
55

When stack protection does not protect the
stack?

Pavel Dovgalyuk <pavel.dovgaluk@ispras.ru>
Vladimir Makarov <vladimir.makarov@novsu.ru>

Novgorod State University,
41, Bolshaya Sankt Peterburgskaya, Velikiy Novgorod, 173003, Russia

Abstract. The majority of software vulnerabilities originate from buffer overflow.
Techniques to eliminate buffer overflows and limit their damage include secure
programming, source code audit, binary code audit, static and dynamic code generation
features. Modern compilers implement compile-time and execution time protection schemes,
that include variables reordering, inserting canary value, and separate stack for return
addresses. Our research is targeted to finding the breaches in the compiler protection
methods. We tested MSVC, gcc, and clang and found that two of these compilers have flaws
that allow exploiting buffer overwrite under certain conditions.

Keywords: buffer overflow; canary protection; gcc; msvc; clang

DOI: 10.15514/ISPRAS-2016-28(5)-3

For citation: P.M. Dovgalyuk, V.A. Makarov. When stack protection does not protect the
stack? Trudy ISP RAN/Proc. ISP RAS, vol. 28, issue 5, 2016, pp. 55-72. DOI:
10.15514/ISPRAS-2016-28(5)-3

1. Introduction
Even though there is a lots of progress in mitigating attacks against buffer overflows
and in building static analysis tools that attempt to detect these vulnerabilities,
buffer overflows remain one of the top ranking vulnerabilities year over year [1].
Writing beyond the buffer boundaries results in an undesired modification of
adjacent memory locations. This data corruption can be exploited by an attacker to
change the control flow of the program [2].
Software flaws that allow buffer overflow are produced by the developers. There are
two kinds of countermeasures against buffer overflows [2]. First group is targeted to
finding a problem before software is deployed: secure programming, source code
audit, binary code audit, automatic testing (including testing with static analysis
tools).

P.M. Dovgalyuk, V.A. Makarov. When stack protection does not protect the stack? Trudy ISP RAN/Proc. ISP RAS,
vol. 28, issue 5, 2016, pp. 55-72.

56

There are various static analysis techniques that address buffer overflow problem
[3], [4], [5]. Static techniques extract constraints from the code and try to find
incorrect memory accesses. However, these techniques produce many false
positives due to the challenges faced by static analysis, such as the limited precision
of alias analysis and limited loop unrolling. They may also produce false negatives
due to the limited ability of constraint solvers, that are used to recover the malicious
inputs [6].
Another approach is reducing the damage caused by the overflow. It includes the
attempts of stopping an application after overflow is detected and reducing bug
exploitability chances (address space randomization, non-executable data
segments).
Wilander and Kamkar describe in their paper [7] several code generation
approaches for preventing buffer overflow exploitation: reordering local variables,
inserting canary values, additional stack for return addresses, checking return
addresses range, checking function pointers range, and wrapping unsafe library
functions.
Variables reordering and canary values protecting the return address have low
runtime overhead and greatly reduce the exploitability of the overflow bugs.
Nowadays these techniques are adopted by the commodity compilers Microsoft
Visual C++ (MSVC) and GNU C Compiler (gcc) [8], [9].
Attacker can try to bypass the protection using other kind of attack (format string,
double free, integer overflow) or bruteforcing the canary value [10], [11], [12], [13].
After bypassing protection scheme an attacker can overwrite instruction pointer and
therefore hijack the control flow. This kind of threat is well known and many prior
researches focused on this problem [14].
Another possible threat is overwriting the stack frame pointer (SFP) [15]. SFP is
often copied to the stack pointer (SP) in the epilog of the function. When SP gets
incorrect value, then function returns to the address stored in stack pointed by such
fake SP. There are some other possibilities for overwriting SP that result in reading
incorrect return address from the ”stack“.
Overwriting stack and frame pointers may also alter function execution before exit,
because it accesses local variables through these pointers. Attacker may substitute
an address to overwrite variables in another memory region or output sensitive data
from the program.
In our work we address stack and frame pointer attacks, related to the buffer
overflow problem. Modern compilers try to reduce attacks damage. We decided to
test the compilers and stated the main research question: can stack canaries protect
from overwriting stack and frame pointers?
Finally, this work makes the following contributions:

 Survey of the prolog/epilog code generation techniques in modern
compilers.

П.М. Довгалюк, В.А. Макаров. Когда защита стека не срабатывает? Труды ИСП РАН, том 28, вып. 5, 2016,
стр. 55-72.

57

 Set of the snippets for generating different stack frame manipulation
samples.

 Description of MSVC stack protection bug, which allows attacking callee-
saved registers. Attacker can exploit this bug to pass by the stack
protection.

 Description of MSVC and clang stack protection bugs, that allow
overwriting stack pointer by calling vulnerable function.

2. Protection Against Stack Buffer Overflows Through the Code
Generation
We investigated code generation techniques for local buffer overflow prevention.
Traditional stack frame includes arguments of the function, return address, saved
value of frame pointer register, and local variables [7]. On x86 stack grows from
higher to lower addresses. Therefore local buffer overflow in a specific function
may overwrite its return address (Figure 1).

Fig. 1. Stack frame protection methods. Red frames are vulnerable. Green frames are safe.

Arguments

Return address

Old frame pointer

Local variables

Higher
addresses

Lower
addresses

Traditional
stack frame

Arguments

Return address

Old frame pointer

Local variables

Return address is
protected by canary

Canary value

Arguments

Return address

Old frame pointer

Local variables

Frame pointer is
protected by canary

Canary value

Higher
addresses

Lower
addresses

Arguments

Return address

Old frame pointer

Local arrays

Reordering of
the variables

Canary value

Local variables

Arguments

Return address

Old frame pointer

Local arrays

Copying of
the arguments

Canary value

Local variables

Arguments copy

P.M. Dovgalyuk, V.A. Makarov. When stack protection does not protect the stack? Trudy ISP RAN/Proc. ISP RAS,
vol. 28, issue 5, 2016, pp. 55-72.

58

There are multiple methods to protect from the control flow hijacking through the
buffer overflow [7]. Modern compilers adopted embedding canary value into the
stack frame, local variables reordering, and copying function arguments.
The structure of stack frame with these protection methods is shown in Figure 1.

2.1 Canary Value
Canary value is a local variable embedded into the stack frame to detect buffer
overflows. When canary value is changed it means that some code accessed the
stack frame through the wrong pointer. StackGuard concept invented by Crispin
Cowan [16] is designed for using canary values to detect and stop stack-based
buffer overflows targeting the return address.
Canary value is placed ”below“ the return address to detect when it is changed by
user’s code. Overflow of the buffer, located in the lower addresses stack frame,
targeted to overwrite the return address, will also overwrite canary value and the
attack will be detected. Function checks the canary value before reading the return
address from the stack. Program is terminated when canary value is incorrect,
preventing buffer overflow exploitation.
Compiler developers enhanced this protection scheme. Canary value now protects
not only the return address but also saved frame pointer. Prior protection schemes
used predictable canary values. Attacker could ”overwrite“ them with the same
values. Random canary values used in modern compilers provide efficient
protection from return address and frame pointer overwriting [17], [18].
Canary values is not intended to protect other local variables when one of them
overflows [17]. E.g., one local buffer may overwrite other local buffer in case of
overflow. We do not address this problem in our research, because it requires more
complex protection approach, which is not used in the compilers yet.
On the other hand, variables that are not addressed as buffers, may be protected by
moving them to lower addresses in the stack. This protection is called variables
reordering.

2.2 Reordering of the Variables
Compiler reorders variables to protect them from buffer overflows. Moving arrays
to higher addresses protects other local variables from being overwritten. Buffer
overflow can overwrite other variables only in the case when they are also buffers
and located at higher addresses. Ordinary variables in single-buffer functions can
feel safe.

Attacker can also overwrite arguments that are located at higher addresses, because
belong to caller’s stack frame. This attack will be detected only at function’s exit.
But values of the arguments are used before exit and attacker may affect function’s
behavior before attack will be detected.

П.М. Довгалюк, В.А. Макаров. Когда защита стека не срабатывает? Труды ИСП РАН, том 28, вып. 5, 2016,
стр. 55-72.

59

2.3 Copying Function Arguments
Compiler may protect function arguments from being overwritten by creating its
copies. Arguments are protected by allocating extra space on the stack and copying
their values below the local variables. The original argument values located after the
return address are not used in the rest of the code [13], [17]. Therefore copying the
arguments protects the function from using invalid values in the code between
buffer overflow and function return.

3. Method of Analysis
To find flaws in protection mechanisms and answer the research question we
decided to create multiple code snippets and compile them with different
compilation options on modern compilers.

We focus on software compiled for 32-bit i386 platform. i386 family CPUs use esp
register as stack pointer and in most cases use ebp as frame pointer. We tested two
versions of MSVC — 2010 and 2015, two versions of gcc — 4.6.2 and 5.2.0, and
clang 3.7.1.

All our snippets were on pure C, without C++-related features like exception
handling. These snippets are targeted to generate different code structure of prolog
and epilog parts of the functions. Prolog stores callee-saved registers and initializes
the stack frame. Epilog restores the registers and exits from the function.

Prolog and epilog also include arguments copying, canary value initialization and
verification embedded by the compiler.

3.1. Snippets Code Structure
We have found that the following features in program structure affect on prolog and
epilog code generation.

 Function main. main function may align stack pointer on entry and restore
it at exit, when it is required by the platform application binary interface.

 Variable length arrays (VLA). These arrays cannot be allocated in prolog,
because its sizes are unknown. Therefore creating and overflowing them
may affect the execution in unusual way.

 Aligned structures on the stack. When structures need an aligned address,
compiler must align the stack pointer to allocate these structures. It changes
the structure of prolog and epilog, because original unaligned stack pointer
value must be restored at exit.

 alloca function is an alternative for variable-sized arrays. It allocates
specified number of bytes on the stack. We included this function in our
snippets, because MSVC doesn’t support VLA.

Every snippet has at least one function which performs operations with stack
variables. Function template includes the following operations:

P.M. Dovgalyuk, V.A. Makarov. When stack protection does not protect the stack? Trudy ISP RAN/Proc. ISP RAS,
vol. 28, issue 5, 2016, pp. 55-72.

60

 Stack buffer allocation. Buffers were allocated statically or dynamically
depending on function variant.

 Reading data into local buffer with gets function. gets was selected to
demonstrate whether stack frame may be overwritten with overflow or not.

 Output buffer with printf function.
We also tried adding different types of parameters and return values to the
functions. These options didn’t add any exploitable registers or memory cells in
functions prologs and epilogs. Switching between calling conventions (cdecl,
fastcall, stdcall) also didn’t affect potential prolog/epilog vulnerabilities.

3.1. Compilation Options
We compiled our samples with different combinations of prolog/epilog code
generation options. These options are supported by all tested compilers.

 Omit frame pointer. Omitting the frame pointer is the optimization when
local variables are accessed directly though the stack pointer. If frame
pointer is not used, then it cannot be hijacked by the attacker. But this
option does not work in some examples, making frame pointer vulnerable
to overwriting.

 Stack protection. Stack protection intended to guard return address and
callee-saved registers from being overwritten. However, in some test cases
frame pointer or saved registers were not protected and could be
overwritten by the attacker.

 Code optimizations. Code in released software binaries is usually
optimized by the compiler. We analyzed non-optimized code, but do not
present its flaws here, because they probably will not appear in production
code.

4. Prolog/epilog in Modern Compilers
Prolog and epilog for compiled templates include different parts. Some of them
belong to user’s code, others are inserted by the compiler for implicit operations like
saving registers. Assembly code for generated functions included the following
parts:

 Saving frame pointer register (ebp) and copying esp to ebp. This part is
omitted if frame pointer is not used in this function.

 Pushing callee-saved registers into the stack.

 Aligning esp and saving its initial value into some register (e.g., esi).

 Allocating space for the local variables.
 Initializing the canary — prolog saves canary value as a hidden local

variable.

П.М. Довгалюк, В.А. Макаров. Когда защита стека не срабатывает? Труды ИСП РАН, том 28, вып. 5, 2016,
стр. 55-72.

61

 User’s code. This code can modify esp to allocate new variables or
function parameters.

 Checking the canary.

 Restoring initial value of esp. esp may be restored by copying saved
value from the register.

 Restoring values of the saved registers.

 Recovering ebp.

 Exitting the function. ret instruction loads return value stored in stack
into the program counter.

The only mandatory action in this list is exitting from the function. Others depend
on function structure and compiler options. The order of parts may change from
compiler to compiler (e.g., the order of saving registers and initializing the canary
may change).
We focus on overflows of the buffers located in the stack, but don’t consider the
following attacks that could be performed with this overflow:

 Attack on local variables. As said before, we don’t focus on this attack,
because protection mechanisms used by the compilers are not intended to
stand against it.

 Direct overwrite of the return address. This attack is well known [14] and
doesn’t require to be analyzed here. Stack canaries used by the compilers
protect return address in the first place.

 Attack on non-optimized code. This code won’t appear in deployed
software and therefore attackers do not interested in its vulnerabilities.

We detected several templates of prolog and epilog for MSVC, gcc, and clang
compilers. Here we present an analysis of compiled samples, focusing on possible
attack vectors.

4.1. Scheme of Protection
When compilers embed canary value into the stack, they insert initialization code
into the prolog. This code puts some value into the canary variable. We found the
following types of canaries in the generated samples.
Value from global variable. Canary value is read from some global variable. Local
canary variable may be operated through ebp (or or through esp, if frame pointer
is not used). Reading canary value through ebp protects this register from
overwriting, because wrong register value will point to wrong canary value. This
approach is used by gcc and clang.
Global variable xor frame pointer. Canary value is formed by xor’ing global
variable with the value of frame pointer (ebp). When frame pointer is omitted, local
variables are accessed through esp. In this case canary value includes esp,
protecting it from corruption. This approach is used by MSVC.

P.M. Dovgalyuk, V.A. Makarov. When stack protection does not protect the stack? Trudy ISP RAN/Proc. ISP RAS,
vol. 28, issue 5, 2016, pp. 55-72.

62

4.2. MSVC 2010/2015
Microsoft visual C includes support of C99 subset. We tested two versions of
MSVC — 2010 and 2015. We didn’t compile tests with variable-length arrays,
because MSVC doesn’t support them.
MSVC supports stack frame protection with canary value (which is named ”security
cookie“ in compiler documentation), local variables reordering, and function
arguments copying.
Bray describes stack frame of MSVC 2003 and states that security cookie is
disabled when _alloca function is used [8]. _alloca function is intended to
allocate buffers in the stack frame dynamically. Therefore it can be used as a
replacement of variable-length arrays.

Fig. 2. Stack frame layouts used by the modern C compilers.

Higher
addresses

Lower
addresses

MSVC stack frame
Dynamically allocated

buffers in MSVC

Higher
addresses

Lower
addresses

Arguments

Return address

Old frame pointer

Local arrays

gcc stack frame

Canary value

Local variables

Aligned stack
frame of clang

Arguments

Return address

Old frame pointer

Local arrays

Canary value

Local variables

Callee-saved registers

Arguments

Return address

Old frame pointer

Local arrays

Canary value

Local variables

Callee-saved registers

_alloca buffers

Callee-saved registers

Arguments

Return address

Old frame pointer

Local arrays

Canary value

Local variables

Callee-saved registers

Padding

П.М. Довгалюк, В.А. Макаров. Когда защита стека не срабатывает? Труды ИСП РАН, том 28, вып. 5, 2016,
стр. 55-72.

63

1 void func(void)
2 {
3 int sz;
4 char *buf;
5 scanf("%d", &sz);
6 buf = (char*)alloca(sz);
7 gets(buf);
8 printf(buf);
9 }

Figure 3. MSVC sample using _alloca
function to dynamically create buffer in

the stack.

1 __declspec(align(32))
2 struct S {
3 long long a, b, c;
4 };
5
6 void func(void)
7 {
8 struct S s;
9 char buf[8];
10 gets(buf);
11 fill(&s);
12 printf("%s %d %d %d\n",
14 buf, (int)s.a,
15 (int)s.b, (int)s.c);
16 }

Figure 5. Function with 32-bytes aligned
local variable.

1 push ebp
2 mov ebp, esp
3 sub esp, 8
4 mov eax, ___security_cookie
5 xor eax, ebp
6 mov [ebp-4], eax
7 push esi
8 ...
9 call __alloca_probe_16
10 ...
11 lea esp, [ebp-12]
12 ; Restore esi
13 pop esi
14 mov ecx, [ebp-4]
15 xor ecx, ebp
15 call @__security_check
17 mov esp, ebp
18 pop ebp
19 ret 0

Figure 4. Sample with _alloca compiled
by MSVC.

1 push ebx
2 mov ebx, esp
3 sub esp, 8
4 and esp, -32
5 add esp, 4
6 push ebp
7 mov ebp, [ebx+4]
8 mov [esp+4], ebp
9 mov ebp, esp
10 sub esp, 64
11 mov eax, ___security_cookie
12 xor eax, esp
13 mov [ebp-4], eax
14 ...
15 mov ecx, [ebp-4]
16 xor ecx, ebp
17 call @__security_check
18 mov esp, ebp
19 pop ebp
20 mov esp, ebx
21 pop ebx
22 ret 0

Figure 6. MSVC sample with aligned
structures in the stack. ebp is protected

by the cookie, but restoring esp from ebx
is not.

P.M. Dovgalyuk, V.A. Makarov. When stack protection does not protect the stack? Trudy ISP RAN/Proc. ISP RAS,
vol. 28, issue 5, 2016, pp. 55-72.

64

1 struct S {
2 long long a, b, c;
3 }
4 __attribute__((aligned(32)));
5 void func(void)
6 {
7 char buf[8];
8 int n, i;
9 gets(buf);
10 sscanf(buf, "%d", &n);
11 struct S s[n];
12 // other stuff
13 ..
14 }

Figure 7. Variable-length array of the
aligned structures.

1 push ebp
2 mov ebp, esp
3 push ebx
4 push edi
5 push esi
6 and esp, 0xffffffe0
7 sub esp, 0x60
8 mov esi, esp
9 mov eax, ___stack_chk_guard
10 mov [esi+0x48], eax
11 ...
12 mov eax, ___stack_chk_guard
13 cmp eax, [esi+0x48]
14 jne L
15 lea esp, [ebp-0xc]
16 pop esi
17 pop edi
18 pop ebx
19 pop ebp
20 ret
21 L: call ___stack_chk_fail

Figure 8. Potentially unsafe code
generated by clang. esi acts as a frame

pointer, esp is loaded from ebp that could
be corrupted by unsafe nested functions.

We investigated newer Microsoft C compilers and found that security checks now
are enabled when _alloca is used, but these compilers place dynamically
allocated buffers directly below the callee-saved registers (Figure 2).
It means that callee-saved registers may be overwritten with buffer overflows.
Consider the source code in Figure 3. It dynamically allocates memory in stack.
This buffer is placed on the top of stack frame, below the callee-saved registers
(Figure 2).
When _alloca is not used, compiler saves registers from overwriting by placing
them at the top of the stack. But stack protection in MSVC lacks complete
protection when _alloca function is used.

Figure 4 shows the compiled code. ebp and esp are protected by the security
cookie, because ebp value is used to check the cookie, and esp is restored from
ebp. esi is placed above the security cookie. And buffer allocated by _alloca is
placed below saved esi in the memory. Therefore esi is not protected by being
overwritten with buffer overflow.
Callee-saved registers are not read until function exit. Therefore this problem may
be solved by moving calleesaved registers deeper in stack to protect them with the
security cookie.

П.М. Довгалюк, В.А. Макаров. Когда защита стека не срабатывает? Труды ИСП РАН, том 28, вып. 5, 2016,
стр. 55-72.

65

Another MSVC sample is presented in Figure 5. Function in this sample allocates
aligned variable in the stack. The compiler produces the code presented in Figure 6.
It aligns esp value to 32 bytes boundary which allows storing aligned structures in
the stack. The compiler needs an additional register to store original unaligned esp
value. It uses ebx register for that. This is callee-saved register and it is meant to
remain unchanged in nested function calls.
But restoring esp from ebx at function exit is not protected by the security cookie.
Therefore one can attack esp through corrupting ebx in nested functions. These
functions may be located in other modules and therefore may be compiled without
stack protection, allowing stack overflow exploitation. Or it may have vulnerability
described in the beginning of this section.
Using ”omit frame pointer“ compilation option does not fix this example. Compiler
uses ebp to store original esp value, but this ebp value is not verified in security
check in the epilog. In this case attacker may hijack the stack pointer by overwriting
ebp in unsafe nested function.

4.3. clang 3.7.1
Stack frame used by clang 3.7.1 compiler differs from MSVC. It puts callee-saved
registers under the protection of the canary value. Therefore these values will not be
popped back, because security check will stop the execution.
We checked all prepared samples and discovered that stack protection in this
compiler could be unsafe in programs with aligned variable-length arrays. Consider
the sample in Figure 7. Stack frame produced by clang is presented in Figure 2. It
included unaligned callee-saved registers and aligned local variables.
clang generates the assembly code presented by Figure 8. It uses two copies of a
stack pointer. One is stored in ebp and used to restore esp at exit. Another is
located in esi and used as an aligned frame pointer.
Omitting frame pointer doesn’t work here, because variable-length array size is
unknown at compile time. Imagine that this function calls some unsafe code which
corrupts esi. Then checking of the canary value will not be successful. Therefore
frame pointer is also protected by stack guard together with stack frame contents.
But stack guard does not protect ebp. ebp is used to restore esp in the epilog.
Therefore if there exists suitable unsafe code invoked by this function (e.g., library
compiled without stack protection), attacker may overwrite stack and frame
pointers.
How to eliminate vulnerability of the stack pointer? Compiler may place saved esp
value in the aligned stack frame above the canary value. In this case the attacker
couldn’t overwrite saved esp value without being noticed.

P.M. Dovgalyuk, V.A. Makarov. When stack protection does not protect the stack? Trudy ISP RAN/Proc. ISP RAS,
vol. 28, issue 5, 2016, pp. 55-72.

66

4.4. GCC 5.2.0 and 4.6.2
gcc uses all protection methods described above: stack canaries, variable reordering,
and copying function arguments.
Scheme of stack protection in gcc differs from the one used in MSVC (Figure 2).
Saved registers are protected by the canary value. Therefore the user cannot attack
stack pointer and saved registers when stack protection is enabled.
We investigated all examples and didn’t found any cases where saved registers,
stack pointer, or frame pointer could be hijacked. gcc does not allocate multiple
frame pointers. Therefore it is not vulnerable to attack which corrupts one of them.
And all saved registers are protected by the canary value.

5. Attack Vectors
In previous section we described flaws in the security checks of the modern
compilers. Code samples described above reveal two possible attack vectors:
overwriting stack pointer and overwriting callee-saved registers.
Overwriting esp may be used to control program execution through pointing esp at
the memory where known address is located. Function will try to return to that
address and will jump to the desired code. It could be something like
AuthentificationSuccess to make ”useful“ work, exit for DoS’ing without
an alert, or shellcode supplied by the attacker.
Another kind of attack is hijacking the stack or frame pointer to control local
variables. Function works with local variables through the frame pointer. If its value
is supplied by the attacker, function may read or modify unattended data. This may
lead to leakage of sensitive data or to taking alternative branches in the function.
Finally, the function will jump to some address with ret instruction. Richarte in his
paper [12] presents an example of such an attack.
Modern operating systems have address space layout randomization (ASLR)
enabled, which hampers these kind of attacks, because an attacker cannot guest the
target address. However, this protection may be bypassed in some cases. E.g., by
using the addresses from a module without ASLR [11].
Third kind of attack is overwriting caller’s local variables. Stack pointer in this
attack is not affected — application will not crash due to jumping to some incorrect
address. Attacker has to corrupt callee-saved registers, exploiting the flaws of stack
protection mechanism. Caller will not detect that these registers changed, because
calling convention declares that callee preserves register values.

6. Related Work
Other attacks and compiler enhancements are described by other researchers.
Wilander et al. states, that attacks on return address and old base pointer can be
successfully prevented by the runtime stack protection methods [7], [19]. These

П.М. Довгалюк, В.А. Макаров. Когда защита стека не срабатывает? Труды ИСП РАН, том 28, вып. 5, 2016,
стр. 55-72.

67

protection methods are described in section 2. In our research we verified these
results and found just few cases when protection can be bypassed.
Paper ”Four different tricks to bypass StackShield and StackGuard protection“
presents description of ways to bypass the stack protection techniques [12]. It
focuses on stack frame hijacking, when it is not protected by the canary. State-of-
the-art compilers protect frame pointer as well as return address, therefore it cannot
be overwritten as easy as in 2002.
Function argument attack described in that paper can also be fought back by the
modern compilers. They copy arguments to the stack area above the buffer. Buffer
overflow cannot touch arguments when they are located at the lower addresses.
Our research show that alloca makes stack protection task harder for the
compiler. alloca is already known as a source of stack overflow attacks [20].
Therefore every use of this function has to be double-checked.
Canary value protection bypassing methods using exception handlers, virtual tables
and couple of other approaches are presented in [11]. It means that stack protection
already has some drawbacks in addition to ones that we discovered.
We haven’t found any flaws in gcc stack protection method. However, we didn’t
take in account several overflow possibilities, including overwriting of one local
buffer with overflow of the another. Paper [17] describes different approaches of
enhancing stack protection in gcc. The first improvement is verification of the
canary not only when function returns, but also when the function issues a call to
another function. This check prevents passing invalid arguments to the nested
function. The second improvement is assigning an individual canary for each buffer.
With this patch overwriting of one local buffer with another will be detected by the
security check. The third improvement makes canary location and failure
probabilistic. It makes application harder to attack and reduces amount of
information supplied to the attacker in case of the failure. Authors also present
patches that implement described protection enhancements. These patches may
incur much greater runtime overhead than current protection methods. Therefore
they are not used by default yet.

7. Conclusion
In this paper we presented the analysis of the buffer overflow protection methods
used in modern compilers. Our tests showed that modern compiler may miss some
cases where stack pointer is not protected. Attacker may get control over the
application which stack is “protected” with canary value.
We found that methods used in clang and MSVC have several flaws. Both of these
compilers does not protect restoring of esp from one of the registers, when using
aligned data structures in the stack. MSVC also doesn’t protect all saved registers in
programs with _alloca function.
gcc was the third compiler to examine. We haven’t found any protection issues in
samples compiled with gcc.

P.M. Dovgalyuk, V.A. Makarov. When stack protection does not protect the stack? Trudy ISP RAN/Proc. ISP RAS,
vol. 28, issue 5, 2016, pp. 55-72.

68

Tests that were created in this research are released in repository
https://github.com/Dovgalyuk/SecurityFlaws. Everyone can generate assembly files
for its own compiler and examine the security features of code generation.

Acknowledgments
The work was partially supported by RFBR, research project No. 14-07-00411 a.

References
[1]. Y. Younan, “25 years of vulnerabilities: 1988–2012,” Tech. Rep., 2012. [Online].

Available: https://courses.cs.washington.edu/courses/cse484/14au/reading/25-years-
vulnerabilities.pdf

[2]. M. Vallentin, “On the evolution of buffer overflows,” 2007.
[3]. D. Baca, K. Petersen, B. Carlsson, and L. Lundberg, “Static code analysis to detect

software security vulnerabilities - does experience matter?” in Availability, Reliability
and Security, 2009. ARES ’09. International Conference on, March 2009, pp. 804–810.

[4]. A. Austin and L. Williams, “One technique is not enough: A comparison of vulnerability
discovery techniques,” in 2011 International Symposium on Empirical Software
Engineering and Measurement, Sept 2011, pp. 97–106.

[5]. N. Rutar, C. B. Almazan, and J. S. Foster, “A comparison of bug finding tools for java,”
in Proceedings of the 15th International Symposium on Software Reliability
Engineering, ser. ISSRE ’04. Washington, DC, USA: IEEE Computer Society, 2004, pp.
245–256. [Online]. Available: http://dx.doi.org/10.1109/ISSRE.2004.1

[6]. H. Sun, X. Zhang, C. Su, and Q. Zeng, “Efficient dynamic tracking technique for
detecting integer-overflow-to-buffer-overflow vulnerability,” in Proceedings of the 10th
ACM Symposium on Information, Computer and Communications Security, ser. ASIA
CCS ’15. New York, NY, USA: ACM, 2015, pp. 483–494. [Online]. Available:
http://doi.acm.org/10.1145/2714576.2714605

[7]. J. Wilander and M. Kamkar, “A comparison of publicly available tools for dynamic
buffer overflow prevention,” in IN NDSS, 2003.

[8]. B. Bray, “Visual studio .net 2003: Compiler security checks in depth,” February 2002.
[Online]. Available: https://msdn.microsoft.com/enus/library/Aa290051

[9]. “Stack smashing protector.” [Online]. Available:
http://wiki.osdev.org/Stack_Smashing_Protector

[10]. Bulba and Kil3r, “Bypassig stackguard and stackshield,” Phrack Magazine, vol. 56, May
2000. [Online]. Available: http://phrack.org/issues/56/5.html

[11]. C. Team, “Exploit writing tutorial part 6: Bypassing stack cookies, safeseh, sehop, hw
dep and aslr,” 2009. [Online]. Available:
https://www.corelan.be/index.php/2009/09/21/exploit-writingtutorial-part-6-bypassing-
stack-cookies-safeseh-hw-dep-and-aslr/

[12]. G. Richarte, “Four different tricks to bypass stackshield and stackguard protection,”
World Wide Web, vol. 1, 2002.

[13]. A. Sotirov and M. Dowd, “Bypassing browser memory protections,” in In Proceedings
of BlackHat, 2008. [Online]. Available: http://www.blackhat.com/presentations/bh-usa-
08/Sotirov_Dowd/bh08-sotirov-dowd.pdf

[14]. A. One, “Smashing the stack for fun and profit,” Phrack Magazine, vol. 49, November
1996. [Online]. Available: http://phrack.org/issues/49/14.html

П.М. Довгалюк, В.А. Макаров. Когда защита стека не срабатывает? Труды ИСП РАН, том 28, вып. 5, 2016,
стр. 55-72.

69

[15]. klog, “The frame pointer overwrite,” Phrack Magazine, vol. 55, September 1999.
[Online]. Available: http://phrack.org/issues/55/8.html

[16]. C. Cowan, C. Pu, D. Maier, H. Hinton, J. Walpole, P. Bakke, S. Beattie, A. Grier, P.
Wagle, and Q. Zhang, “Stackguard: Automatic adaptive detection and prevention of
buffer-overflow attacks,” in In Proceedings of the 7th USENIX Security Symposium,
1998, pp. 63–78.

[17]. A. Seredinschi, Drago¸s-Adrian; Sterca, “Enhancing the stack smashing protection in the
gcc,” Studia Universitatis Babe¸s-Bolyai, Informatica, vol. LV, Number 1, 2010.

[18]. Y. WU, “Enhancing security check in visual studio c/c++ compiler,” in Software
Engineering, 2009. WCSE ’09. WRI World Congress on, vol. 4, May 2009, pp. 109–
113.

[19]. P. Silberman and R. Johnson, “A comparison of buffer overflow prevention
implementations and weaknesses.” [Online]. Available:
https://www.blackhat.com/presentations/bh-usa-04/bh-us-04-silberman/bh-us-04-
silberman-paper.pdf

[20]. C. Evans, “glibc alloca() memory corruption,” 2011. [Online]. Available:
https://packetstormsecurity.com/files/98720/

P.M. Dovgalyuk, V.A. Makarov. When stack protection does not protect the stack? Trudy ISP RAN/Proc. ISP RAS,
vol. 28, issue 5, 2016, pp. 55-72.

70

Когда защита стека в компиляторах не срабатывает?

Павел Довгалюк <pavel.dovgaluk@ispras.ru>
Владимир Макаров <vladimir.makarov@novsu.ru>

Новгородский государственный университет,
173003, Россия, Великий Новгород, ул. Большая Санкт-Петербургская, д. 41

Аннотация. Основная часть уязвимостей в программах вызвана переполнением
буфера. Чтобы предотвратить переполнение буфера и уменьшить ущерб от него
используется безопасное программирование, аудит исходного кода, аудит бинарного
кода, статические и динамические особенности кодогенерации. В современных
компиляторах реализованы механизмы защиты, работающие на этапе компиляции и на
этапе выполнения скомпилированной программы: переупорядочивание переменных,
копирование аргументов и встраивание стековой канарейки. В статье описывается
исследование, посвященное поиску недостатков в этих механизмах. Мы
протестировали компиляторы MSVC, gcc и clang и обнаружили, что два из них
содержат ошибки, позволяющие эксплуатировать переполнение буфера при
определенных условиях.

Ключевые слова: переполнение буфера; стековая канарейка; gcc; msvc; clang

DOI: 10.15514/ISPRAS-2016-28(5)-3

Для цитирования: П.М. Довгалюк, В.А. Макаров. Когда защита стека не срабатывает?
Труды ИСП РАН, том 28, вып. 5, 2016, стр. 55-72 (на английском). DOI:
10.15514/ISPRAS-2016-28(5)-3

Литература
[1]. Y. Younan, “25 years of vulnerabilities: 1988–2012,” Tech. Rep., 2012. [Online].

Available: https://courses.cs.washington.edu/courses/cse484/14au/reading/25-years-
vulnerabilities.pdf

[2]. M. Vallentin, “On the evolution of buffer overflows,” 2007.
[3]. D. Baca, K. Petersen, B. Carlsson, and L. Lundberg, “Static code analysis to detect

software security vulnerabilities - does experience matter?” in Availability, Reliability
and Security, 2009. ARES ’09. International Conference on, March 2009, pp. 804–810.

[4]. A. Austin and L. Williams, “One technique is not enough: A comparison of vulnerability
discovery techniques,” in 2011 International Symposium on Empirical Software
Engineering and Measurement, Sept 2011, pp. 97–106.

[5]. N. Rutar, C. B. Almazan, and J. S. Foster, “A comparison of bug finding tools for java,”
in Proceedings of the 15th International Symposium on Software Reliability

П.М. Довгалюк, В.А. Макаров. Когда защита стека не срабатывает? Труды ИСП РАН, том 28, вып. 5, 2016,
стр. 55-72.

71

Engineering, ser. ISSRE ’04. Washington, DC, USA: IEEE Computer Society, 2004, pp.
245–256. [Online]. Available: http://dx.doi.org/10.1109/ISSRE.2004.1

[6]. H. Sun, X. Zhang, C. Su, and Q. Zeng, “Efficient dynamic tracking technique for
detecting integer-overflow-to-buffer-overflow vulnerability,” in Proceedings of the 10th
ACM Symposium on Information, Computer and Communications Security, ser. ASIA
CCS ’15. New York, NY, USA: ACM, 2015, pp. 483–494. [Online]. Available:
http://doi.acm.org/10.1145/2714576.2714605

[7]. J. Wilander and M. Kamkar, “A comparison of publicly available tools for dynamic
buffer overflow prevention,” in IN NDSS, 2003.

[8]. B. Bray, “Visual studio .net 2003: Compiler security checks in depth,” February 2002.
[Online]. Available: https://msdn.microsoft.com/enus/library/Aa290051

[9]. “Stack smashing protector.” [Online]. Available:
http://wiki.osdev.org/Stack_Smashing_Protector

[10]. Bulba and Kil3r, “Bypassig stackguard and stackshield,” Phrack Magazine, vol. 56, May
2000. [Online]. Available: http://phrack.org/issues/56/5.html

[11]. C. Team, “Exploit writing tutorial part 6: Bypassing stack cookies, safeseh, sehop, hw
dep and aslr,” 2009. [Online]. Available:
https://www.corelan.be/index.php/2009/09/21/exploit-writingtutorial-part-6-bypassing-
stack-cookies-safeseh-hw-dep-and-aslr/

[12]. G. Richarte, “Four different tricks to bypass stackshield and stackguard protection,”
World Wide Web, vol. 1, 2002.

[13]. A. Sotirov and M. Dowd, “Bypassing browser memory protections,” in In Proceedings
of BlackHat, 2008. [Online]. Available: http://www.blackhat.com/presentations/bh-usa-
08/Sotirov_Dowd/bh08-sotirov-dowd.pdf

[14]. A. One, “Smashing the stack for fun and profit,” Phrack Magazine, vol. 49, November
1996. [Online]. Available: http://phrack.org/issues/49/14.html

[15]. klog, “The frame pointer overwrite,” Phrack Magazine, vol. 55, September 1999.
[Online]. Available: http://phrack.org/issues/55/8.html

[16]. C. Cowan, C. Pu, D. Maier, H. Hinton, J. Walpole, P. Bakke, S. Beattie, A. Grier, P.
Wagle, and Q. Zhang, “Stackguard: Automatic adaptive detection and prevention of
buffer-overflow attacks,” in In Proceedings of the 7th USENIX Security Symposium,
1998, pp. 63–78.

[17]. A. Seredinschi, Drago¸s-Adrian; Sterca, “Enhancing the stack smashing protection in the
gcc,” Studia Universitatis Babe¸s-Bolyai, Informatica, vol. LV, Number 1, 2010.

[18]. Y. WU, “Enhancing security check in visual studio c/c++ compiler,” in Software
Engineering, 2009. WCSE ’09. WRI World Congress on, vol. 4, May 2009, pp. 109–
113.

[19]. P. Silberman and R. Johnson, “A comparison of buffer overflow prevention
implementations and weaknesses.” [Online]. Available:
https://www.blackhat.com/presentations/bh-usa-04/bh-us-04-silberman/bh-us-04-
silberman-paper.pdf

[20]. C. Evans, “glibc alloca() memory corruption,” 2011. [Online]. Available:
https://packetstormsecurity.com/files/98720/

P.M. Dovgalyuk, V.A. Makarov. When stack protection does not protect the stack? Trudy ISP RAN/Proc. ISP RAS,
vol. 28, issue 5, 2016, pp. 55-72.

72

