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1. Introduction 
The motivation of our research into modularity computation was the need to 
quantitatively assess and compare the quality of various clustering algorithms applied 
to mobile call graphs. As soon as no such graphs with ground-truth community 
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structure were found, we couldn’t use the most popular quality metric based on 
Normalized Mutual Information (NMI). 
For evaluating quality of community detection methods on graphs with unknown 
reference communities, metrics based on probabilistic models are used. Such metrics 
include modularity, surprise, significance [19], ER-modularity [5]. Also, generative 
models from model-based community detection methods can be used to estimate 
likelihood of clustered graph [15, 11]. 
Modularity value characterizes the strength of a particular clustering of a graph. It is 
high when clusters are dense and sparsely connected to each other, whereas its value 
is low when clusters are formed at random. Besides evaluation of community cover, 
modularity is also used as optimization function in some community detection 
algorithms [16, 18]. In [12] modularity is also used for graph partitioning, but only 
for the case of two communities. 
Here we consider modularity metric, its existing extensions for directed and weighted 
graphs and for the case of overlapping communities. Then we describe our extensions 
of modularity for overlapping communities in directed weighted graphs. 

2. Notation 
In this paper we will use the following notation, most of which are common in graph 
theory. 

 – graph with nodes  and edges , nodes , edge ; 

 – adjacency matrix of graph ; 

 – an element of ; 

 – weight of edge ; 

 – degree of node ; 
 – set of communities on graph ,  – particular community; 

 – set of communities node  belongs to; 

 – average community size in graph , ; 

 – average square community size in graph , ; 

We will also use  instead of  to denote sizes of corresponding sets. 

3. Existing versions of modularity 
Modularity was defined by Newman and Girvan [3] to measure a quality of a partition 
of a graph into a set of clusters. It is the fraction of edges within the clusters minus 
the expected such fraction in a randomly connected graph with the same nodes and 
their degrees. Modularity was originally defined for undirected unweighted graphs 
and is given by: 
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  (1) 

where  – number of edges between nodes within community  – number of 
edges from the nodes in community  to the nodes outside . 
Modularity can equivalently be expressed via adjacency matrix Aij and nodes degrees 
ki: 

  (2) 

There are three main directions of extension of the original modularity definition: for 
directed graphs, for weighted graphs, and for the case of overlapping communities. 

3.1 Modularity for directed and weighted graphs 
Extension of modularity (2) to directed graphs is rather straightforward [7]: 

  (3) 

where  is out-degree of node  and  is in-degree of node . 

Modularity (2) is easily generalized to weighted graphs as well [2]: 

   (4) 

where  – weight of edge ,  is sum of all weights of edges of 

node , and  is total weight of all edges. 

Moreover, modularity formula (2) for both weighted and directed graphs can be 
written as [6]: 

   (5) 

Finally, modularity based on LinkRank, was suggested for weighted directed graphs 
[9]: 

  (6) 
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LinkRank is an analogy of PageRank [14] for links. PageRank is the probability of a 
particular page (node) being visited by a random surfer and can be defined as a 
stationary row vector of Google Matrix : . In case of directed graphs 
Google Matrix , where  is damping parameter for 

PageRank (with probability  random surfer jumps to a random node) and  is 
indicator of dangling node: 

 

This formula originates from an alternative notion of community as a group of nodes 
where a random surfer spends more time in average. More technically, this definition 
of modularity is the deviation between the fraction of time a random walker spends 
within communities and the expected such time. 

3.2 Overlapping modularity 
In the case when a node can belong to several communities, the belonging coefficients 

 are introduced [8] which indicate how much a node  belongs to community . 
This coefficients are non-negative and sum to one: 

  . This relates to another extension of 

community detection problem, called fuzzy community detection [13]. To generalize 
different approaches of using belonging coefficients, a belonging function 

 can be defined [17] to characterize an extent to what an edge  
connects communities  and  respectively. 

According to this, several approaches for overlapping modularity from the literature 
can be generalized to the following two definitions [17]: 

  (7) 

and 

  (8) 
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where belonging coefficient can be: 

  (9) 

where  is the number of maximal cliques containing edge ,  is the number 

of maximal cliques containing edge  inside community . Belonging function 
can be: 

  (10) 

3.3 Further extensions of modularity 
Besides the node-based extensions, there was suggested edge-based extension [10] 
(for directed graphs): 

  (11) 

Here edge belonging function  can be any of (10), but the authors 
suggested this variant (together with empirically found expression for ): 

  (12) 

It is worth to notice that actually in the inner sum iterating of pairs of nodes  are 

done over nodes only from community  (not from the whole ), due to the form of 
 functions. 

Authors of [17] suggested density-based version of modularity (1) for overlapping 
directed graphs: 
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  (13) 

3.4 Drawbacks and limitations 
The first obvious drawback is that there was not found any modularity formula, 
comprising all three needed properties: support of directed, weighted graphs with 
overlapping communities. 
The second limitation is computational complexity. Aforementioned formulas of 
overlapping modularity are not acceptable for large graphs (with more than  nodes 
within community cover) due to their high computational complexity. Denoting the 
average number of communities by , average community size by  and number of 
nodes by , we have for (13) time complexity , and for (11) — . 
See subsection 4.1 for more details. 
It’s also worth noting that LinkRank authors [9] provide some evidence that the 
modularity (5) can’t distinguish the direction of links. 

4. Our extensions of modularity 
Since we focus on modularity for directed weighted graphs with overlapping 
communities, we actually have two possibilities of extension: make overlapping 
(directed) modularities support weights, or to extend directed weighted modularities 
to the overlapping case. 
The first approach suggests naive substitution of adjacency matrix of a graph to matrix 
of weights and number of edges to the sum of their weights. Doing so with density 
formula (13) leads to unnormalization: values of modularity start to exceed the 
available range . But we will still use it in experiments with unweighted 

graphs. On the other hand, edge-based formula seems to allow such generalization, 
becoming: 

  (14) 

But this is still computationally expensive. 
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The second approach consists in introducing belonging coefficients (9) and belonging 
functions (10) to simple version (5): 

  (15) 

and to LinkRank-based version of modularity (6): 

  (16) 

Since PageRank (and hence LinkRank) has fast implementations ([1, 4]), these two 
formulas have much lower computational complexities. 
Also, we suggested to use in formulas a normalization coefficient instead of 
belonging function: 

  (17) 

The intuition is the following. If both nodes  belong to  communities, the term 

 will encounter  times in modularity formula, once for each community, 

so we weigh it by the factor of  . It’s easy to see that otherwise modularity 
can become unlimited: suppose that each community is actually two equal different 
communities, then modularity value doubles. 

4.1 Computational complexity 
Here we calculate computational complexities of modularity extensions , ,  

and . All complexities are present in table 1. 

Firstly, denote by  computational complexity of  – we consider it 
later. 
In the expression for  (13), the term  is computed in , so as ;  

in ;  and  in  time. Counting that average square 

community size  is not less than square of average size , each term of summation 
has complexity , giving overall complexity . 

In the expression for   (14), the hardest term is  and , which take  

steps, thus resulting in  overall complexity. 

 (15) and  (16) have complexity , ignoring PageRank calculation 

time as insignificant. Understanding the big-O complexity of PageRank calculation 
requires analyzing the code of pagerank scipy method from NetworkX2. However, 
Aric Hagberg (NetworkX Lead Programmer) wrote that their implementation has 

                                                           
2 http://networkx.github.io/ 
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”linear complexity in the number of edges”. In practice, PageRank computation time 
is negligible. 
Now consider . Uniform belonging coefficient  may be 

computed by one operation if communities for each node are explicitly known, e.g. 
each node has a set of labels. But usually community detection algorithms return list 
of communities represented by sets of nodes. This means we need  
operations to find all communities a given node  belongs to. The same concerns 
fraction belonging coefficient, for which we have , supposing that 
average node membership is not very high, i.e. . Therefore, intersection 

belonging function together with the others are . 

Table 1: Computational complexities for modularity formulas, belonging functions and 
belonging coefficients. 

 

4.2. Effects 
In order to demonstrate adequacy of the estimate based on computed modularity with 
regard to intuitive community structure, we computed modularities of several 
alternative community covers of the example graph (see Fig. 1). We generated a large 
set of random community covers, and sort them according to the modularity value 
computed with formula (15). Fig. 1 demonstrates 3 covers with highest modularity 
and 3 covers with lowest modularity. We can see that the most intuitive cover 
corresponds to the highest modularity value. The same holds for formula (16). 
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Fig. 1. Modularity (15) of different community covers for example directed weighted graph. 

All edges have weight 10 except (1-6) and (3-7) which have weight 0.1. Top row: 
covers with maximal modularity; bottom row: covers with minimal modularity. 

5. Experiments 
We implemented in Python four versions of modularity , ,  and  

together with 4 belonging functions (see (10) and (12)): 
1. sum , 

2. product , 

3. intersection , 

4. edge-based , 

and two belonging coefficients: 
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1. uniform , 

2. fraction . 

Also we conducted a set of experiments: on computation time, different belonging 
functions and belonging coefficients, and parallelizing. 

5.1 Computation time 
We compared modularity value and computation time of four appropriate formulas 
( , , , ) on two graphs of different size. Since  doesn’t support 

weights and fraction belonging coefficient is undefined for directed graphs (due to 
possible zero in denominator), graphs were chosen undirected unweighted. 
Experiments with directed weighted graphs are to be conducted later. We took default 
belonging functions (suggested in original papers) and uniform belonging coefficient 
for simplicity. 
The small graph was generated by CDR-GEN generator3 and clustered by SLPA 
algorithm4 with threshold . Parameters of the smaller graph are: number of 

nodes , number of edges , number of communities , 
average size of community  with 100% of nodes involved in communities, 
average membership . 
The big graph was Wu et al dataset5 clustered by MOSES algorithm6 with 7% of nodes 
involved in communities ( , , , ). Results 
are in table 2. 
Table 2 shows that as size of graph and size and number of communities grow,  

and  become too computationally expensive, so there are only two scalable 

candidates,  and . 

Table 2: Modularity value and computation time for QS, QLR, QD and QE on 2 undirected 
unweighted graphs. 

 

                                                           
3 https://github.com/mayconbordin/cdr-gen 
4 https://sites.google.com/site/communitydetectionslpa/ 
5 http://www.pnas.org/content/107/44/18803?tab=ds 
6 https://sites.google.com/site/aaronmcdaid/moses 
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Table 3: Comparison of different belonging functions and belonging coefficients for QD, QE, 
QS and QLR on undirected unweighted graph with |V | = 72146, |E| = 79003, |C| = 1894, S = 
5.30 (clustered by Clique Percolation). 

 

Table 4: Comparison of different belonging functions for QS and QLR on a directed weighted 
graph with overlapping communities (|V | = 72146, |E| = 79003, |C| = 1894, S = 5.30, 
clustered by Clique Percolation). 

 

Table 5: Comparison of times of sequential and parallel versions (N = 6 processes) of QS and 
QLR on a directed unweighted graph with |V | = 72146, |E| = 79003 clustered by Clique 
Percolation (covers 13% of nodes) and SLPA (covers 78% of nodes) algorithms. 

 

5.2 Belonging functions and belonging coefficients 
Then we investigated influence of different belonging functions and belonging 
coefficients on values of  and . We used the same Wu et al dataset clustered 

by Clique Percolation algorithm7 with 13% of nodes involved in communities 
( , , , ). 

Table 3 shows that the choice of belonging function or belonging coefficient doesn’t 
make much difference to result modularity. Meanwhile, intersection belonging 
function takes the lowest time. Values of  are in good consistency with those of 

, which is widely used in papers.  values tend to be less than  and .  

values differ a lot, possibly due to dissimilar formula structure, but as far as we know 
this formula was not compared to other ones in literature. 
Table 4 extends the comparison of different belonging functions for  and  on 

a directed weighted graph with overlapping communities. Belonging coefficient is 
                                                           
7 http://www.cfinder.org/ 
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uniform. We see that the behavior is consistent with that of undirected unweighted 
case. 

5.3 Parallel modularity 
Computation process of  and  naturally allows parallelization. Since each 

community and each node pair contributes independently to the modularity value, 
iterating over node pairs may be distributed between processors. 
We implemented two parallel versions. The first one is rather straightforward. 
Iteration over communities is left sequential. Each time when community of size more 
than  is encountered,  parallel processes are initialized. The set of all 
nodes pairs within the community is split into  equal chunks and are assigned to 
these processes (see algorithm 1). 

 

Algorithm 1: Parallel modularity version 1.  

The second parallel version is a little more complicated. The idea is to split the set of 
communities  into subsets between processors. But in order to balance the load, 
these chunks should have approximately equal sum of squares of community size 
since community of size  has  ordered node pairs (counting self-loops). To achieve 
this we used a greedy algorithm, which iterates over communities in descending order 
and assigns each of them to a subset that has the smallest sum of size squares. The 
only problem here is that the biggest community may have size square much more 
than sum of size squares of the rest ones, i.e. the chunk which gets this community 
will be overloaded. To overcome this challenge we sort communities by their sizes in 
descending order and apply the first parallel approach to first (biggest) several 
communities, until we encounter community with small enough size to allow 
balancing of the rest ones or reach lower community size bound . The rest ones are 
split into subsets according to the mentioned greedy algorithm. To determine whether 
to start balancing we use a simple condition: square of size of current biggest 
community should be at most  of total sum of squares of sizes of communities left 

at the moment. Formally, having sorted sizes of communities , the 
condition of stopping at community  is . See algorithm 2. 
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Algorithm 2: Parallel modularity version 2. 

We compared the speedup due to both versions of parallellization versus sequential 
computing of modularity for  and . See table 5. When number of communities 

is small ( ) the first method is slightly faster due to its simplicity (results 
were averaged over 5 runs). In case of many communities the second version shows 
its benefit. 
We also investigated process scalability of both parallel implementations. The results 
are represented in Fig. 1. 

6. Conclusion 
We investigated existing approaches to computing modularity measure and 
developed  and  – modularity extensions for large directed weighted graphs 

with overlapping communities. These extensions have low computational complexity 
which makes them applicable to graphs with more than 104 nodes and they also can 
be computed in parallel way. 
These two formulae are based on different notions of community: as group of nodes 
with more dense links (QS) or a group of nodes where a random surfer tends to spend 
more time (QLR). Since a surfer walks along link direction, the second formula is more 
sensible to direction of links in a graph. 
As a future direction may be considered a possibility to use new version of modularity 
for overlapping community detection in directed weighted graphs. 

M. Drobyshevskiy, A. Korshunov, D. Turdakov. Parallel modularity computation for directed weighted graphs with 
overlapping communities. Trudy ISP RAN/Proc. ISP RAS, vol. 28, issue 6, 2016, pp. 153-170. 

166 

 

Fig. 2. Speedup of both parallel modularity versions on a directed unweighted graph with |V | 
= 72146, |E| = 79003, |C| = 1894, S = 5.30 
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