when one of them 
overflows [17]. E.g., one local buffer may overwrite other local buffer in case of 
overflow. We do not address this problem in our research, because it requires more 
complex protection approach, which is not used in the compilers yet. 
On the other hand, variables that are not addressed as buffers, may be protected by 
moving them to lower addresses in the stack. This protection is called variables 
reordering. 

2.2 Reordering of the Variables 
Compiler reorders variables to protect them from buffer overflows. Moving arrays 
to higher addresses protects other local variables from being overwritten. Buffer 
overflow can overwrite other variables only in the case when they are also buffers 
and located at higher addresses. Ordinary variables in single-buffer functions can 
feel safe. 

Attacker can also overwrite arguments that are located at higher addresses, because 
belong to caller’s stack frame. This attack will be detected only at function’s exit. 
But values of the arguments are used before exit and attacker may affect function’s 
behavior before attack will be detected. 
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2.3 Copying Function Arguments 
Compiler may protect function arguments from being overwritten by creating its 
copies. Arguments are protected by allocating extra space on the stack and copying 
their values below the local variables. The original argument values located after the 
return address are not used in the rest of the code [13], [17]. Therefore copying the 
arguments protects the function from using invalid values in the code between 
buffer overflow and function return. 

3. Method of Analysis 
To find flaws in protection mechanisms and answer the research question we 
decided to create multiple code snippets and compile them with different 
compilation options on modern compilers. 

We focus on software compiled for 32-bit i386 platform. i386 family CPUs use esp 
register as stack pointer and in most cases use ebp as frame pointer. We tested two 
versions of MSVC — 2010 and 2015, two versions of gcc — 4.6.2 and 5.2.0, and 
clang 3.7.1. 

All our snippets were on pure C, without C++-related features like exception 
handling. These snippets are targeted to generate different code structure of prolog 
and epilog parts of the functions. Prolog stores callee-saved registers and initializes 
the stack frame. Epilog restores the registers and exits from the function. 

Prolog and epilog also include arguments copying, canary value initialization and 
verification embedded by the compiler. 

3.1. Snippets Code Structure 
We have found that the following features in program structure affect on prolog and 
epilog code generation. 

 Function main. main function may align stack pointer on entry and restore 
it at exit, when it is required by the platform application binary interface. 

 Variable length arrays (VLA). These arrays cannot be allocated in prolog, 
because its sizes are unknown. Therefore creating and overflowing them 
may affect the execution in unusual way. 

 Aligned structures on the stack. When structures need an aligned address, 
compiler must align the stack pointer to allocate these structures. It changes 
the structure of prolog and epilog, because original unaligned stack pointer 
value must be restored at exit. 

 alloca function is an alternative for variable-sized arrays. It allocates 
specified number of bytes on the stack. We included this function in our 
snippets, because MSVC doesn’t support VLA. 

Every snippet has at least one function which performs operations with stack 
variables. Function template includes the following operations: 
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 Stack buffer allocation. Buffers were allocated statically or dynamically 
depending on function variant. 

 Reading data into local buffer with gets function. gets was selected to 
demonstrate whether stack frame may be overwritten with overflow or not. 

 Output buffer with printf function. 
We also tried adding different types of parameters and return values to the 
functions. These options didn’t add any exploitable registers or memory cells in 
functions prologs and epilogs. Switching between calling conventions (cdecl, 
fastcall, stdcall) also didn’t affect potential prolog/epilog vulnerabilities. 

3.1. Compilation Options 
We compiled our samples with different combinations of prolog/epilog code 
generation options. These options are supported by all tested compilers. 

 Omit frame pointer. Omitting the frame pointer is the optimization when 
local variables are accessed directly though the stack pointer. If frame 
pointer is not used, then it cannot be hijacked by the attacker. But this 
option does not work in some examples, making frame pointer vulnerable 
to overwriting. 

 Stack protection. Stack protection intended to guard return address and 
callee-saved registers from being overwritten. However, in some test cases 
frame pointer or saved registers were not protected and could be 
overwritten by the attacker. 

 Code optimizations. Code in released software binaries is usually 
optimized by the compiler. We analyzed non-optimized code, but do not 
present its flaws here, because they probably will not appear in production 
code. 

4. Prolog/epilog in Modern Compilers 
Prolog and epilog for compiled templates include different parts. Some of them 
belong to user’s code, others are inserted by the compiler for implicit operations like 
saving registers. Assembly code for generated functions included the following 
parts: 

 Saving frame pointer register (ebp) and copying esp to ebp. This part is 
omitted if frame pointer is not used in this function. 

 Pushing callee-saved registers into the stack. 

 Aligning esp and saving its initial value into some register (e.g., esi). 

 Allocating space for the local variables. 
 Initializing the canary — prolog saves canary value as a hidden local 

variable. 
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 User’s code. This code can modify esp to allocate new variables or 
function parameters. 

 Checking the canary. 

 Restoring initial value of esp. esp may be restored by copying saved 
value from the register. 

 Restoring values of the saved registers. 

 Recovering ebp.  

 Exitting the function. ret instruction loads return value stored in stack 
into the program counter. 

The only mandatory action in this list is exitting from the function. Others depend 
on function structure and compiler options. The order of parts may change from 
compiler to compiler (e.g., the order of saving registers and initializing the canary 
may change). 
We focus on overflows of the buffers located in the stack, but don’t consider the 
following attacks that could be performed with this overflow: 

 Attack on local variables. As said before, we don’t focus on this attack, 
because protection mechanisms used by the compilers are not intended to 
stand against it. 

 Direct overwrite of the return address. This attack is well known [14] and 
doesn’t require to be analyzed here. Stack canaries used by the compilers 
protect return address in the first place. 

 Attack on non-optimized code. This code won’t appear in deployed 
software and therefore attackers do not interested in its vulnerabilities. 

We detected several templates of prolog and epilog for MSVC, gcc, and clang 
compilers. Here we present an analysis of compiled samples, focusing on possible 
attack vectors. 

4.1. Scheme of Protection 
When compilers embed canary value into the stack, they insert initialization code 
into the prolog. This code puts some value into the canary variable. We found the 
following types of canaries in the generated samples. 
Value from global variable. Canary value is read from some global variable. Local 
canary variable may be operated through ebp (or or through esp, if frame pointer 
is not used). Reading canary value through ebp protects this register from 
overwriting, because wrong register value will point to wrong canary value. This 
approach is used by gcc and clang. 
Global variable xor frame pointer. Canary value is formed by xor’ing global 
variable with the value of frame pointer (ebp). When frame pointer is omitted, local 
variables are accessed through esp. In this case canary value includes esp, 
protecting it from corruption. This approach is used by MSVC. 
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4.2. MSVC 2010/2015 
Microsoft visual C includes support of C99 subset. We tested two versions of 
MSVC — 2010 and 2015. We didn’t compile tests with variable-length arrays, 
because MSVC doesn’t support them. 
MSVC supports stack frame protection with canary value (which is named ”security 
cookie“ in compiler documentation), local variables reordering, and function 
arguments copying. 
Bray describes stack frame of MSVC 2003 and states that security cookie is 
disabled when _alloca function is used [8]. _alloca function is intended to 
allocate buffers in the stack frame dynamically. Therefore it can be used as a 
replacement of variable-length arrays. 

 

Fig. 2. Stack frame layouts used by the modern C compilers. 
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1 void func(void) 
2 { 
3  int sz; 
4  char *buf; 
5  scanf("%d", &sz); 
6  buf = (char*)alloca(sz); 
7  gets(buf); 
8  printf(buf); 
9 } 

Figure 3. MSVC sample using _alloca 
function to dynamically create buffer in 

the stack. 

1 __declspec(align(32))  
2 struct S { 
3  long long a, b, c; 
4 }; 
5 
6 void func(void) 
7 { 
8   struct S s; 
9   char buf[8]; 
10  gets(buf); 
11  fill(&s); 
12  printf("%s %d %d %d\n", 
14    buf, (int)s.a, 
15    (int)s.b, (int)s.c); 
16 } 

Figure 5. Function with 32-bytes aligned 
local variable. 

1  push ebp 
2  mov ebp, esp 
3  sub esp, 8 
4  mov eax, ___security_cookie 
5  xor eax, ebp 
6  mov [ebp-4], eax 
7  push esi 
8  ... 
9  call __alloca_probe_16 
10 ... 
11 lea esp, [ebp-12] 
12 ; Restore esi 
13 pop esi 
14 mov ecx, [ebp-4] 
15 xor ecx, ebp 
15 call @__security_check 
17 mov esp, ebp 
18 pop ebp 
19 ret 0 

Figure 4. Sample with _alloca compiled 
by MSVC. 

1  push ebx 
2  mov ebx, esp 
3  sub esp, 8 
4  and esp, -32 
5  add esp, 4 
6  push ebp 
7  mov ebp, [ebx+4] 
8  mov [esp+4], ebp 
9  mov ebp, esp 
10 sub esp, 64 
11 mov eax, ___security_cookie 
12 xor eax, esp 
13 mov [ebp-4], eax 
14 ... 
15 mov ecx, [ebp-4] 
16 xor ecx, ebp 
17 call @__security_check 
18 mov esp, ebp 
19 pop ebp 
20 mov esp, ebx 
21 pop ebx 
22 ret 0 

Figure 6. MSVC sample with aligned 
structures in the stack. ebp is protected 

by the cookie, but restoring esp from ebx 
is not. 
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1  struct S { 
2   long long a, b, c; 
3  } 
4 __attribute__((aligned(32))); 
5  void func(void) 
6  { 
7   char buf[8]; 
8   int n, i; 
9   gets(buf); 
10  sscanf(buf, "%d", &n); 
11  struct S s[n]; 
12  // other stuff 
13  .. 
14 } 

Figure 7. Variable-length array of the 
aligned structures. 

1  push ebp 
2  mov ebp, esp 
3  push ebx 
4  push edi 
5  push esi 
6  and esp, 0xffffffe0 
7  sub esp, 0x60 
8  mov esi, esp 
9  mov eax, ___stack_chk_guard 
10 mov [esi+0x48], eax 
11 ... 
12 mov eax, ___stack_chk_guard 
13 cmp eax, [esi+0x48] 
14 jne L 
15 lea esp, [ebp-0xc] 
16 pop esi 
17 pop edi 
18 pop ebx 
19 pop ebp 
20 ret 
21 L: call ___stack_chk_fail 

Figure 8. Potentially unsafe code 
generated by clang. esi acts as a frame 

pointer, esp is loaded from ebp that could 
be corrupted by unsafe nested functions. 

We investigated newer Microsoft C compilers and found that security checks now 
are enabled when _alloca is used, but these compilers place dynamically 
allocated buffers directly below the callee-saved registers (Figure 2). 
It means that callee-saved registers may be overwritten with buffer overflows. 
Consider the source code in Figure 3. It dynamically allocates memory in stack. 
This buffer is placed on the top of stack frame, below the callee-saved registers 
(Figure 2). 
When _alloca is not used, compiler saves registers from overwriting by placing 
them at the top of the stack. But stack protection in MSVC lacks complete 
protection when _alloca function is used. 

Figure 4 shows the compiled code. ebp and esp are protected by the security 
cookie, because ebp value is used to check the cookie, and esp is restored from 
ebp. esi is placed above the security cookie. And buffer allocated by _alloca is 
placed below saved esi in the memory. Therefore esi is not protected by being 
overwritten with buffer overflow. 
Callee-saved registers are not read until function exit. Therefore this problem may 
be solved by moving calleesaved registers deeper in stack to protect them with the 
security cookie. 
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Another MSVC sample is presented in Figure 5. Function in this sample allocates 
aligned variable in the stack. The compiler produces the code presented in Figure 6. 
It aligns esp value to 32 bytes boundary which allows storing aligned structures in 
the stack. The compiler needs an additional register to store original unaligned esp 
value. It uses ebx register for that. This is callee-saved register and it is meant to 
remain unchanged in nested function calls. 
But restoring esp from ebx at function exit is not protected by the security cookie. 
Therefore one can attack esp through corrupting ebx in nested functions. These 
functions may be located in other modules and therefore may be compiled without 
stack protection, allowing stack overflow exploitation. Or it may have vulnerability 
described in the beginning of this section. 
Using ”omit frame pointer“ compilation option does not fix this example. Compiler 
uses ebp to store original esp value, but this ebp value is not verified in security 
check in the epilog. In this case attacker may hijack the stack pointer by overwriting 
ebp in unsafe nested function. 

4.3. clang 3.7.1 
Stack frame used by clang 3.7.1 compiler differs from MSVC. It puts callee-saved 
registers under the protection of the canary value. Therefore these values will not be 
popped back, because security check will stop the execution. 
We checked all prepared samples and discovered that stack protection in this 
compiler could be unsafe in programs with aligned variable-length arrays. Consider 
the sample in Figure 7. Stack frame produced by clang is presented in Figure 2. It 
included unaligned callee-saved registers and aligned local variables. 
clang generates the assembly code presented by Figure 8. It uses two copies of a 
stack pointer. One is stored in ebp and used to restore esp at exit. Another is 
located in esi and used as an aligned frame pointer. 
Omitting frame pointer doesn’t work here, because variable-length array size is 
unknown at compile time. Imagine that this function calls some unsafe code which 
corrupts esi. Then checking of the canary value will not be successful. Therefore 
frame pointer is also protected by stack guard together with stack frame contents. 
But stack guard does not protect ebp. ebp is used to restore esp in the epilog. 
Therefore if there exists suitable unsafe code invoked by this function (e.g., library 
compiled without stack protection), attacker may overwrite stack and frame 
pointers. 
How to eliminate vulnerability of the stack pointer? Compiler may place saved esp 
value in the aligned stack frame above the canary value. In this case the attacker 
couldn’t overwrite saved esp value without being noticed. 
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4.4. GCC 5.2.0 and 4.6.2 
gcc uses all protection methods described above: stack canaries, variable reordering, 
and copying function arguments. 
Scheme of stack protection in gcc differs from the one used in MSVC (Figure 2). 
Saved registers are protected by the canary value. Therefore the user cannot attack 
stack pointer and saved registers when stack protection is enabled. 
We investigated all examples and didn’t found any cases where saved registers, 
stack pointer, or frame pointer could be hijacked. gcc does not allocate multiple 
frame pointers. Therefore it is not vulnerable to attack which corrupts one of them. 
And all saved registers are protected by the canary value. 

5. Attack Vectors 
In previous section we described flaws in the security checks of the modern 
compilers. Code samples described above reveal two possible attack vectors: 
overwriting stack pointer and overwriting callee-saved registers. 
Overwriting esp may be used to control program execution through pointing esp at 
the memory where known address is located. Function will try to return to that 
address and will jump to the desired code. It could be something like 
AuthentificationSuccess to make ”useful“ work, exit for DoS’ing without 
an alert, or shellcode supplied by the attacker. 
Another kind of attack is hijacking the stack or frame pointer to control local 
variables. Function works with local variables through the frame pointer. If its value 
is supplied by the attacker, function may read or modify unattended data. This may 
lead to leakage of sensitive data or to taking alternative branches in the function. 
Finally, the function will jump to some address with ret instruction. Richarte in his 
paper [12] presents an example of such an attack. 
Modern operating systems have address space layout randomization (ASLR) 
enabled, which hampers these kind of attacks, because an attacker cannot guest the 
target address. However, this protection may be bypassed in some cases. E.g., by 
using the addresses from a module without ASLR [11]. 
Third kind of attack is overwriting caller’s local variables. Stack pointer in this 
attack is not affected — application will not crash due to jumping to some incorrect 
address. Attacker has to corrupt callee-saved registers, exploiting the flaws of stack 
protection mechanism. Caller will not detect that these registers changed, because 
calling convention declares that callee preserves register values. 

6. Related Work 
Other attacks and compiler enhancements are described by other researchers. 
Wilander et al. states, that attacks on return address and old base pointer can be 
successfully prevented by the runtime stack protection methods [7], [19]. These 
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protection methods are described in section 2. In our research we verified these 
results and found just few cases when protection can be bypassed. 
Paper ”Four different tricks to bypass StackShield and StackGuard protection“ 
presents description of ways to bypass the stack protection techniques [12]. It 
focuses on stack frame hijacking, when it is not protected by the canary. State-of-
the-art compilers protect frame pointer as well as return address, therefore it cannot 
be overwritten as easy as in 2002. 
Function argument attack described in that paper can also be fought back by the 
modern compilers. They copy arguments to the stack area above the buffer. Buffer 
overflow cannot touch arguments when they are located at the lower addresses. 
Our research show that alloca makes stack protection task harder for the 
compiler. alloca is already known as a source of stack overflow attacks [20]. 
Therefore every use of this function has to be double-checked. 
Canary value protection bypassing methods using exception handlers, virtual tables 
and couple of other approaches are presented in [11]. It means that stack protection 
already has some drawbacks in addition to ones that we discovered. 
We haven’t found any flaws in gcc stack protection method. However, we didn’t 
take in account several overflow possibilities, including overwriting of one local 
buffer with overflow of the another. Paper [17] describes different approaches of 
enhancing stack protection in gcc. The first improvement is verification of the 
canary not only when function returns, but also when the function issues a call to 
another function. This check prevents passing invalid arguments to the nested 
function. The second improvement is assigning an individual canary for each buffer. 
With this patch overwriting of one local buffer with another will be detected by the 
security check. The third improvement makes canary location and failure 
probabilistic. It makes application harder to attack and reduces amount of 
information supplied to the attacker in case of the failure. Authors also present 
patches that implement described protection enhancements. These patches may 
incur much greater runtime overhead than current protection methods. Therefore 
they are not used by default yet. 

7. Conclusion 
In this paper we presented the analysis of the buffer overflow protection methods 
used in modern compilers. Our tests showed that modern compiler may miss some 
cases where stack pointer is not protected. Attacker may get control over the 
application which stack is “protected” with canary value. 
We found that methods used in clang and MSVC have several flaws. Both of these 
compilers does not protect restoring of esp from one of the registers, when using 
aligned data structures in the stack. MSVC also doesn’t protect all saved registers in 
programs with _alloca function. 
gcc was the third compiler to examine. We haven’t found any protection issues in 
samples compiled with gcc. 

P.M. Dovgalyuk, V.A. Makarov. When stack protection does not protect the stack? Trudy ISP RAN/Proc. ISP RAS, 
vol. 28, issue 5, 2016, pp. 55-72. 

68 

Tests that were created in this research are released in repository 
https://github.com/Dovgalyuk/SecurityFlaws. Everyone can generate assembly files 
for its own compiler and examine the security features of code generation. 
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Аннотация. Основная часть уязвимостей в программах вызвана переполнением 
буфера. Чтобы предотвратить переполнение буфера и уменьшить ущерб от него 
используется безопасное программирование, аудит исходного кода, аудит бинарного 
кода, статические и динамические особенности кодогенерации. В современных 
компиляторах реализованы механизмы защиты, работающие на этапе компиляции и на 
этапе выполнения скомпилированной программы: переупорядочивание переменных, 
копирование аргументов и встраивание стековой канарейки. В статье описывается 
исследование, посвященное поиску недостатков в этих механизмах. Мы 
протестировали компиляторы MSVC, gcc и clang и обнаружили, что два из них 
содержат ошибки, позволяющие эксплуатировать переполнение буфера при 
определенных условиях. 
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